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Abstract. We carry out a systematic analytical and numerical study of spectral stability of dis-
continuous roll wave solutions of the inviscid Saint-Venant equations, based on a periodic Evans-
Lopatinsky determinant analogous to the periodic Evans function of Gardner in the (smooth)
viscous case, obtaining a complete spectral stability diagram useful in hydraulic engineering and
related applications. In particular, we obtain an explicit low-frequency stability boundary, which,
moreover, matches closely with its (numerically-determined) counterpart in the viscous case. This
is seen to be related to but not implied by the associated formal first-order Whitham modulation
equations.
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1. Introduction

In this paper, we study the spectral stability of periodic “roll wave” solutions of the inviscid
Saint-Venant equations

(1.1)

∂th+ ∂xq = 0,

∂tq + ∂x

(
q2

h
+

h2

2F 2

)
= h− |q| q

h2

modeling inclined shallow water flow. Here, t and x denote elapsed time and spatial location along
the incline, h and q = hu denote the fluid height and total flux at point (x, t), u is a vertically

averaged velocity, and h2

2F 2 is an effective fluid-dynamical force analogous to pressure in compressible

flow1. The parameter F is a nondimensional Froude number, defined explicitly as F = U0√
H0g cos θ

,

where θ is angle from horizontal of the incline, g the gravitational constant, and H0 and U0 are
fixed chosen reference values of height and velocity, i.e., units of measurement for h and u. Source
terms h and −|q|q/h2 = −|u|u on the righthand side represent opposing accelerating and resisting
forces of gravity and turbulent bottom friction, the latter approximated by Chezy’s formula as
proportional to fluid speed squared [Dre49, BM04].

System (1.1) and its viscous counterpart, obtained by including the additional term ν∂x(h∂x(q/h)),
with ν > 0 a non dimensional constant (the inverse of a Reynolds number), on the righthand side
of (1.1)(ii), are both commonly used in hydraulic engineering applications, for example to model
shallow fluid flow in a canal or spillway. See [BM04] for an interesting survey of this topic and
applications, including a description of the reduction to nondimensional form (1.1) [BM04, p. 14].

Our particular interest here is in the phenomena of roll waves [Cor34, Bro69, Bro70], a well-
known hydrodynamic instability associated with destabilization of constant flow [Jef25] consisting
of a periodic series of shocks, or “bores”, separated by smooth monotone wave profiles, advancing
down the incline with constant speed. Such waves are important due to their destructive capacity,
both through overflow of a confining channel due to increased amplitude variation and through the
“water-hammer” effect of periodic shock impacts on hydraulic structures [Dre49, p.149], [BM04,
p.1], [Hua13, p.7]. This motivates the study of both the existence, and, as the physical selection
mechanism determining naturally occurring amplitudes and frequencies, dynamical stability of roll
waves.

The existence problem is by now well understood. Existence of roll waves for (1.1) was established
by Dressler by exact solution [Dre49], and for the viscous version of (1.1) by Härterich [Här05]

1Indeed, the lefthand side of (1.1) may be recognized as the equations of isentropic compressible gas dynamics,
with h and q playing the roles of density and momentum, and a polytropic (γ = 2) equation of state.
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Figure 1. (a) Simulated Dressler roll waves. (b) Roll waves in the Grunnbach conduit.

using singular perturbation analysis in the limit as ν → 0+. See also [BJN+17] for existence of
a full family of small-amplitude viscous long waves in the near-onset regime F > 2, |F − 2| �
1, by a Bogdanev-Takens bifurcation from cnoidal waves of the Korteweg-de Vries equation and
[NM84] for existence of nearly harmonic small-amplitude roll waves for general viscosity by a Hopf
bifurcation analysis from constant states. In the inviscid case, it is known that there exists a
3-parameter family of wave profiles, parametrized by the Froude number F > 2 and parameters
Hs > 0 and H− ∈ (Hmin(F,Hs), Hs), where Hs and H− denote, respectively, the fluid heights at a
distinguished “sonic” point (where wave profile equations are degenerate) and at the left endpoint
of the (monotone increasing) continuous profiles separating jumps; see Figures 1(a)-(b) for a typical
solution and physical example.2 By scaling invariance, this may be reduced to a 2-parameter family,
taking without loss of generality Hs ≡ 1. See Section 2 for details. In the viscous case, for each fixed
ν there is likewise a 3-parameter family of waves, converging as ν → 0+ to matched asymptotic
expansions of the inviscid profiles [Här05].

The stability problem, by contrast, despite substantial results in various asymptotic limits, re-
mains on the whole somewhat mysterious, especially in the medium-to-large Froude number regime
2.5 / F / 20 that is relevant to hydraulic engineering applications [Jef25, Bro69, Bro70, AeM91,
RG12, RG13, FSMA03]. As described, e.g., in [YK92, YKH00, Kra92, BM04, BN95, BJN+17], the
near-onset regime, F > 2, |F − 2| � 1, in the viscous case is well-described by a weakly nonlinear
“amplitude equation” consisting of a singularly perturbed Korteweg-de Vries equation modified
by Kuramoto-Sivashinsky diffusion, for which stability boundaries may be explicitly determined
in terms of integrals of elliptic functions. This formal description (in which viscosity plays an
important role), has at this point been rigorously validated at the linear and nonlinear level in
[JNRZ15, JNRZ14, Bar14, BJN+17], in part using rigorous computer-assisted proof. However, nu-
merical investigations of [BJN+17] indicate that its regime of validity is limited to approximately
2 < F / 2.3, which is outside the regime of interest for typical hydraulic engineering applications.

Away from onset, a standard approach in pattern formation is to replace the weakly nonlinear am-
plitude equation approximation by a formal Whitham modulation expansion [Whi74], a multiscale
expansion in similar spirit, but built around variations in the manifold of periodic solutions rather
than linear perturbations of a constant state. In contrast to the near-onset case, where the full
spectral stability is proved to be encoded in a relevant weakly-nonlinear amplitude equation, such
Whitham expansions yield only stability information that is low-frequency on wave parameters, in

2The latter reproduced from [Cor34].
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particular low-Floquet or side-band for the original equations. See [NR13] for a precise discussion of
what may rigorously deduced from this kind of approach, including higher-order versions thereof.
Formal analyses of this general type were carried out by Tamada and Tougou in [TT79, Tou80] to
obtain formal side-band stability criteria. More recently, Boudlal and Liapidevskii have proposed a
different formal necessary stability condition based on direct spatial averaging [BL02], presumably
also related to (but not necessarily limited to) low-frequency stability.

In a different direction, Jin and Katsoulakis [JK00] have carried out weakly nonlinear asymptotics
in the high-frequency limit, obtaining an amplitude equation consisting of a negatively damped
Burgers equation, from which one may conclude formally instability of roll waves with sufficiently
small period. Working by very different techniques, based on a direct linearized eigenvalue analy-
sis, and WKB approximation, Noble [Nob03, Nob06] has obtained complementary high-frequency
stability criteria, from which he was able to conclude high-frequency stability for waves with suffi-
ciently large period, i.e. stability with respect to perturbations of sufficiently high time frequency.
However, in the large-Froude number regime, (i) the various low-frequency criteria do not agree,
leading to confusion as to what precisely they capture; (ii) the high-frequency condition of Noble,
though theoretically conclusive, is difficult to analyze outside of the large-period limit computed
by Noble; and (iii)up to now complete stability information for waves away from onset was only
established in the unstable high-frequency limit studied by Jin-Katsoulakis. In particular, stability
had not been verified for any roll wave solution of (1.1) with Froud number F that is not close to 2.

In summary, the stability theory for large-Froude number roll waves remains far from clear,
consisting of disparate, mainly formal, pieces with no unified whole. Our goal in this paper is to
shed light on the situation by a systematic investigation combining rigorous analysis of the exact
eigenvalue equations with numerical investigation to obtain a complete spectral stability diagram
for the family of discontinuous roll wave solutions of the inviscid system (1.1), and at the same
time determining a precise connection between low-frequency stability and the formal Whitham
modulation equations.

1.1. Viscous stability, Whitham equations, and the Evans-Lopatinsky determinant.

Viscous stability. Our main impetus for the present inviscid stability analysis is the recent sta-
bility analysis carried out away from onset in [NR13, JNRZ14, RZ16, BJN+17] for smooth roll
wave solutions of the viscous version of the Saint-Venant equations (1.1). There, it was shown
rigorously that (i) nonlinear modulated stability follows from diffusive spectral stability; (ii) in
stable cases associated second-order formal Whitham modulation systems provide accurate large-
time approximations; and (iii) in any case (stable or unstable), spectral perturbations of neutral
modes with respect to Floquet/Bloch frequency agree to second order with those predicted by an
associated formal second-order Whitham modulation system. Finally, the spectrum was approxi-
mated numerically for the linearized problem about the waves using the periodic Evans function
D(λ, ξ), an analytic function introduced by Gardner [Gar93] whose zeros correspond to spectra λ
and associated Bloch/Floquet numbers ξ; see [BJN+17] for further description.

The surprising result in the viscous case was that, away from onset, i.e., for F ' 2.5, the
stability diagram has a different description3 from the one near onset, with stable wave parameters
corresponding to the region within a lens-shaped region bounded by an upper and a lower stability
boundary. This observation was obtained purely numerically in [BJN+17], with no explanation of
any kind, not even formal. However, there it was noted that in the region of stability, wave profiles
seemed to converge to discontinuous “Dressler-wave” solutions for large values of F , suggesting that
an explanation of the observed behavior might be found in the study of the inviscid equations (1.1)
and its singular perturbation via the zero viscosity limit. Moreover, the numerical computations in

3Away from onset, it the stability boundaries obey an equally simple power-law description.
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the viscous case, lying in simultaneous large period and small viscosity limits, were quite delicate,
with a total reported computation time exceeding 40 days (machine time) on the IU supercomputer
cluster [BJN+17, §9.2].

From the viewpoint of both physical insight and reliability/efficiency of numerical computations,
these findings motivate the study of the inviscid equations as an organizing center for the observed
viscous results. Moreover, they suggest the analytical strategy that we shall follow here, of adapting
to the inviscid case the tools that have proved successful in the viscous one, Whitham modulation,
direct spectral expansion, Floquet-Bloch analysis, and the periodic Evans function of Gardner.

Inviscid Whitham system. We begin by identifying a first-order Whitham modulation system anal-
ogous to that of the viscous case [Whi74, Ser05, NR13, JNRZ14]. In the viscous case, this appears
as

(1.2)
∂tH + ∂xQ = 0,

∂tk − ∂xω = 0,

where k = 1/X and ω = −kc are spatial and temporal wave numbers for roll wave solutions

(h, q)(x, t) = (H,Q)(ωt+ kx)

propagating with speed c, with periodic profile (H,Q) of period one, and, here and elsewhere, upper
barred quantities denote averages over one period. As described in [Ser05, NR13, JNRZ14], the
system (1.2) may be obtained in the viscous case by averaging all conservative equations of the
original PDE (1.1) (here, just the first, h equation), and augmenting the resulting system with the
“eikonal equation” relating k and ω. For a derivation, see [Ser05], [NR13] and [JNRZ14, Appendix
B.1.1].

Following the usual Whitham formalism [Whi74, OZ03, Ser05, NR13, BGNR14, KR16], the
system (1.2) is expected to describe critical side-band behavior of a perturbed periodic viscous roll
wave as a low-frequency, or “long wave” modulation along the 2-parameter family (holding fixed
the third, physical parameter F ) of nearby viscous roll waves. Note that, indeed, since all terms are
functions of wave parameters, as follows from the ODE existence theory for the viscous roll waves,
we may view (1.2) as a 2×2 system of first-order conservation laws governing the evolution of these
two parameters. For example, parametrizing the family of viscous roll wave solutions as in [JNRZ14]
in terms of (H̄, k), we have that all other quantities in (1.2) are (implicitly) determined as functions
these parameters, and so (1.2) represents a first-order system of conservation laws prescribing the
evolution of (H̄, k). This yields via a consistency argument the formal low-frequency, or side-band
stability condition of well-posedness, or hyperbolicity of (1.2). See [Whi74, Ser05, NR13, JNRZ14]
for further discussion. We note that the property of sideband stability is independent of the
parametrization chosen for the family of traveling waves, just as hyperbolicity is preserved under
nonsingular changes of variables.

Considering now the inviscid case, we note the lack of a systematic, multi-scale expansion to
derive a corresponding inviscid Whitham system, due to the discontinuous “shock” nature of the
profiles (invalidating standard derivations based on smooth solutions). Nevertheless, based on the
convergence of profiles proved in [Här05], together with expected convergence of low-frequency
behavior in the zero-viscosity limit, we propose as an inviscid Whitham system simply the same
system of equations (1.2), but substituting the inviscid dependence of H, Q, k, and ω on wave
parameters (H−, Hs), where H− denotes the minimum value of profile H over one period and Hs

the value of H at the unique “sonic point” where the speed of the traveling wave coincides with a
characteristic speed of the original hyperbolic system (1.1); see Section 2. While this is merely an
optimistic guess at this point, we will justify this system in Section 5.1 by a direct comparison with
the associated spectral problem. We note that a remarkable feature of the system (1.2) associated
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with (1.1) is that all of its coefficients may be given explicitly, since the wave profiles may themselves
be explicitly given as the resolution of a scalar ODE with a rational vector field

For comparison, we present also the alternative low-frequency model proposed in [BL02]:

(1.3)

∂tH + ∂xQ = 0,

∂tQ+ ∂x

(
Q2

H
+
H2

2F 2

)
= 0,

upper bars again denoting averages over one period. This model was proposed based on the
observation that the average of undifferentiated terms, being equal to the jump across the shock
in differentiated quantities, must vanish by the Rankine-Hugoniot jump condition at the shock.
Here, again, (1.3) is to be interpreted as a 2 × 2 system of conservation laws determining the
evolution of wave parameters, with hyperbolicity corresponding to some necessary condition for
spectral stability. Like (1.2), the system (1.3) was proposed on heuristic grounds rather than
systematic expansion, hence requires validation by external means. To rigorously justify/compare
such heuristic stability predictions is an important tangential goal of our investigations. We show
in Section 5.1 that (1.3) despite its intuitive appeal does not accurately predict stability, side-band
or otherwise, giving rise to false negative and positive results, and in some cases wrongly predicting
instability of (globally) linearly stable waves. That is, the averaged system (1.2) suggested by the
Whitham formalism accurately predicts low-frequency stability also in the inviscid case, while the
seemingly similar averaged system (1.3) does not successfully predict stability on any scale.

Periodic Lopatinsky determinant. Our primary approach to the stability study of inviscid roll waves,
bypassing issues of formal approximation as described above, is, following [Nob03, Nob06], to work
directly with the exact eigenvalue equations for the linearization of (1.1) about the wave. Using the
rigorous abstract conclusions so obtained, we then attempt to deduce useful approximations and
to evaluate the validity of proposed formal stability criteria such as hyperbolicity of modulation
systems (1.2) and (1.3). Our main contributions beyond what was done in [Nob03, Nob06] are the
characterization of normal modes as spectra in the usual sense of an appropriate linear operator,
clarifying the connection of the framework of [Nob03, Nob06] to standard Floquet/Bloch theory,4

and the introduction of a stability function or periodic Evans-Lopatinsky determinant analogous
to the periodic Evans function of Gardner [Gar93] in the viscous case. The latter proves to be
extremely useful for both numerical and analytical computations; indeed, it is the central object in
our development.

Here, we give a quick heuristic derivation of the stability function and associated eigenvalue
equations. A rigorous derivation is given in Section 4. Consider a general system of balance laws

(1.4) ∂tw + ∂x(F (w)) = R(w),

with w valued in Rn, smooth except at a sequence of shock positions xj = xj(t), satisfying the
Rankine-Hugoniot jump conditions at the xj

(1.5) x′j(t)[w]j = [F (w)]j

where [h]j := h(x+
j ) − h(x−j ). Let us assume that W is a X-periodic traveling wave solution of

(1.4), with wave speed c and a single shock by period. Working in a co-moving coordinate frame
turns W in a stationary solution, with shocks located at Xj = jX.

4In particular, bearing on the issue of “completeness” of normal modes solutions.
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Then, in this frame, formally linearizing (1.4) about W (i.e., taking a pointwise, or Gateaux,
derivative not required to be uniform in x, t), we obtain the “interior equations”

(1.6) ∂tv + ∂x(Av) = Ev on R̃ :=
⋃
j∈Z

(jX, (j + 1)X),

where here5

A(x) := dwF (W (x))− cId and E(x) := dwR(W (x)),

while at the shock locations Xj = jX we obtain linearized jump conditions

(1.7) y′j [W ]j = yj [AW ′]j + [Av]j ,

with v and yj now denoting perturbations in w and xj , where the second term in (1.7) is obtained
due to displacement yj in the location of the jump (error terms by H1 extension remaining of higher
order so long as solutions remain bounded in H1 and yj remains sufficiently small).

As the system (1.6)-(1.7) has X-periodic coefficients, it may be analyzed via Floquet theory, i.e.,
through the use of the Bloch-Laplace transform. Precisely, decomposing solutions of (1.6)-(1.7)
into “normal mode” solutions of the form

(1.8) v(x, t) = eλteiξxv̌(x), yj(t) = χeλteiξ(j−1)X , λ ∈ C, ξ ∈ [−π/X, π/X],

with v̌(·) X-periodic and χ constant, and setting

(1.9) w(x) = v̌(x)eiξx,

we use the quasi-periodic structure in (1.8) to reduce the spectral problem to a one-parameter
family of Floquet eigenvalue systems

(1.10)
(Aw)′ = (E − λId)w on (0, X),

χ(λ{W} − {AW ′}) = {Aw}ξ,
parametrized by ξ ∈ [−π/X, π/X], where here ′ denotes ∂x. Here above we have used periodic
jump notation

(1.11) {f} := f |X0 , {f}ξ := f(X−)− eiξXf(0+) .

Note that this reduces the whole-line problem (1.6)-(1.7) to consideration of a family of problems
posed on a single periodic cell (0, X).

As a result, the X-periodic wave W is said to be (spectrally) unstable if there exists a ξ ∈
[−π/X, π/X] such that the eigenvalue problem (1.10) has a non-trivial solution w for some λ ∈ C
with <(λ) > 0. Otherwise, the wave W is said to be (spectrally) stable. For details, see Section 4
below.

By stationarity of W , we have AW ′ = (F (W ) − cW )′ = R(W ). Thus we find that existence
of a non-trivial solution to the Floquet eigenvalue problem is equivalent to linear dependence of
{λW −R(W )} and {Aw}ξ, for some solution w to (1.10)(i) or, equivalently under Assumption 4.2
from Section 4, vanishing of the determinant

(1.12) ∆(λ, ξ) := det
(
{λW −R(W )} {Aw1}ξ . . . {Awn−1}ξ

)
,

λ ∈ C, ξ ∈ [−π/X, π/X], where w1, . . . , wn−1 form a basis of solutions of interior eigenvalue
equation (1.10)(i). Here in the abstract discussion we are taking for granted minimal degeneracy
of the structure of interior equations in the presence of a singular point of the system of eigenvalue
ODE (responsible for a loss of one dimension in the space of H1 solutions) and existence of an
analytic in λ choice of basis w1, . . . , wn−1; see Assumptions 4.2-4.3 below. With this respect,
note that a consequence of the periodic single-shock structure together with the Lax characteristic
condition, already observed in [Nob03, Nob06], is the presence of one sonic, or characteristic, point

5Throughout, the notation dw will represent the gradient with respect to the argument w.
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of F in W , that is, existence of a singular point of (1.10)(i); see Section 2. We refer the reader
to Section 4 and Appendix A for further details and in particular proofs that on one hand the
underlying Assumptions 4.2-4.3 hold if each periodic cell contains only one singular point and this
singular point is a regular-singular point, and on the other hand this scenario includes the case of
System (1.1).

Definition 1.1. We call ∆ the6 periodic Evans-Lopatinsky determinant, or “stability function” for
W . We define the nonstable spectrum of W as the set of roots λ with <λ > 0 of ∆(·, ξ) for some
ξ ∈ [−π/X, π/X]. Likewise, we define spectral stability of W as the absence of zeros of ∆ with
<λ > 0.

In Section 4, we show by a study of the associated resolvent equation that the spectrum as

defined above agrees with the usual H1(R̃)× `2(Z)-spectrum of the linearized problem about W .

Remark 1.2. For comparison, the periodic Evans function of Gardner may be written as

D(λ, ξ) := det
(
{Aw1}ξ . . . {Awn}ξ

)
,

where w1, . . . , wn are a basis of solutions to the eigenvalue ODE. Meanwhile, the Evans-Lopatinsky
determinant associated with a detonation-type solution of (1.4), featuring a single shock disconti-

nuity at x = 0, appears [Erp62, JLW05, Zum11], with {h} now denoting h|0+0− , as

δ(λ) := det
(
{λW −R(W )} Aw1(0+) . . . Awj0(0+) Awj0+1(0−) . . . Awn−1(0−)

)
,

where w1, . . . , wj0 are functions on (0,∞) that form a basis of solutions to the eigenvalue ODE
decaying to zero at∞ and wj0+1, . . . , wn−1 are functions on (−∞, 0) that form a basis of solutions
to the eigenvalue ODE decaying to zero at −∞. In particular, the periodic Evans-Lopatinsky
determinant interpolates between the periodic Evans function of the viscous case and the Lopatinsky
determinant of inviscid shock/detonation theory.

1.2. Main results. We now describe our main results, both analytical and numerical.

Low-frequency expansion and Whitham modulation equations. Let W be an X-periodic roll wave
solution of (1.1) with speed c. Following Section 1.1, we make the change of coordinates x→ x−ct to
a co-moving frame in which W is stationary, and define the periodic Evans-Lopatinsky determinant
∆(λ, ξ) as in (1.12). Our first observation is that ∆ possesses the following surprisingly special
structure.

Proposition 1.3. λ = 0 is a root of ∆(·, ξ) for all ξ ∈ [−π/X, π/X]. Equivalently, ∆ factors as

(1.13) ∆(λ, ξ) = λ∆̂(λ, ξ)

for all λ ∈ C and ξ ∈ [−π/X, π/X], where ∆̂ is an analytic function in both λ and ξ. Moreover,
there exist coefficients α0 and α1 such that uniformly in ξ ∈ [−π/X, π/X],

(1.14) ∆̂(λ, ξ) = α0 λ+
eiξX − 1

iX
α1 +O(|λ| (|λ|+ |ξ|)) .

In particular in (1.14)

α0 = ∂λ∆̂(0, 0) , α1 = ∂ξ∆̂(0, 0) = − iX
2

∆̂(0, π/X) ,

and, for any ξ ∈ [−π/X, π/X],

∆̂(0, ξ) =
eiξX − 1

iX
α1 .

6Note that we slightly abuse the terminology here, since “the” determinant is not canonically defined but depends
on the choice of basis w1, . . . , wn−1 in Assumption 4.3 below. However, this does not affect our notion of spectra or
stability.
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From (1.13)-(1.14), we obtain quite detailed information on low-frequency spectral expansions.

Corollary 1.4. λ = 0 is a double root of ∆(·, ξ) for some non zero ξ ∈ [−π/X, π/X] if and only
if it is a double root for any ξ ∈ [−π/X, π/X].

Corollary 1.5. Assume that ∆(·, 0) has a root of multiplicity exactly two at λ = 0, i.e., α0 6= 0.
In particular, there are two spectral curves λj(·), j = 1, 2, that are analytic in ξ near ξ = 0 and
such that, for (λ, ξ) near (0, 0), ∆(λ, ξ) = 0 is equivalent to λ = λj(ξ) for some j ∈ {1, 2}, where

(1.15) λ1(ξ) = −iξα
(
1− iξγ +O(ξ2)

)
, λ2(ξ) ≡ 0 for |ξ| sufficiently small,

for some real constants α, γ ∈ R. Moreover, α is obtained from (1.14) by

(1.16) α =
α1

iα0
=

∂ξ∆̂(0, 0)

i∂λ∆̂(0, 0)
= −X∆̂(0, π/X)

2∂λ∆̂(0, 0)
.

Our numerical investigations suggest that α0 never vanishes so that indeed expansions (1.15) are
directly relevant everywhere. The first-order expansions of λj(ξ) by (1.15) are purely imaginary,
or neutral, hence do not yield directly low-frequency stability information. However, the special
structure of (1.15) allows us to conclude that second-order low-frequency stability information does
depend on the sign of the first-order coefficient. Indeed, the second-order term −αγξ2 in λ1(ξ),
determining low-frequency stability or instability according as <αγ > 0 or < 0, has sign depending
on that of the first-order coefficient α. Moreover the term γ in (1.15) is found numerically not
to vanish on the closure of the set of stable waves, hence numerical evidence that the transition
stability/instability for roll waves through low-frequency stability boundary is the curve in parameter
space on which α = 0.

Remark 1.6. The above argument relies partly on numerical observations. However it is consistent
with the intuition that since when α = 0 a full loop of spectrum is present at λ = 0 we expect
that a full loop passes through zero when α changes sign; see Figure 10(a). In contrast when only
the curvature changes sign, see Figure 10(b), one expects that some medium-frequency part of the
spectrum, far from zero, has already gone a while ago from the stable to the unstable half-plane; see
Figure 11. We will give another independent supporting argument below, based on a subharmonic
stability index, that does not require information on γ and proves that when α changes sign the
number of real positive roots of ∆(·, π/X) changes.

Recall Serre’s Lemma [Ser05, NR13, JNRZ14] in the viscous case, that the characteristics of
the first-order Whitham modulation system, after a coordinate change x → x − ct to comoving
frame (taking characteristics α̃j to α̃j−c), agree with the coefficients of the first-order expansion at
(ξ, λ) = (0, 0) of the exact spectrum of the linearized operator about the wave, encoding side-band
behavior. For a general first-order system f0(w)t + f(w)x = 0, w ∈ Rn, define the associated
dispersion function

DW (λ, ξ) := det

(
λ
df0

dw
+ iξ

df

dw

)
,

an n-degree homogeneous polynomial in ξ, λ. The roots λ = λj(ξ) of DW (λ, ξ) = 0 are then
the dispersion relations associated with the system at a given background point w (typically not

mentioned), themselves first-order homogeneous. The system is said to be evolutionary if df0

dw 6= 0.
The following results give a generalization to the inviscid case, rigorously justifying the formal

Whitham modulation system (1.2) as a predictor of low-frequency behavior.

Proposition 1.7 (Inviscid Serre’s Lemma). There exists an explicit non zero constant Γ0 such that
as λ→ 0, uniformly in ξ ∈ [−π/X, π/X],

∆(λ, ξ) = Γ0 D
W

(
λ− ice

iξX − 1

iX
,
eiξX − 1

iX

)
+O(|λ|2 (|λ|+ |ξ|))

9



where DW denotes the dispersion function associated with system (1.2).

Corollary 1.8. Coefficients α0 and α1 in (1.14), thus also α in (1.15), are explicitly calculable7.

Corollary 1.9. λ = 0 is exactly a double root of ∆(·, 0) if and only if system (1.2) is evolutionary.

Corollary 1.10. Assume that 0 is a double root of ∆(·, 0). Then the characteristics of (1.2) are
given by the values c + α and c, with α as in (1.16), or, after a change x → x − ct to comoving
coordinates, the first-order coefficients α and 0 of λ1 and λ2, respectively, in (1.15).

Remark 1.11. Taylor expanding eiξX−1
iX , e

iξX−1
iX for small ξ, we obtain the simpler but less detailed

formulation ∆(λ, ξ) = Γ0 D
W (λ− icξ, ξ) +O((|λ|+ |ξ|)3) familiar from [Ser05], etc.

Remark 1.12. Though valid, the first-order Whitham modulation system does not directly yield
instability information, being hyperbolic except on the boundary α = 0, where, numerically, hyper-
bolicity is seen to fail due to presence of a nontrivial Jordan block. Nevertheless, recall that due
to the special structure (1.15), it turns out that the non-zero characteristic α for the first order
modulation system gives also second order side-band and mod-2 subharmonic stability information,
a fact not seen at the “first-order” level of the modulation system (1.2). This is reminiscent of the
case of viscous shock theory (see, e.g., [Zum01, §6]), where failure of a first-order low-frequency
stability condition (in this case an inviscid Lopatinsky determinant), marks a boundary for full
viscous stability.

High- and medium-frequency stability indices. We now present our two main analytical results,
comprising rigorous high- and low-frequency stability conclusions. The first is directly based on
an approximate high-frequency diagonalization as in [Nob03]; see [Zum11, Zum12, LWZ12] and
[BJRZ11, BJN+17] for related analyses in respectively detonation and viscous roll wave stability.

Theorem 1.13 (High-frequency stability criteria). For any roll wave W of (1.1):
(i) (potential) unstable spectra has bounded real part.
(ii) there is a stability index I, explicitly calculable, such that when I < 1 (potential) unstable
spectra is bounded, whereas when I > 1 there is an unbounded curve of unstable Floquet eigenvalues
asymptotic to <λ = η as |λ| → ∞, for some η > 0.

The high-frequency stability index I is seen numerically to be identically < 1, across the entire
parameter-range of existence. Thus, we have the important conclusion, generalizing observations
of [Nob03, Nob06], that for any roll wave unstable modes have both bounded time growth rates
and bounded time frequencies. In short, we have excluded high-frequency instabilities, with the
convention used above and from now on that high-, mid-, and low-frequency refer to the size of the
spectral parameter8 λ. Such a result is important in numerical stability investigations, truncating
frequency space to a compact domain on which computations can be carried out with uniform
error bounds, in a theoretically justified way. See [BJRZ11, BJN+17] for similar bounds and their
numerical use in the viscous case. Theorem 1.13 is a corollary of the more detailed Proposition 6.3
below.

Remark 1.14. Intuitively, the upper bound on growth rates from Theorem 1.13(i), associated with
local well-posedness of the linearized equations, follows from the expectation that ∆ converges as
<(λ)→ +∞ to a nonvanishing multiple of the shock Lopatinsky condition for the component shock
at endpoints jX of W , which is nonvanishing by Majda’s theorem [Maj81] giving stability of shock

7Daunting, though. See (5.5) for the expression of α1, which is by far the nicest one.
8Note that we abuse terminology by calling λ instead of =(λ) a time frequency. Besides, note that the relevance

of this distinction is in contrast with the fact that the size of spatial frequencies is not readily accessible in periodic
spectral problems since in any given Floquet parameter are grouped together spatial frequencies of arbitrary large
size.
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waves for isentropic gas dynamics with any polytropic equation of state. That is, well-posedness
involves only the behavior near component shocks [Nob09]. See [Zum12] for a similar argument in
the detonation case.

The second result gives a rigorous justification of α = 0 as a potential stability boundary.

Theorem 1.15 (Nonoscillatory co-periodic and subharmonic instabilities). Let W be a period-X
roll wave of (1.1) and α0 and α1 be as in (1.14) with a normalization ensuring that ∆(λ, 0) and
∆(λ, π/X) are real when λ is real. Assume that α0 6= 0 and let α be as in (1.16). Then:

(i) The number of real positive roots of ∆(·, 0) is odd or even depending on the sign of

α0 = ∂2
λ∆(0, 0)/2.

(ii) α1 is purely imaginary and if α1 6= 0 then the number of real positive roots of ∆(·, π/X) is
odd or even depending on the sign of α1/i = ∂2

λξ∆(0, 0)/i.

(iii) In particular if α < 0 then W is spectrally unstable.

The proof follows by a global stability index computation adapting those for continuous waves,
see for instance [Zum01, BJRZ11, BGMR16], noting that with the above normalization ∆̂(λ, 0)

and ∆̂(λ, π/X) are real-valued for λ real, determining their signs when λ is real and large and
invoking the intermediate value theorem. Numerical observations suggest that only subharmonic
instabilities occur through a change in the sign of α, consistently with the low-frequency analysis.

Numerical stability analysis. We complete our investigations with a full numerical stability analysis
across the entire parameter-range of existence. This is performed following the general approach
of [BJN+17] in the viscous case by numerical approximation of the periodic Evans-Lopatinsky
determinant combined with various root finding and tracking procedures. Additional difficulties in
the present case are induced by the sonic point at which the eigenvalue ODE becomes singular;
this is handled by a hybrid scheme in which the solution is approximated by series expansion
in a neighborhood of the sonic point, then continued by Runga-Kutta ODE solver forward and
backward to boundaries x = 0, X. The resulting inviscid Evans-Lopatinsky solver proves to be
both numerically well-conditioned and fast. See Section 7 for further details.

To interpret our numerical results, we introduce a general scheme for labeling the various stability
boundaries in Figure 2(a). The outcome of our numerical investigations, displayed in Figure 3, is a
complete and rather simple stability diagram for all inviscid roll wave solutions of the Saint-Venant
equations (1.1), an object of considerable interest in hydraulic engineering and related applications.
In panel (a), given in coordinates H−/Hs versus F , the upper line H−/Hs = 1 corresponds to the
small-amplitude limit while the lower curve corresponds to the large-amplitude (homoclinic) limit.
(Recall that H− denotes minimum wave height, while Hs denotes the height of the sonic point at
which the wave speed becomes characteristic; we shall also make reference to the maximum wave
height H+.) Here, the stability boundaries are labeled following the scheme in Figure 2(a); the
region below the low-frequency boundary I, and above the mid-frequency boundary corresponds to
spectrally stable roll waves; all other parameter values are spectrally unstable to either low or mid-
frequency perturbations, as described in our forthcoming analysis. The numerically-determined
low-frequency stability boundaries I and II agree well with the explicitly calculable boundaries
α = 0 and γ = 0, a useful confirmation of numerical accuracy of the code. In Figure 2(b), in an
effort to emphasize the key, yet difficult to see, features in Figure 3(a), we provide a cartoon version
of the numerical results in Figure 3(a): in Figure 2(b), we exaggerated the horizontal and vertical
scales to emphasize the relative positions of the nearly indistinguishable stability and existence
boundary curves in Figure 3(a)). Panel 3(b) depicts the same diagram with minimum wave height
H−/Hs replaced by maximum wave-height H+/Hs, addressing the question of maximum wave
overflow mentioned earlier. Panel (c), given in terms of relative period X/Hs, addresses the “water
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Domain of existence

Figure 2. Throughout our figures, we use the scheme in (a) for labeling the various
stability boundaries. In (b), in an effort to illustrate fine details difficult to observe
in the numerical results in Figure 3, we present a cartoon of the stability boundaries
in H−/Hs vs. F coordinates. In the actual stability boundaries in Figure 3(a) be-
low, the mid-frequency stability boundary is nearly indistinguishable from the lower
existence boundary, while the low-frequency boundary II seemingly asymptotes to
this lower existence curve as F increases, and so the detail in (b) above is invisible
to the eye. We stress in particular that large-amplitude transition to instability does
not originate in low frequencies, stability being encountered between low-frequency
stability boundary I and the mid-frequency boundary. We note also that relevant
stability boundaries meet at H−/Hs ≈ 0.09201 when F = F∗.

hammer” issue, determining stable wavelengths X and temporal frequencies ω = −c(Hs)(Hs/X).
Similarly as in the viscous case [BJN+17], there is seen to be a transition at about F ≈ 2.75 to a
different asymptotic regime, in which the mid-frequency stability curve has a different shape. This
is displayed in the enlarged diagram of panel (d).

In Figure 4(a), we compare the above stability results to the low-frequency stability predictions
of model (1.3), given in terms of average relative height H/Hs as in [BL02], where here H denotes
the average of the height profile H over a period. Here, the dash-dot curves (green in color plates)
are the stability boundaries of [BL02] and the thick curve (red in color plates) and dash curve (blue
in color plates) are corresponding to the stability boundaries of Figure 3. We see clearly that (1.3)
does not correctly predict low-frequency spectral behavior nor long-time dynamical stability of roll
waves of any kind. Indeed, it gives both false positive and false negative predictions of spectral
stability, invalidating in a strong sense the model (1.3) proposed in [BL02]. This resolution, along
with the analytical and numerical validation of the inviscid Whitham system (1.2) , demonstrates
the enormous benefit of working with the exact eigenvalue equations (1.10) derived from sound
mathematical bases.

In Figure 4(b), we compare to a viscous stability diagram obtained through intensive numeri-
cal computations in [BJN+17]. Upper and lower inviscid stability boundaries are again depicted
according to the scheme in Figure 2(a). Both inviscid boundaries are seen to lie near the lower
viscous boundary, with the upper viscous boundary deviating substantially from the upper inviscid
curve. A closeup view, given in Figure 5, shows that lower viscous and inviscid curves are in fact
extremely close, giving (since carried out by separate codes and techniques) confirmation of the
numerical accuracy of both computations. An important consequence from the engineering point
of view is that for practical purposes the small-amplitude part of the explicitly calculable inviscid
stability boundary α = 0 appears to suffice as an excellent approximation of the small-amplitude
transition to stability also in the viscous case. Note that the viscosity coefficient associated with
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Figures 4(b)-5 has the value ν = 1; that is, part of the inviscid stability diagram seems to persist
beyond a “small-viscosity” approximation, for moderate values of ν as well.

0 2 4 6 8 10 12 14 16 18

0

0.5

1

0 2 4 6 8 10 12 14 16 18

0

2

4

6

2 4 6 8 10 12 14 16 18

0

5

10

2 3 4 5 6 7

8

10

12
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Y: 8.76

Figure 3. Complete inviscid stability diagram. Here, we depict the inviscid sta-
bility diagram with respect to various parameters. Displayed curves are labeled
according to the key in Figure 2. As in Figure 2, the stable region is the region lying
between the low-frequency stability boundary I and the mid-frequency boundary.
Parameter values for the figures are (a) H−/Hs v.s F . (b) H+/Hs vs. F . (c) X/Hs

vs. F . (d) enlarged view of X/Hs vs. F near onset.
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Figure 4. Comparison of the inviscid stability diagram (stable region lying between
thick curve (red in color plates) and dash curve (blue in color plates)) with: (a) the
“averaged” stability diagram of [BL02], which formally predicts instability outside
the region between the dash-dot curves (green in color plates). (b) the “viscous”
stability diagram of [BJN+17] (stable region lying between black starred curves),
corresponding to exact eigenvalue analysis of the viscous Saint-Venant system lin-
earized about smooth roll-wave solutions lying near inviscid Dressler waves.

1.3. Discussion and open problems. We have obtained, similarly as in the viscous investiga-
tions of [BJN+17], surprisingly simple-looking curves bounding the region of spectral stability in
parameter space from above and below, across which particular low- and intermediate-frequency
stability transitions for inviscid roll waves occur. This stability region is bounded; in particular,
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Figure 5. Blowups of Figure 4(b). (a) Close correspondence of lower curves away
from onset. (b) Different scaling of viscous vs. inviscid boundaries near onset.

all waves are unstable for F ' 16.3. As also observed in the viscous case, there seems to be a
transition between low-Froude number, or “near-onset” behavior for 2 < F / 2.5 and high-Froude
number behavior for F ' 2.5, in the inviscid case occurring at F ≈ 2.74.

In contrast to the viscous case, however, in this inviscid case, the small-amplitude transition is
seen to agree with the low-frequency stability boundary that is obtained explicitly, being given as
the solution of a cubic equation in wave parameters. Moreover, numerical computations of this
boundary are fast and well-conditioned, even for large F . Using scale-invariance of (1.1) these
findings are compactly displayed in a single figure (Figure 3), for four different choices of wave
parametrizations which we hope convenient for hydraulic engineering applications.

Our results validate but are not implied by the associated formal Whitham modulation system
(1.2). Indeed, our results are obtained by direct spectral analysis via the periodic Evans-Lopatinsky
determinant (1.12), while the Whitham stability results are built upon formal WKB asymptotics.
Furthermore, our results invalidate in a strong sense the alternative averaged model (1.3) as a
predictor of stability/instability of inviscid roll waves, since it is shown to give false positive and
false negative predictions of spectral stability. Part of our explicit low-frequency stability boundary
appears to be accurate also in the viscous case, at least for a range of viscosity 0 < ν ≤ 1.

As noted throughout the presentation, there is a substantial analogy between roll wave stability
and the more developed detonation theory, both in the structure of the equations (1.4) and phe-
nomena/mathematical issues involved. It is our hope that the periodic stability function (1.12) and
numerical stability diagram introduced here will play a similar role for stability of roll waves as
have Erpenbeck’s stability function and systematic numerical investigation for detonations [Erp62].

Our results suggest a number of directions for further investigation. For example, it should
be possible to carry out rigorous asymptotics on the periodic Evans-Lopatinsky determinant in
the F → 2 regime where numerical computations become singular, complementing our current
analysis and determining the validity of the various formal amplitude equations proposed near onset.
Interestingly, the inviscid asymptotics appear to have a different scaling than the viscous ones; see
Figure 5(b). A related problem is to derive the Whitham equations (1.2) from first principles via
a systematic multiscale expansion, and, continuing, to obtain a second-order expansion (similar to
[NR13]), presumably recovering the second-order low-frequency stability condition obtained here
via expansion of the Evans-Lopatinsky determinant.

A further very intriguing puzzle left by our analysis is the close correspondence of low-frequency
boundaries in the inviscid and viscous case; Figure 5(a). This is reminiscent of the situation in the
case of denotations, where it has been shown rigorously that low-frequency limits for inviscid and
viscous models agree [JLW05].9 Here, the corresponding object would appear to be the Whitham
modulation equations, or low-frequency spectral expansion. However, these clearly do not agree,

9Curiously, this does not yield instability results in the detonation case, but only low-frequency stability.
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since numerical computations of [BJN+17] show that characteristics of the viscous modulation
systems do not vanish, whereas inviscid characteristics do. Moreover, the upper and lower stability
curves clearly diverge near onset F → 2+, Figure 5(b), with viscous periods going to infinity while
inviscid periods approach finite limits. Thus, in the present case, the approximate agreement of low-
frequency stability boundaries appears to be limited to the large-F regime F ' 2.5. Nonetheless,
the correspondence seems of practical use in hydraulic engineering applications lying in this same
regime, and as such this would be very interesting to shed some light on this coincidence.

More generally, the study of the singular zero-viscosity limit and viscosity-dependence of upper
and lower stability boundaries appears to be the main outstanding problem in stability of roll waves.
See [Zum12] for a corresponding study in the detonation case. The roll wave case is significantly
complicated by the presence of sonic points for the inviscid profile, corresponding to loss of normal
hyperbolicity in the singular limit; see the treatment of the related existence problem in [Här05].

A natural further question is to what extent nonlinear stability is related to the spectral stability
properties studied here. Here, we face the conundrum pointed out in [JLW05], that the strongest
nonlinear stability results proven to date for solutions containing shocks, are short time stability
results in the sense of the original shock stability work of Majda [Maj81] (see also [Maj83a, Maj83b,
FM00, BGS07]), yet these results can be obtained equally well assuming only stability of the
component shocks, corresponding in terms of spectrum of the full wave to nonexistence of spectra
with sufficiently large real part; see again Remark 1.14 and reference [Nob09]. To obtain a full
nonlinear asymptotic stability result could require an argument set not in Sobolev setting, but in a
setting like BV accommodating formation of additional shocks, presumably involving a Glimm or
shock-tracking scheme. This is a very interesting problem, but has not so far been carried out even
in the simpler detonation setting. An alternative approach to nonlinear dynamics is to combine the
rather complete nonlinear stability theory of the viscous case [BJN+17] with the detailed spectral
stability picture of the inviscid case carried out here, closing the logical loop by a comprehensive
study of viscous spectra in the inviscid limit following [Zum11, Zum12].

Finally, we mention the very interesting recent work of Richard and Gavrilyuk [RG12, RG13]
introducing a refined version of (1.1) modeling additional vorticity effects. For roll waves, this
takes the form of the full non isentropic (3× 3) equations of gas dynamics plus source terms, and
yields profiles matching experimental observations of [Cor34, Bro69, Bro70] to an amazing degree,
removing shock overshoot effects of the Dressler approximations. It would be very interesting to
apply our methods toward the stability of these waves. Other natural directions for generalization
are the study of multi-shock roll waves as mentioned in Remark 2.1 below, and the study of
multidimensional stability incorporating transverse as well as longitudinal perturbations.

Acknowledgement: Thanks to Olivier Lafitte for stimulating discussions regarding normal
forms for singular ODE, and to Blake Barker for his generous help in sharing source computations
from [BJN+17]. The numerical computations in this paper were carried out in the MATLAB
environment; analytical calculations were checked with the aid of MATLAB’s symbolic processor.
Thanks to Indiana Universities University Information Technology Services (UITS) division for
providing the Karst supercomputer environment in which most of our computations were carried
out. This research was supported in part by Lilly Endowment, Inc., through its support for the
Indiana University Pervasive Technology Institute, and in part by the Indiana METACyt Initiative.
The Indiana METACyt Initiative at IU was also supported in part by Lilly Endowment, Inc.

2. Dressler’s roll waves

2.1. Profile equations. We first review the derivation by Dressler [Dre49] of periodic traveling-
wave solutions of (1.1). Let (h, q) = (H,Q)(x− ct) denote a solution of (1.1) with c constant and
(H,Q) piece-wise smooth and periodic with period X, with discontinuities at jX, j ∈ Z. In smooth
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regions, we have therefore

(2.1) − cH ′ + (Q)′ = 0 , −cQ′ +
(
Q2

H
+
H2

2F 2

)′
= H − |Q|Q

H2
,

and across curves of discontinuity (H,Q) are chosen to satisfy the Rankine-Hugoniot jump condi-
tions

(2.2) − c[H] + [Q] = 0 , −c[Q] +

[
Q2

H
+
H2

2F 2

]
= 0,

augmented following standard hyperbolic theory [Lax57, Smo83, Ser99] with the Lax characteristic
conditions

(2.3) a1(X−) < c, a2(X−) > c > a2(X+) or a2(X+) > c, a1(X−) > c > a1(X+) ,

where

a1 =
q

h
−
√

h

F 2
, a2 =

q

h
+

√
h

F 2

are the characteristics associated with (1.1). Recall that the conservative part of (1.1) is the
system of isentropic gas dynamics with velocity u = q/h and pressure law p(h) = h2/2F 2, thus

above formulas coincide with aj = u±
√
p′(h).

Integrating the first equation of (2.1) jointly with the first equation of (2.2), we obtain

(2.4) Q− cH ≡ constant =: −q0,

whence, substituting in the second equation of (2.1), we obtain the scalar ODE

(2.5)

(
−q2

0

H2
+
H

F 2

)
H ′ = H − |−q0 + cH| (−q0 + cH)/H2

and, substituting in the second equation of (2.2), the scalar jump condition

(2.6)

[
q2

0

H
+
H2

2F 2

]
= 0.

From (2.6) we deduce that there is a special sonic value10 Hs ∈ (H−, H+) such that

−q2
0

H2
+
H

F 2
= 0 when H = Hs ,

in particular, there, one of the characteristic speeds aj equals the wave speed c, hence the termi-
nology. The latter argument uses in a fundamental way the scalar nature of the reduced profile
equation (2.1) but a similar conclusion may be obtained as a more robust consequence of the Lax
condition, from which stems that at least one of the characteristic speeds aj must change position
with respect to speed c along the wave profile. It follows that (2.5) is singular at the value Hs,
from which we can draw a number of useful conclusions. First, we may check that there is indeed
only one sonic value and that reciprocally we may solve the sonic equation to obtain, up to a sign
indetermination, q0 as a function of Hs (and F ); then, substituting this value in (2.5) evaluated
at H = Hs, we obtain, again up to a sign indetermination, c as a function of Hs (and F ) as well,
leaving

c

H
1/2
s

= 1± 1

F
,

q0

H
3/2
s

= ± 1

F
.

At this stage, by monotonicity of solutions to (2.5), one may notice that only the + sign, corre-
sponding to a 2-shock, is compatible with the Lax condition (2.3) and it requires F > 2.

10Here, H± = H(X±) correspond to the minimum (−) and maximum (+) heights of the wave.
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Combining information, assuming F > 2, and setting H− := H(0+), H+ := H(X−), we obtain
the defining relations

(2.7) H ′ = F 2
H2 + (Hs − c2)H +

q20
Hs

H2 +HsH +H2
s

, H− ≤ H ≤ H+,

(2.8)
q2

0

H−
+
H2
−

2F 2
=

q2
0

H+
+
H2

+

2F 2
,

(2.9) q0 = q0(Hs) =
H

3
2
s

F
, c = c(Hs) = H

1
2
s

(
1 +

1

F

)
,

where ′ denotes d/dx. From the solution H of (2.7), we may recover Q = −q0 + cH using (2.4).
Note that, for any 0 < H− < Hs, equation (2.8) defines a unique H+ = H+(H−, Hs) > Hs. Thus
solvability reduces to the condition that there is no equilibrium of (2.7) in (H−, H+), which takes
the form H− > Hhom for some Hhom(Hs). We make this latter condition explicit below. Finally,
we observe that the shape of H does not really depend on H− but is obtained as a piece of the
maximal solution of (2.7) passing through Hs.

Remark 2.1. Here, we have decided to consider only roll waves containing a single shock per period.
By the analysis above, it is clear that we may construct multi-shock profiles consisting of arbitrarily
many smooth pieces on intervals surrounding Hs, connected by shocks satisfying (2.6). Indeed,
we may construct solutions from a succession of smooth pieces of essentially arbitrary lengths,
not necessarily periodic. However these solutions do not persist as traveling waves under viscous
perturbations [Nob03, §1.3.4]. A similar situation occurs in phase transitions models: at the inviscid
level one can form steady traveling patterns consisting of essentially arbitrary noninteracting (since
traveling with common speed) under-compressive phase-transitional shocks switching from one
phase to another. Turning on viscosity makes their “tails” interact, and so they do not persist
as a noninteracting pattern. Numerical simulations [AMPZ00] show that these slowly interacting
patterns can persist for a very long time, but eventually “coarsen” with waves overtaking and
absorbing each other as happens for the Saint-Venant equations in some (unstable) cases [BM04].

2.2. Scale-invariance. Following [BL02], we note the useful scale-invariance

(2.10)
H(x) = HsH(x/Hs) , X = HsX , c = H1/2

s c ,

q0 = H3/2
s q

0
, Q(x) = H3/2

s Q(x/Hs) ,

of (2.7), where H is the solution of (2.7) with Hs = 1, and correspondingly

c = 1 +
1

F
, q

0
=

1

F

are the associated speed and constant of integration, i.e.,

(2.11) H ′ = Ψ(H) :=
F 2H2 − (1 + 2F )H + 1

H2 +H + 1
, H− ≤ H ≤ H+.

with

(2.12)
1

H−
+
H2
−

2
=

1

H+

+
H2

+

2
, i.e. H+ = Z+(H−) = −

H−
2

+

√
H2
−

4
+

2

H−
.

This is quite helpful in simplifying computations; in particular, we see that all profiles are just
rescaled pieces of a single solution H of the scalar ODE (2.11). Note that the the two real roots
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1+2F±
√

1+4F
2F 2 of the numerator of Ψ are smaller than the sonic point 1, so that the condition that

(H−, H+) avoid these stationary points of (2.11) is

(2.13) Hhom :=
1 + 2F +

√
1 + 4F

2F 2
< H− < 1.

We note in passing that the denominator of Ψ never vanishes, being always positive.

2.3. Wave numbers and averages. Denoting averages over a single periodic cell by upper bars,
from equation (2.11) we have

(2.14)

X = `(H−) :=

∫ H+

H−

dh

Ψ(h)
, H =

1

`(H−)

∫ H+

H−

h dh

Ψ(h)
, Q = cH − q

0
,

q2
0

H
+
H2

2F 2
= γ(H−) :=

1

`(H−)

∫ H+

H−

1

F 2

(
1

h
+
h2

2

)
dh

Ψ(h)
,

with H+ = Z+(H−). As integrals of rational functions, all the above integrals may be computed
explicitly. We record also formulas

(2.15) k =
1

X
, ω = −ck ,

for the (scaled) spatial and temporal wave numbers k and ω, also explicitly computable, and
corresponding scaling rules

(2.16) k =
k

Hs
, ω =

ω

H
1/2
s

.

Finally, note that at any Hhom < H− < 1

`′(H−) =
1

Ψ(H+)

(
H+

H−

)2 H3
+ − 1

H3
− − 1

− 1

Ψ(H−)
< 0

(as a sum of negative terms) so that one could alternatively parametrize wave profiles by (Hs, X)
or (Hs, X) instead of (Hs, H−) or (Hs, H−).

3. Modulation systems

We next study modulation systems (1.2) and (1.3), using the computations of Section 2.

3.1. Dispersion relations and hyperbolicity. Both of the systems (1.2) and (1.3) are of the
form

(3.1) ∂tG
0 + ∂xG

1 = 0,

where Gj = Gj(Hs, H−), of which the characteristics are the eigenvalues α̃j , j = 1, 2 of

(A0)−1A1 , Aj := d(Hs,H−)G
j ,

or, alternatively, coefficients of the dispersion relations λj(ξ) = iαjξ determined by

det
(
λj(ξ)A

0 + iξA1
)

= 0.

The characteristics αj are evidently invariant under nonsingular changes of parameters, correspond-
ing to nonsingular changes of coordinates in the first-order system, with hyperbolicity correspond-
ing to the αj being real and semisimple11. Below, we compute the characteristics αj for both the
Whitham system (1.2) and the averaged system (1.3).

11That is, the algebraic and geometric multiplicities of the real αj agree, hence the eigenspaces contain no Jordan
Blocks.
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3.2. Whitham system. We first compute the characteristics associated to the system (1.2). Using
(2.10)-(2.16), the system (1.2) may be written in the form

(3.2) G0 =

(
HsH

1/(Hs`)

)
, G1 =

(
H

3/2
s (cH − q

0
)

c/(H
1/2
s `)

)
which, taking partial derivative with respect to Hs, H−, yields

(3.3) A0 =

(
H HsH

′

−1/(H2
s `) −`′/(Hs`

2)

)
, A1 =

(
3
2H

1/2
s (cH − q

0
) H

3/2
s cH

′

−1
2c/(H

3/2
s `) −c`′/(H1/2

s `2)

)
.

Thus, so long as A0 is invertible we find

(A0)−1 =
Hs`

2

`H
′ −H`′

(
−`′/(Hs`

2) −HsH
′

1/(H2
s `) H

)
hence

(3.4) (A0)−1A1 = c Id +
1

`H
′ −H`′

(
H

1/2
s (3

2`
′q

0
− 1

2c (`H)′) 0

H
−1/2
s `(cH − 3

2q0
) 0

)
;

here, we have verified numerically detA0 = `H
′−H`′
Hs`2

6= 0. From (3.4), we have evidently that the

characteristics of the Whitham system (1.2) are

(3.5) α̃1 = c , α̃2 = c+H1/2
s

3
2`
′q

0
− 1

2c (`H)′

`H
′ −H`′

.

As these are both real, we see the Whitham system (1.2) is strictly hyperbolic whenever α̃2 6= c. On
the boundary curve α̃2 = c, it can be checked numerically that cH − 3

2q0
6= 0, hence the system

fails to be hyperbolic due to the presence of a non-trivial Jordan block; see Figure 6(a).

3.3. Averaged system. We next compute the characteristics of (1.3). Using (2.10)-(2.16), we
may rewrite the system in the form (3.1) with

(3.6) G0 =

(
HsH

H
3/2
s (cH − q

0
)

)
, G1 =

(
H

3/2
s (cH − q

0
)

H2
s (c2H − 2c q

0
+ γ̄)

)
,

yielding

(3.7) A0 =

(
H HsH

′

3
2H

1/2
s (cH − q

0
) H

3/2
s cH

′

)
, A1 =

(
3
2H

1/2
s (cH − q

0
) H

3/2
s cH

′

2Hs(c
2H − 2c q

0
+ γ̄) H2

s (c2H
′
+ γ̄′)

)
.

Thus, so long as A0 is invertible we have

(A0)−1 =
1

(3
2q0
− 1

2cH)H
′

(
cH
′ −H−1/2

s H
′

−3
2H
−1
s (cH − q

0
) H

−3/2
s H

)
hence
(3.8)

A := (A0)−1A1 = c Id +
1

(3
2q0
− 1

2cH)H
′

(
H

1/2
s H

′
(c q

0
− 2γ̄) −Hs

3/2γ̄′H
′

H
−1/2
s (2γ̄H − 1

4c
2H

2
+ 1

2c q0
H − 9

4q
2
0
) H

1/2
s Hγ̄′

)
.

Next, solving for curves corresponding to vanishing of the discriminant of the quadratic polynomial
det(A− λId) = 0, i.e., (Trace(A− c Id))2 = 4 det(A− c Id), we get the equation

(H
′
(c q

0
− 2γ̄) +Hγ̄′)2 = −γ̄′H ′

(
cH − 3q

0

)2
,
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or, more explicitly,

(3.9) (H
′
(F + 1− 2F 2γ̄) +HF 2γ̄′)2 + F 2γ̄′H

′ (
(F + 1)H − 3

)2
= 0

for the boundaries of the region of hyperbolicity. Tracing the roots of (3.9), we get, up to numerical
error, the same boundaries reported in [BL02, Fig.2.a)] see Figure 6 (b).

We point out, in particular, that the boundaries for the regions of hyperbolicity associated to
(1.2) and (1.3) are different. In order to determine which, if either, give accurate information
regarding the local dynamics about a roll wave solution of (1.1), we next perform a mathematically
rigorous investigation of the spectral stability of roll wave solutions of (1.1).

Figure 6. (a)Value of `(cH̄− 3
2q0

)/(`H̄
′−H̄`′) on the strictly hyperbolic boundary

α̃2 = c. (b) Hyperbolic boundaries from (3.9) superimposed on corresponding figure
from [BL02]. In (b), Ωh and Ωe denote domains of hyperbolicity and ellipticity,
Γ± (thin grey line) the boundaries of Ωh reported in [BL02, Fig.2.a)], and Γ∗ the
boundary of existence for roll wave solutions of (1.1); the dash-dot curves (green in
color plates) were computed using (3.9). Labels ζ̄ and Fr in [BL02] correspond in
our notation to H and F .

4. General spectral stability framework

We now turn to the exact spectral stability problem, replacing the formal development of Sec-
tion 1.1 with a treatment as rigorous as possible. Our goal is to connect as closely as possible
our spectral framework with a notion of linear stability relevant also at nonlinear level. Un-
fortunately we cannot rely on any general nonlinear stability framework since none is known
for any class of discontinuous waves of hyperbolic systems. Instead we shall argue by compari-
son with, on one hand, local well-posedness theory near single-shock waves pioneered by Majda
[Maj81, Maj83a, Maj83b, FM00, BGS07], in particular [Nob09] devoted to short-time persistence
of roll waves, and, on the other hand, nonlinear stability of continuous periodic waves [JNRZ14].

4.1. Linear space-modulated stability. As in (1.4)–(1.5), consider a general system of balance
laws ∂tw + ∂x(F (w)) = R(w), w ∈ Rn, w piecewise smooth, with jump conditions [F (w)]j =
x′j(t)[w]j at discontinuities xj , and a traveling roll wave solution W with shocks at Xj + ct =
jX + ct. We complement those jump conditions with Lax characteristic conditions but assume,
as in Section 2.1, that they are satisfied in a strict sense by W ; thus they will not appear at the
linearized level.

From the analysis of the continuous periodic case, the best stability that we expect to hold in
general is what was coined as space-modulated stability in [JNRZ14]. This corresponds to showing
a solution w starting close to W will remain close in the sense that for some (w̃, ψ)

w(x− ct− ψ(x, t), t) = W (x) + w̃(x, t)
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with (w̃, ∂xψ, ∂tψ)(·, t) small in suitable norms. See related detailed discussions in [JNRZ14, Rod13,
Rod15, Rod17]. Given the regularity structure of W it is natural to measure the smallness of w̃(·, t)
in Hs(R̃), with s ≥ 0 and

R̃ :=
⋃
j∈Z

(jX, (j + 1)X) .

Note that when s > 1/2 this implicitly requires that ψ(·, t) fixes discontinuities (xj(t))j∈Z of w(·, t)
through

(4.1) xj(t) = jX − ct− ψ(jX, t) , j ∈ Z .
Observe that whereas for continuous waves the role of the resynchronization by ψ is to allow a
capture of long-time preservation of shape beyond divergence of positions, that is, to ensure that
the norm of w̃(·, t) remains small, for discontinuous waves it is already necessary to ensure that
it remains finite in finite time. In particular, a synchronization ensuring (4.1) is also needed in
definitions and proofs of local-in-time well-posedness in piecewise smooth settings [Nob09]. Finally,
note that at time t smallness of ∂xψ(·, t) encodes both that IdR − ψ(·, t) is a diffeomorphism and
that the distance between consecutive shocks remain bounded away from zero, hence they do not
interact directly.

In the new coordinates, the perturbation of shape and phase shifts (w̃, ψ) evolves according to

∂tw̃ + ∂tψW
′ + ∂x(A w̃)− E w̃ + ∂xψR(W ) = N1(w̃, ∂tw̃, ∂xw̃, ∂tψ, ∂xψ) on R̃

and, for any j ∈ Z,

∂tψ(jX, t) [W ] + [Aw̃]j = N2(w̃, ∂tw̃, ∂xw̃, ∂tψ, ∂xψ)

where, here, [h]j := h((jX)+) − h((jX)−), N1, N2 are at least quadratic in their arguments and,
as in Section 1.1,

A(x) := dwF (W (x))− cId and E(x) := dwR(W (x)) .

To get closer to equations (1.6)-(1.7), we now introduce

yj(t) := xj(t) + ct− jX = −ψ(jX, t) and v := w̃ + ψW ′

and write the above equations equivalently as

∂tv + ∂x(Av)− E v = N1(v − ψW ′, ∂t(v − ψW ′), ∂x(v − ψW ′), ∂tψ, ∂xψ) on R̃
and, for any j ∈ Z,

y′j(t) [W ] + yj(t)[AW
′]− [Av]j = −N2(v − ψW ′, ∂t(v − ψW ′), ∂x(v − ψW ′), ∂tψ, ∂xψ) .

We now drop nonlinear terms to focus on linear stability issues. Note however that our resolvent
estimates will not gain derivatives so that the presence of derivatives in nonlinear terms will nec-
essarialy induce a derivative loss in a nonlinear scheme proving stability and relying directly on
linearized estimates. Recall that, up to now, this issue has been bypassed only as far as short-time
local well-posedned is concerned; again see [Nob09] and [BGS07] and references therein.

In view of the foregoing discussion the natural linear stability problem consists in considering
the bounded (continuous) solvability of the system

(4.2) ∂tv + ∂x(Av)− E v = f on R̃ and for any j , y′j [W ]− yj [AW ′] + [Av]j = gj

for functions f and sequences (gj) belonging to an appropriate space, i.e. determining if (4.2) has
solutions such that there exists a ψ such that, for any j, ψ(jX, t) = −yj(t), and (v−ψW ′, ∂xψ, ∂tψ)
may be bounded in terms of (f, (gj)j , v(·, 0), (yj(0))). The question of rigorously elucidating how
this is connected to spectral properties considered here would lead us too far and we leave it for
further investigation. See [JNRZ14, Rod17] for examples of such considerations for different classes
of equations. We stress however that, based on analyses of the continuous case, the kind of time
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growth expected to arise from neglecting the dynamical role of ψ - in particular trying to bound
ψ rather than ∂xψ - is algebraic, thus may be safely omitted when focusing, as we shall do now,
on precluding exponential growths. Regarding local well-posedness, at the linearized level one only
needs to exclude growths faster than exponential and ψ may be chosen independently of dynamical
considerations, in an essentially arbitrary way from the discontinuity positions, for instance cell-wise
affine such that ψ(jX, t) = −yj(t) as in [Nob03, Nob06, Nob09].

For our purpose it turns out to be sufficient to consider solvability of (4.2) in H1(R̃)× `2(Z). As
is well-known, see for instance [BGS07, §3.1.1], thanks to the equation traces are still defined in

lower-regularity settings. However, we use the H1(R̃) setting for another purpose here: to discard

algebraic or logarithmic singularities that arise from sonic points in R̃. Once those are cast away,

one may actually transfer conclusions from H1(R̃) to Hs(R̃), for any s ≥ 1. To motivate the `2(Z)
framework for (yj)j , we add one more comment concerning its relation with ψ. Without loss of
generality one expects to be able to enforce that the phase shift ψ is low-frequency and centered -
see [Rod17, Section 3.1] - so that its high-regularity norms are controlled by its lower ones and

ψ(x, t) =

∫ π/X

−π/X
eiξxψ̂(ξ, t)dξ

where ·̂ denotes the Fourier transform in the x-variable. Moreover, under these conditions, from
Parseval identities for the Fourier transform and Fourier series

‖ψ(·, t)‖L2(R) =
√
X‖(yj(t))j‖`2(Z) , ‖∂tψ(·, t)‖L2(R) =

√
X‖(y′j(t))j‖`2(Z) .

4.2. Structure of the spectral problem. Focusing on solutions to (4.2) that grow at most
linearly in time naturally lead to the consideration of Laplace transforms in time on time frequencies
λ with <(λ) > 0. This transforms (4.2) into

(4.3) λv + ∂x(Av)− E v = f on R̃ and for any j , λyj [W ]− yj [AW ′] + [Av]j = gj

with notational changes that the new (v, (yj)j) is the Laplace transform of the old one at frequency
λ and that the new (f, (gj)j) mixes Laplace transforms at λ of old ones and initial data for former
(v, (yj)j).

Observing that (4.3) is periodic-coefficient in space, it is natural to introduce the Bloch-wave
representation of v (and f) and to interpret y = (yj)j (and (gj)j) as Fourier series of (2π/X)-
periodic functions12

(4.4) v(x) =

∫ π/X

−π/X
eiξxv̌(ξ, x)dξ, yj =

∫ π/X

−π/X
eiξjX y̌(ξ)dξ,

where each v̌(ξ, ·) is X-periodic. For sufficiently smooth v and sufficiently localized (yj)j , the former
transforms are defined pointwise by

v̌(ξ, x) :=
∑
k∈Z

ei
2kπ
X
x v̂
(

2πk
X + ξ

)
=
∑
k∈Z

e−iξ(x+k)v(x+ kX), y̌(ξ) :=
∑
j∈Z

e−ijX ξ yj .

General definitions follow by a density argument in L2 (respectively, `2) based on Parseval identities

‖v̌‖L2(−π/X,π/X;L2(0,X)) = 1√
2π
‖v‖L2(R) , ‖y̌‖L2(−π/X,π/X) =

√
X

2π
‖(yj(t))j‖`2(Z) .

In particular the Bloch transform identifies L2(R) with L2(−π/X, π/X;L2(0, X)), and this identi-

fication may be extended to Hs(R̃) with L2(−π/X, π/X;Hs(0, X)) by observing

‖(∂x + iξ)kv̌‖L2(−π/X,π/X;L2(0,X)) = 1√
2π
‖∂kxv‖L2(R) , k ∈ N .

12Note that in terms of the above low-frequency assumption on ψ, y̌(ξ) = −ψ̂(ξ) when ξ ∈ [−π/X, π/X].
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For comparison, note the key distinction that Hs(R) is identified with L2(−π/X, π/X;Hs
per(0, X))

where Hs
per(0, X) is the Hs(0, X)-closure of smooth X-periodic functions on R, hence is a set of

Hs(0, X) functions satisfying suitable periodic boundary conditions as soon as s > 1/2.
Applying the above transformations to (4.3) diagonalizes it into single-cell problems parametrized

by the Floquet exponent ξ, namely

(4.5) λw + (∂x + iξ)(Aw)− E w = f on (0, X) and χ(λ [W ]− [AW ′]) + [Aw] = g

where w := eiξxv̌ as in (1.9) of the introduction represents the component corresponding to v̌(ξ)
in the decomposition of v into the superposition of quasiperiodic modes, and χ = y̌(ξ). This clean
characterization in (4.5) originates in [Nob03, Nob06], without discussion of underlying integral
transforms. Here, we are making the new observation of “completeness” of the representation
(4.4), providing a rigorous basis for the normal form analysis. System (4.5) may be recognized as
an inhomogeneous version of the generalized eigenvalue equation (1.10) of Section 1.1.

At this point, we need some knowledge of the structure of the interior ODE appearing in the
first equation of (4.5). We begin with the following definition, analogous to consistent splitting in
standard Evans function theory [AGJ90].

Definition 4.1 (Local H1 solvability). We say that at λ ∈ C local H1 solvability holds if there
exists a constant C such that for any f ∈ H1(0, X), the interior equations

λw + ∂x(Aw)− E w = f

have an (n − 1)-dimensional affine space of H1(0, X) solutions whose minimum H1(0, X) norm is
bounded by C‖f‖H1(0,X).

We will call the set Λ of λ ∈ C that satisfies Definition 4.1 the domain of H1 local solvability,
echoing the classical Evans function terminology. It follows that for λ ∈ Λ, bounded invertibility
of (4.5) depends continuously on ξ ∈ [−π/X, π/X]. Combined with the isometric properties of the
integral transforms discussed above, this shows that bounded invertibility of (4.3) is equivalent to
the problem (4.5) being boundedly invertible for each ξ ∈ [−π/X, π/X], justifying the above normal
form reduction; see for instance [Rod13, p.30-31]. It follows that for λ ∈ Λ bounded invertibility
of (4.5) is equivalent to an n-dimensional square matrix problem, encoded by ∆(λ, ξ) 6= 0 with ∆
as in (1.12), hence in particular bounded invertibility is equivalent to injectivity. Further, on Λ
where D(λ, ξ) 6= 0 one may define resolvent-like operators as products of D(λ, ξ)−1 and functions
that are analytic in λ on Λ so that one may check that those resolvent-like operators have poles
exactly where D(·, ξ) vanishes and that multiplicities as poles of resolvent-like operators agree with
multiplicities as roots of D(·, ξ).

With the above in mind, we now make the following assumption, verified for (1.1) in Appendix A,
regarding the structure of the set Λ for the general system (4.5).

Assumption 4.2 (Structure of Λ). At any λ ∈ C such that <λ ≥ 0 local H1 solvability holds.
That is,

{λ ∈ C : <(λ) ≥ 0} ⊂ Λ.

This justifies the Definition 1.1 of spectral instability given in Section 1.1 as equivalent to the fact

that for some λ ∈ C with <(λ) > 0 the problem (4.3) is not boundedly invertible in H1(R̃)× `2(Z).
For the Saint-Venant equations (1.1), the domain of local H1 solvability is shown in Appendix A
to satisfy {

λ : <(λ) > −F − 2

4
√
Hs

}
⊂ Λ,

evidently verifying Assumption 4.2, hence Definition 1.1, for the Saint-Venant equations. Moreover,
in Appendix A we also demonstrate that the complex right-half plane is included in domain of local
Hs solvability for (1.1) for any s ≥ 1.
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Observe that we use local H1 solvability at λ ∈ C only to ensure that vanishing of the Evans-
Lopatinsky determinant ∆(λ, ξ) for some ξ is the only way in which the bounded solvability of the
associated resolvent-like H1 × `2 problem may fail. To study and compute ∆ for general systems
(4.5) the following, seemingly weaker, assumption is sufficient.

Assumption 4.3 (Homogeneous local analytic solvability). There exists an open connected set
Λ0 ⊂ C containing {λ : <(λ) ≥ 0} on which one may choose a basis w1, . . . , wn−1 of the space of
analytic solutions to

λw + ∂x(Aw)− E w = 0 ,

that depends analytically on λ.

In Appendix A we check that for the special case of the Saint-Venant equations (1.1), one may
choose

Λ0 =

{
λ : <(λ) > −F − 2

2
√
Hs

}
,

hence verifying Assumption 4.3 in that case.

4.3. Specialization to Saint-Venant equations. Preparatory to our further investigations, we
now specialize the abstract theory of Sections 4.1-4.2 above to the case of the Saint-Venant equa-
tions. System (1.1) can be put in form (1.4) with n = 2 as

w =

(
h
q

)
, F (w) =

(
q

p(h) + q2

h

)
, R(w) =

(
0

r(w)

)
where

p(h) =
h2

2F 2
, r(w) = h− q2

h2
.

Linearizing about W := (H,Q)T in a co-moving frame and taking a Laplace transform in time, we
obtain interior equations

(4.6) λh+ ∂x(−ch+ q) = 0, λq + ∂x

((2Q

H
− c
)
q +

(
− Q2

H2
+
H

F 2

)
h

)
= h− 2Q

H2
q + 2

Q2

H3
h

corresponding to (1.10)(i), with v1 = (h, q)T ,

Av =

( −ch+ q

(2Q
H − c)q + (−Q2

H2 + p′(H))h

)
=

( −ch+ q

(2Q
H − c)q + (−Q2

H2 + H
F 2 )h

)
,

and

Ev =

(
0

∂hr(W )h+ ∂qr(W )q

)
=

(
0

h− 2Q
H2 q + 2Q

2

H3h

)
.

To define an Evans-Lopatinsky determinant we need to choose a normalization of solutions to
(4.6). It is convenient to enforce

(4.7)

(
h
q

)
(xs) =

(F − 2)

2(F + 1)

√
Hs

( (
λ+ 2

3
F+1√
Hs

)
F(

λ
√
Hs(F − 1) + 2

3(F + 1)2
))

where xs denotes the sonic point in (0, X), that is, the point in (0, X) where H(xs) = Hs. The facts
that this parametrization is possible and that the analytic dependence of values at xs transfers to
the joint analyticity of (h, q) follows from the analysis in Appendix A. The above normalization is
chosen to ensure that at λ = 0, (h, q) ≡ (H ′, Q′).
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With the above choice of normalization we introduce, as prescribed in (1.12), the Evans-Lopatinsky
determinant:

∆(λ, ξ) = det

( {λH} {−ch+ q}ξ
{λQ− (H − Q2

H2 )} {(−Q2

H2 + H
F 2 )h+ (2Q

H − c)q}ξ

)
.(4.8)

where here we recall the notation in {·} and {·}ξ in (1.11). Similarly as in (2.10), we may reduce
the spectral problem to the case when Hs = 1 by performing the rescaling

λ =
λ√
Hs

, ξ =
ξ

Hs
, h = Hs h

(
·
Hs

)
, q = H3/2

s q

(
·
Hs

)
.

This results (with obvious notation) in

∆(λ, ξ) = H5/2
s ∆(λ, ξ) .

5. Low-frequency analysis

5.1. Comparison with modulation equations. The goal of this section is to obtain expansions
of the Evans-Lopatinsky determinant ∆(λ, ξ) when (λ, ξ) is sufficiently small. To this end, we
exploit cancellations that have their robust origin in the structure of neighboring periodic traveling
waves. In this way, we prove Propositions 1.3 and 1.7 and their corollaries at once.

With this in mind, on one hand we temporarily translate profiles to enforce that sonic points
occur at jX, j ∈ Z. Thus jumps are now located at x−+ jX, j ∈ Z, where x− = −xs, xs being the
original position of the sonic point in (0, X). We also modify the definition of jump accordingly.
Note that the reduced spectral problems are now posed on (x−, x−+X). However, for readability’s
sake, we keep notation unchanged. The gain is that with this new normalization of invariance by
translation it is clearly apparent that profiles are parametrized in terms of13 (Hs, H−) as

(H,Q)(x) = (H,Q)(x;Hs) , x ∈ (x−, x− +X)

with

x− = x−(Hs, H−) , X = X(Hs, H−) , c = c(Hs) , q0 = q0(Hs) .

In particular the interior shape of profiles is obviously independent of H−, and the quantities x−
and X are implicitly defined from it by

H(x−;Hs) = H− ,

(
H2

2F 2
+
Q2

H
− cQ

)
(x− +X) =

(
H2

2F 2
+
Q2

H
− cQ

)
(x−).

On the other hand, let us denote the solutions (h, q) of (4.6) as (h, q)(·;λ), or just (h, q)(λ), to
mark dependence on λ. Noting that differentiating spatially the interior profile equations (2.1) one
finds that both (h, q)(·; 0) and (H ′, Q′) satisfy the same first-order system and that by normalization
(4.7) they share the same value at the sonic point 0, we conclude by uniqueness that

(h, q)(·; 0) = (H ′, Q′) .

Let us now introduce the analytic functions

(h̃, q̃)(·;λ) = λ−1 ((h, q)(·;λ)− (H ′, Q′)),

13Incidentally we observe that we could also use a parametrization by (c,X), a more robust choice that would
slightly simplify the present computations but would bring us farther from choices of other sections of the paper.
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Now, first integrating (4.6) then expanding with (h̃, q̃) and using interior profile equations yields

∆(λ, ξ) = det

( {λH} {−ch+ q}ξ
{λQ− (H − Q2

H2 )} {(−Q2

H2 + H
F 2 )h+ (2Q

H − c)q}ξ

)

= λ det


{H} −λ

∫ x−+X

x−

h̃ + (eiξX − 1)(ch̃− q̃)(x−)

{λQ− (H − Q2

H2 )} λ{(−Q2

H2 + H
F 2 )h̃+ (2Q

H − c)q̃}ξ + λ{Q}
− (eiξX − 1)(H − Q2

H2 )(x−)

 ,

where here we have used the fact that {f} = {f}ξ + (eiξX −1)f(x−) as well as the observation that(
−Q

2

H2
+
H

F 2
+ c2

)
H ′ +

(
2Q

H
− c
)
Q′ =

(
− q2

0

H2
+
H

F 2

)
H ′ = H − Q2

H2
.

This motivates the introduction of the factored determinant

(5.1) ∆̂(λ, ξ) = det


{H} −λ

∫ x−+X

x−

h̃ + (eiξX − 1)(ch̃− q̃)(x−)

{λQ− (H − Q2

H2 )} λ{(−Q2

H2 + H
F 2 )h̃+ (2Q

H − c)q̃}ξ + λ{Q}
− (eiξX − 1)(H − Q2

H2 )(x−)

 .

Now, note that14 (h̃(0), q̃(0)) satisfies the system

H ′ + ∂x(−ch̃(0) + q̃(0)) = 0,

Q′ + ∂x

((
2Q

H
− c
)
q̃(0) +

(
−Q

2

H2
+
H

F 2

)
h̃(0)

)
= h̃(0)− 2Q

H2
q̃(0) + 2

Q2

H3
h̃(0),

which is recognized as the linearized equation (4.6) at λ = 0 with inhomogeneous forcing term
(H ′, Q′), which is exactly the X-periodic kernel of (4.6). Further, differentiating the interior profile
equation (2.1) with respect to Hs one finds this system is also solved by

− 1

c′(Hs)
(∂HsH, ∂HsQ)

and hence this function differs from (h̃(0), q̃(0)) by a constant multiple of (H ′, Q′). Consequently,
from (5.1) we find for |λ| � 1 and uniformly in ξ ∈ [−π/X, π/X] that

− c′(Hs)∆̂(λ, ξ)

= det


{H} −λ

∫ x−+X

x−

∂HsH + iξX(c∂HsH − ∂HsQ)(x−)

−{H − Q2

H2 } λ{(−Q2

H2 + H
F 2 )∂HsH + (2Q

H − c)∂HsQ}
−λc′(Hs){Q} + (eiξX − 1)c′(Hs)(H − Q2

H2 )(x−)

+O(|λ| (|λ|+ |ξ|))

= λ
(
{H}

{(
− Q2

H2
+
H

F 2

)
∂HsH +

(2Q

H
− c
)
∂HsQ

}
− c′(Hs) c {H} −

{
H − Q2

H2

}∫ x−+X

x−

∂HsH
)

+ (eiξX − 1)

({
H − Q2

H2

}(
− c′(Hs)H(x−) + q′0(Hs)

)
+ c′(Hs){H}

(
H − Q2

H2

)
(x−)

)
+O(|λ| (|λ|+ |ξ|))

14Here, h̃(0) denotes the function h̃(·, λ) at λ = 0, and similarly for q̃(0).
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where we have used the fact that Q = cH − q0. This verifies the expansion in Proposition 1.3.
In particular, it follows that, using the notation in (1.14), α0 ∈ R and α1 ∈ Ri are explicitly
determined.

Next, we aim to prove Proposition 1.7 by comparing the above expansions with the dispersion
relation from the Whitham system (1.2). To this end, observe that, with notation from Section 3.2,

A0 =


−∂HsX

X2

∫ x−+X

x−

H +
1

X

∫ x−+X

x−

∂HsH −
∂H−X

X2

∫ x−+X

x−

H +
{H}
X

∂H−x−

+
{H}
X

∂Hsx− +H(x− +X) ∂HsX +H(x− +X) ∂H−X

−∂HsX
X2

−
∂H−X

X2


and

A1 = cA0 +


c′(Hs)

X

∫ x−+X

x−

H − q′0(Hs) 0

c′(Hs)

X
0

 .

Therefore, a direct calculation yields

det

((
λ− ce

iξX − 1

X

)
A0 +

eiξX − 1

X
A1

)

= det



λ

X

∫ x−+X

x−

∂HsH + λ
{H}
X

∂Hsx− λ
{H}
X

∂H−x− + λ
H(x− +X)

X
∂H−X

+λ
H(x− +X)

X
∂HsX −

eiξX − 1

X
q′0(Hs)

−λ∂HsX
X2

+
eiξX − 1

X

c′(Hs)

X
−λ

∂H−X

X2


=

λ

X3

[
λ

(
{H}

(
∂HsX ∂H−x− − ∂H−X ∂Hsx−

)
− ∂H−X

∫ x−+X

x−

∂HsH

)
+ (eiξX − 1)

(
∂H−X q′0(Hs)− c′(Hs) {H} ∂H−x− − H(x− +X) ∂H−X c′(Hs)

) ]
.

To compare this to the expansion of ∆(λ, ξ) above, we note that by differentiating the defining
equation for X, one finds(

H − Q2

H2

)
(x− +X) ∂H−X = −

{
H − Q2

H2

}
∂H−x− ,(

H − Q2

H2

)
(x− +X) ∂HsX = −

{
H − Q2

H2

}
∂Hsx− + c′(Hs) c{H}

−
{(

H

F 2
− Q2

H2

)
∂HsH +

(
2Q

H
− c
)
∂HsQ

}
so that, in particular,(

H − Q2

H2

)
(x− +X)

(
∂HsX ∂H−x− − ∂H−X ∂Hsx−

)
= ∂H−x−

(
c′(Hs) c{H} −

{(
H

F 2
− Q2

H2

)
∂HsH +

(
2Q

H
− c
)
∂HsQ

})
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and(
H − Q2

H2

)
(x− +X)

(
∂H−X q′0(Hs)− c′(Hs) {H} ∂H−x− − H(x− +X) ∂H−X c′(Hs)

)
= −∂H−x−

({
H − Q2

H2

}
(q′0(Hs)− H(x− +X) c′(Hs)) + c′(Hs) {H}

(
H − Q2

H2

)
(x− +X)

)
= −∂H−x−

({
H − Q2

H2

}(
− c′(Hs)H(x−) + q′0(Hs)

)
+ c′(Hs){H}

(
H − Q2

H2

)
(x−)

)
.

Therefore as λ→ 0, uniformly in ξ ∈ [−π/X/π/X], we find that

∆(λ, ξ) =
X3
(
H − Q2

H2

)
(x− +X)

c′(Hs) ∂H−x−
det

((
λ− ce

iξX − 1

X

)
A0 +

eiξX − 1

X
A1

)
+O(|λ|2 (|λ|+ |ξ|)) .

This calculation proves Proposition 1.7, thus rigorously justifying the formal Whitham modulation
system (1.2) as a predictor of low-frequency stability for periodic traveling wave solutions of the
inviscid Saint-Venant equation (1.1).

Remark 5.1. We comment briefly on the meaning/origins of the degenerate zero λ(ξ) ≡ 0 indicated

by the factorization ∆(λ, ξ) = λ∆̂(λ, ξ) of (5.1). Going back to the generalized eigenvalue equa-
tions (4.5), we see that these roots correspond to quasiperiodic generalized eigenmodes w = eiξxv̌
satisfying the interior eigenvalue equation (4.5)(i) associated with λ = 0. Recalling that there is
only one solution of the zero-eigenvalue equation up to constant multiple, corresponding to the
derivative W̄ ′ of the traveling wave, we find that these modes are of form

(5.2) w(x, ξ) = c(ξ)W̄ (x)eiξjX for x ∈ [jX, (j + 1)X].

Likewise, recalling that AW̄ ′ = R(W̄ ), we see that the jump condition (4.5)(ii) reduces to the
simple relation χ{R(W̄ )} = c(ξ)R(W̄ )ξ, giving c(ξ) = χ(ξ){R(W̄ )}/R(W̄ )ξ, with χ arbitrary,

where χ represents the discrete Fourier transform of the vector {yj} ∈ `2 of linearized shock shifts.
Converting back to the original (untransformed) variable v of eigenvalue system (4.2) by linear

superposition v(x) =
∫ π/X
−π/X w(ξ, x)dξ =

∫ π/X
−π/X e

iξxv̌(ξ, x)dξ as in (4.4), we obtain

(5.3) v(x) = cjW̄ (x) for x ∈ [jX, (j + 1)X],

where {cj} ∈ `2(R), the inverse discrete Fourier transform of c(ξ), is related to {yj} by

yj = (cj − cj+1)R(W̄ (X−))/{R(W̄ )} − cj+1,

as may be seen by taking the inverse Fourier transform of

χ = c(ξ)R(W̄ )ξ/{R(W̄ )} = c(ξ)
(
(1− eiξX)R(W̄ (X−))/{R(W̄ )} − eiξX

That is, the generalized eigenmodes corresponding to the degenerate root λ(ξ) ≡ 0 span the
family (5.3) of stationary solutions of the linearized equations consisting of simultaneous instanta-
neous translation of interior waves and their connecting discontinuities, corresponding to constant
multiples cjW̄

′ of the background wave and shifts yj of the background discontinuity locations,
with {yj} ∈ `2(R) arbitrary. Comparing back to our discussion of nonlinear behavior, we see that
this corresponds exactly to the family of nearby stationary profiles described in Remark 2.1.

28



5.2. Low-frequency stability boundaries. During the computations in the previous subsec-
tion, we found that the Evans-Lopatinsky determinant can be decomposed for sufficiently small λ,
uniformly in ξ ∈ [−π/X, π/X] as

∆(λ, ξ) = λ ∆̂(λ, ξ)

with

∆̂(λ, ξ) = λ∂λ∆̂(0, 0) +
eiξX − 1

iX
∂ξ∆̂(0, 0) +O(|λ|(|λ|+ |ξ|)) .

In particular, observe that if ∂ξ∆̂(0, 0) = 0 then 0 is actually a double root of ∆(·, ξ) for any ξ. This

suggests that when ∂ξ∆̂(0, 0) changes sign, a loop of spectrum, parametrized by ξ, may switch from
one half-plane to the other. Consequently, in the absence of additional instabilities, the vanishing
of ∂ξ∆̂(0, 0) may indicate a transition from stability to instability (or vice versa) of the underlying
periodic solution. Later on we shall offer another partial support to this scenario by proving that
the parity of the number of real positive subharmonic — i.e. corresponding to ξ = π/X,−π/X —
eigenvalues changes when this occurs.

Likewise, if ∂λ∆̂(0, 0) were changing sign somewhere then this might indicate a change in the par-
ity of the number of real positive co-periodic — i.e. corresponding to ξ = 0 — eigenvalues.15 How-
ever, as discussed in the introduction, we have checked numerically that ∂λ∆̂(0, 0) never vanishes
over the entire range of existence of periodic traveling wave solutions of (1.1). Motivated by this

numerical observation, we now restrict our theoretical discussion to the case when ∂λ∆̂(0, 0) 6= 0.
From the above expansion of ∆(λ, ξ), a direct computation shows that the non-trivial small root

of ∆(·, ξ) expands for |ξ| � 1 as

(5.4) λ(ξ) = −iαξ − βξ2 +O(|ξ|3),

with α and β real numbers16 given by

α =
∂ξ∆̂(0, 0)

i∂λ∆̂(0, 0)

and

β = α

(
−1

2
X − 1

2
α
∂2
λ∆̂(0, 0)

∂λ∆̂(0, 0)
− i

∂2
λξ∆̂(0, 0)

∂λ∆̂(0, 0)

)
=: αγ .

In particular, a transition instability/stability of small eigenvalues associated with small Floquet
numbers necessarily takes place whenever, by changing parameters of wave, the parameter β changes
sign. For this reason we use the vanishing of β as an indicator of a low-frequency stability boundary.
Furthermore, since β = αγ, we distinguish between two types of potential low-frequency stability
boundaries:

(1) low-frequency stability boundary I: when α vanishes, and in this case we know that a full
loop of spectrum passes through the origin;

(2) low-frequency stability boundary II: when α does not vanish but γ changes sign, and we at
least know that the curvature at the origin of the non trivial small root changes sign.

We now explain how to carry out the computations of the quantities ∂λ∆̂(0, 0), α and γ. First
we remind the reader that all coefficients in A0 and A1 from Section 3.2 may be explicitly computed
by simple but tedious algebraic manipulations. In particular, both ∂ξ∆̂(0, 0) and ∂λ∆̂(0, 0) have
explicit expressions in terms of H−, Hs and F . The expression of the latter is both long and quite

15Such a parity change would follow immediately provided one could determine, say, the sign of ∆(λ, 0) for large
λ ∈ R.

16The reality of α, β follows by the explicit expansion of ∆̂(λ, ξ) in the previous subsection.
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daunting, therefore we omit it and resort to numerical evaluation to determine its sign. Let us only
mention that its ugliest parts involve ` and `H.

The evaluation of ∂ξ∆̂(0, 0) provides a nicer form,

∂ξ∆̂(0, 0)

iX
=
{
H − Q2

H2

}(
H− −

q′0(Hs)

c′(Hs)

)
− {H}

(
H− −

(c(Hs)H− − q0(Hs))
2

H2
−

)(5.5)

=
H2
s {H}

F 2(F + 1)H2
−H

2
+

[ (
F 2H2

−H
2
+ − 2(F + 1)H−H+ + (H− +H+)

) (
(F + 1)H− − 3

)
− (F + 1)H2

+

(
F 2H3

− − (F + 1)2H2
− + 2(F + 1)H− − 1

) ]
=

H2
s {H}

F 2(F + 1)H2
−H

2
+

[
F 3H2

−H
2
+ − 2F 2H−H+(H+ −H−)

+ F (3H2
−H

2
+ − 4H−H+(H− +H+) + 7H−H+ +H2

− +H2
+)

+H2
−H

2
+ − 2H−H+(H− +H+) +H2

− +H2
+ + 7H−H+ − 3(H− +H+)

]
.

Once the sign of ∂λ∆̂(0, 0) is known, determining the sign of α is thus reduced to the study of the
sign of a third order polynomial in F with coefficients given as polynomials in H− and H+, thus
as functions of H−. This task may be achieved by exact algebraic computations. In particular,
by root solving symbolically in MATLAB we have obtained the low-frequency stability boundary I
expounded in Figure 7(a). While we have restricted to the case when Hs = 1 in Figure 7(a), we
recall that conclusions for general values of Hs can be deduced thanks to the scaling invariance
(2.10).

In contrast, the sign of γ is not directly related to the first-order17 modulation system (1.2), and
it is unclear to us whether γ may be obtained in closed form. However, the only missing piece
in obtaining a closed form expression for γ is knowledge of ∂λ(h̃, q̃)(·; 0) = 1

2∂
2
λ(h, q)(·; 0) (with

notation from Section 5.1). By differentiating twice the defining equations for (h, q)(·;λ), we find

that ∂λ(h̃, q̃)(xs; 0) = 0 and that

h̃(0) + ∂x(−c∂λh̃(0) + ∂λq̃(0)) = 0,

q̃(0) + ∂x

((
2Q

H
− c
)
∂λq̃(0) +

(
−Q

2

H2
+
H

F 2

)
∂λh̃(0)

)
= ∂λh̃(0)− 2Q

H2
∂λq̃(0) + 2

Q2

H3
∂λh̃(0)

with

(h̃, q̃)(·; 0) = − 1

c′(Hs)
(∂HsH, ∂HsQ) +

3(F + 2)

2(F + 1)(F − 2)

√
Hs (H ′, Q′) .

In the foregoing we have also used (4.7) to determine the multiple of (H ′, Q′) in (h̃, q̃)(·; 0). To

determine γ we have indeed used a numerical approximation of ∂λ(h̃, q̃)(·; 0) obtained by solving
the above singular ODE Cauchy problem. Our numerical outcome is that γ vanishes only near the
lower boundary of the existence domain, that is, the potential low-frequency stability boundary
II actually sits between the low-frequency stability boundary I and the lower boundary of the
existence domain. As F increases the low-frequency stability boundary II gets even closer to the
lower boundary of the existence domain. See Figure 7(b) for an enlarged figure of the low-frequency
stability boundary II near F = 2.

17Yet we expect that it could be related to a suitable second-order system as in [NR13, JNRZ13, JNRZ14, KR16].
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Figure 7. (a) A plot of the limits of the domain of existence, as well as the low-
frequency stability boundaries (recall the labeling scheme from Figure 2(a)). As
the low-frequency stability boundary II is nearly indistinguishable from the lower
existence boundary, we show in (b) an enlargement of (a) near F = 2. In (b), we
are showing the lower existence boundary, the low-frequency stability boundary II,
and the mid-frequency stability boundary.

6. High-frequency analysis

In this section we analyze the behavior of solutions of to the interior eigenvalue problems (4.6)-
(4.7) when |λ| → ∞. These conclusions will then be used to deduce high- and medium-frequency
stability indices.

Though detailed computations depend on specificities of (1.1), the method of our analysis applies
to general hyperbolic systems of balance laws (1.4). Indeed, the tenet of the argument is that
expansions when |λ| → ∞ perturb from purely hyperbolic modes (of the system without source
term) and that the first correction to this picture encodes how the relaxation damps these modes.
Note that this occurs even when, as here, the relaxation is degenerate in the sense that it appears
only in one equation of the system. In particular the condition on the index I introduced below
is analogous to the averaged slope condition of the viscous case that was shown to always hold in
[RZ16].

6.1. High-frequency expansion. As in Section A.3, we begin by changing the unknown from
(h, q) to W := (w1, w2) = (ch− q, h), so that the system (4.6) becomes(

p′(H)− q2
0

H2

)
W ′ = (λB0 +B1)W,

where

B0 =

(
0 p′(H)− q20

H2

1 −2q0
H

)

B1 =

(
0 0

−∂qr(H,Q)−
(

2q0
H

)′
−
(
p′(H)− q20

H2

)′
+ ∂hr(H,Q) + c∂qr(H,Q)

)
,(6.1)

and normalization (4.7) becomes

W (xs) =
(F − 2)

2(F + 1)

√
Hs

(
2λ
√
Hs(

λ+ 2
3
F+1√
Hs

)
F

)
Now, note that B0 = P0 ΓP−1

0 with

Γ =

(
µ+ 0
0 µ−

)
, µ± = −q0

H
±
√
p′(H) ,
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and

P0 =

(
q0
H +

√
p′(H) q0

H −
√
p′(H)

1 1

)
(6.2)

P−1
0 =

1

2
√
p′(H)

(
1

√
p′(H)− q0

H

−1
√
p′(H) + q0

H

)
.

By setting W0 = P−1
0 W , the above system is transformed into(

p′(H)− q2
0

H2

)
W ′0 = (λΓ + C0)W0

with

(6.3) C0 = P−1
0 B1P0 −

(
p′(H)− q2

0

H2

)
P−1

0 (P0)′ .

Observe that, by direct calculations similar to those in Section A.3, we have

Γ(xs) =

(
0 0

0 −2
√
Hs
F

)
and C0(xs) =

(
0 0

4
3

(F+1)
F 0

)
and that the normalization (4.7) becomes

W0(xs) =
F (F − 2)

4(F + 1)

(
1 0

−1 2
√
Hs
F

)(
2λ
√
Hs(

λ+ 2
3
F+1√
Hs

)
F

)
=
F (F − 2)

4(F + 1)

(
2λ
√
Hs

4
3(F + 1)

)
.

We now set

P1(·;λ) = I2 +
1

λ
P̃1 , P̃1 =

(
0 − (C0)1,2

µ+−µ−
(C0)2,1
µ+−µ− 0

)
to ensure commutator relations

[λΓ, P1(·;λ)] = [Γ, P̃1(·;λ)] = −
(

0 (C0)1,2

(C0)2,1 0

)
.

For |λ| sufficiently large, P1(·;λ) is point-wise invertible. For such λ, setting W1 = P−1
1 W0 trans-

forms the interior spectral system into(
p′(H)− q2

0

H2

)
W ′1 =

((
λµ+ + (C0)1,1 0

0 λµ− + (C0)2,2

)
+

1

λ
C1(·;λ)

)
W1

with

C1(·;λ) = −P−1
1 P̃1

(
(C0)1,1 0

0 (C0)2,2

)
+ P−1

1 C0P̃1 −
(
p′(H)− q2

0

H2

)
P−1

1 (P̃1)′ .

Note that C1 vanishes at xs and that the normalization (4.7) now reads

W1(xs) =
F (F − 2)

4(F + 1)

(
1 0

− 1
λ

2
3

(F+1)√
Hs

1

)(
2λ
√
Hs

4
3(F + 1)

)
=
F (F − 2)

4(F + 1)

(
2λ
√
Hs

0

)
.

In order not to suggest spurious singularities, we introduce the following smooth factorizations:

µ+ =

(
p′(H)− q2

0

H2

)
µ̃+ , (C0)1,1 =

(
p′(H)− q2

0

H2

)
γ̃+ ,(6.4)

(C0)2,2 =

(
p′(H)− q2

0

H2

)
γ̃− , C1 =

(
p′(H)− q2

0

H2

)
C̃1 .
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The above computations suggests that W1(x) behaves to leading order as

F (F − 2)

4(F + 1)

(
2λ
√
Hs e

∫ x
xs

(λ µ̃+(y)+γ̃+(y))dy

0

)
as |λ| → ∞. To prove this claim, we introduce

W̃1(x) = e−
∫ x
xs

(λ µ̃+(y)+γ̃+(y))dyW1(x)

and note that W̃1 satisfies the fixed point equation W̃1 = Φ(W̃1), where Φ is defined by

Φ(W̃ )(x) =
F (F − 2)

4(F + 1)

(
2λ
√
Hs

0

)
+

1

λ

∫ x

xs

(
1 0

0 e
−λ

∫ x
y

µ+−µ−
p′(H)−q20 H

−2 (z) dz−
∫ x
y (γ̃+−γ̃−)(z) dz

)
C̃1(y) W̃ (y) dy .

Since the function
µ+ − µ−

p′(H)− q2
0 H
−2

(x)

has the same sign as (x− xs) over [0, X], it follows that Φ is a Lipschitz function on C0([0, X];C2)
with Lipschitz constant K/|λ| for some constant K > 0 uniform on λ when <(λ) ≥ −θ, with
θ ∈ [0, (F −2)/2

√
Hs) held fixed, and λ is sufficiently large. In particular, under such conditions on

λ the function Φ is a strict contraction so that, in particular, for any function W̃ ∈ C0([0, X];C2)

‖W̃1 − W̃‖L∞(0,X) ≤
1

1−K |λ|−1
‖W̃ − Φ(W̃ )‖L∞(0,X)

where K is a uniform constant. Thus with the same constant K we have the estimates

‖W̃1‖L∞(0,X) ≤
|λ|
√
Hs

1−K |λ|−1

F (F − 2)

2(F + 1)

and ∥∥∥∥W̃1 −
F (F − 2)

4(F + 1)

(
2λ
√
Hs

0

)∥∥∥∥
L∞(0,X)

≤ K

|λ| −K
|λ|
√
Hs

1−K |λ|−1

F (F − 2)

2(F + 1)
.

By undoing change of variables (h, q) = (w2, cw2 − w1, (w1, w2)T = W = P0P1W1, we have
proved the following proposition.

Proposition 6.1. Let θ ∈ [0, (F − 2)/2
√
Hs). The solution (h, q) to (4.6)-(4.7) satisfies

(6.5) e−
∫ x
xs

(λ µ̃+(y)+γ̃+(y))dy

(
h
q

)
(x) = λ

√
Hs

F (F − 2)

2(F + 1)

(
1

Q(x)
H(x) −

√
p′(H(x))

)
+O(1)

as |λ| → ∞ with <(λ) ≥ −θ, where

µ̃+ =
(√

P ′(H) +
q0

H

)−1

and γ̃+ is defined through (6.1)-(6.2)-(6.3)-(6.4).
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6.2. Co-periodic and subharmonic real-frequency instability indices. Sending <(λ)→∞
in (4.8), we recover through the above proposition the results in [Nob06] that potential unstable
frequencies have bounded real parts. This is essentially necessary to local well-posedness, or, in
other words, Hadamard stability, as proved in [Nob09]. We capture this in the following result.

Proposition 6.2. Uniformly in ξ ∈ [−π/X, π/X], the Evans-Lopatinsky determinant defined in
(4.8) satisifes

(6.6) ∆(λ, ξ) ∼ γ0λ
2 e

∫X
xs

(λ µ̃+(y)+γ̃+(y))dy

as <(λ)→∞, where the constant γ0 is defined explicitly as

γ0 :=
√
Hs

F (F − 2)

2(F + 1)
{H}

(√
H+

F
+

q0

H+

)2

.

In particular there is an upper bound on real parts of unstable frequencies.

Proof. For <(λ) → ∞, the second column in (4.8) is dominated by the exponentially large value
at x = X, whereas, the first column of the Evans-Lopatinsky determinant is dominated by
(λ{H}, λ{Q})T . Combining these observations, we obtain (6.6) with

γ0 = det

 {H} −c+ Q(X)
H+
−
√
H+

F

c{H} H+

F 2 − Q(X)2

H2
+

+
(

2Q(X)
H+

− c
)(

Q(X)
H+
−
√
H+

F

)
which is seen to coincide with the above value by direct expansion of Q(X) = cH+ − q0. �

The above proposition may be used to derive co-periodic and subharmonic real-frequency insta-
bility indices. Indeed, note that from the uniqueness of solutions(h, q) of (4.6)-(4.7) it follows that
(h, q) is real whenever λ is real and hence we have that ∆(λ, 0) and ∆(λ, π/X) are real for λ ∈ R.
By Proposition 6.2 we deduce that both ∆(λ, 0) and ∆(λ, π/X) are positive when λ ∈ R is positive
and sufficiently large. Using the already established expansions

∆(λ, 0) = λ2∂λ∆̂(0, 0) +O(|λ|3)

∆
(
λ,
π

X

)
= −2λ

∂ξ∆̂(0, 0)

iX
+O(|λ|2),

valid as λ→ 0, we deduce by the intermediate value theorem that the sign of ∂λ∆̂(0, 0) determines
modulo two the number of co-periodic - that is, associated with ξ = 0 - real unstable frequencies,
and that the sign of i∂ξ∆̂(0, 0) determines modulo two the number of subharmonic - that is,

associated with ξ = π/X - real unstable frequencies. Incidentally, note that if ∂λ∆̂(0, 0) is positive
(as suggested by our numerical observations) then by (5.4) the quantity ∆(0, π/X) has the opposite

sign of α. Moreover, recall that both ∂λ∆̂(0, 0) and ∂ξ∆̂(0, 0) are directly related to the Whitham
modulation system and are hence explicitly computable: see Section 5.1 above.

Taken all together, the above considerations prove Theorem 1.15.

6.3. High-frequency stability index. Using the result of Proposition 6.1 without assuming that
<(λ) is large, we now study high-frequency stability. In this case, we cannot use exponential growths
to discard parts of the expansions as in Proposition 6.2 and, consequently, the expansion (6.6) is
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modified into

∆(λ, ξ) = λ2 e
−λ

∫ xs
0 µ̃++

∫X
x−

γ̃++iξX
γ0(6.7)

×

eλ ∫X0 µ̃+−iξX (1 +O
(
|λ|−1

))
−


√
H−
F + q0

H−√
H+

F + q0
H+


2

e−
∫X
0 γ̃+ +O

(
|λ|−1

)
uniformly in ξ ∈ [−π/X, π/X] when |λ| → ∞ with <(λ) ≥ −θ, θ being held fixed in [0, (F −
2)/2
√
Hs). Defining the high-frequency index

(6.8) I :=


√
H−
F + q0

H−√
H+

F + q0
H+


2

e−
∫X
0 γ̃+

where γ̃+ is derived from (6.1)-(6.2)-(6.3)-(6.4), we obtain the following characterization of high-
frequency spectrum.

Proposition 6.3. If I ≤ e
− F−2

2
√
Hs

∫X
0 µ̃+, then for any θ ∈ [0, (F − 2)/2

√
Hs) there exists a R0 > 0

such that the system (4.6)-(4.7) has no spectrum in the set

{λ : <(λ) ≥ −θ and |λ| ≥ R0} .

Conversely, if I > e
− F−2

2
√
Hs

∫X
0 µ̃+ then for any

θ ∈

(
ln(I)∫ X
0 µ̃+

,
F − 2

2
√
Hs

)
there exists a R0 > 0 such that the spectrum in

{λ : <(λ) ≥ −θ and |λ| ≥ R0}
consists exactly of two curves, made of simple Floquet eigenvalues and locally parametrized by ξ,
asymptoting to the vertical line with equation

<(λ) =
ln(I)∫ X
0 µ̃+

.

Proof. This follows directly through Rouché’s theorem from a comparison of zeros λ of

λ−2 e
λ
∫ xs
0 µ̃+−

∫X
x−

γ̃+−iξX
γ−1

0 ∆(λ, ξ)

with those of
eλ

∫X
0 µ̃+−iξX − I .

uniformly in ξ in the aforementioned zone of λs. �

Observe now that Theorem 1.13 is a simple corollary of Proposition 6.3.

In order to compute the high-frequency index , observe that the integral in the definition of
the index I may be written as an integral between H− and H+ of a rational function of h whose
denominator is easily factored so that an exact formula for I may be algebraically determined. Yet,
we omit it here since the resulting formula is both very long and not very instructive.

Instead, we fix Hs = 1 and evaluate numerically the high-frequency stability index I = I(F,H−).
The outcome of this numerical computation is the observation that, across the entire parameter-
range of existence, one has I(F,H−) < 1, indicating high-frequency stability of all periodic traveling
wave solutions of (1.1). See Figure 8 for a depiction of the typical behavior of the high-frequency
stability index as parameters H− and F are varied.
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Figure 8. Numerical evaluation of I(F,H−) for (a) F = 3, H− ∈ (Hhom(3), 1] and
for (b) H− = 0.8, F ∈ [2.4, 20].

7. Numerical investigations and stability diagram

In this section, we describe how we have carried out our numerical investigations, providing
complete stability diagrams expounded in the introduction in Figure 3 and Figure 4. While some
details on the implementation are provided in Appendix B, our focus here is on methodology.

The general framework introduced in Section 4 and the exact factorization from Section 5 lead
to the problem of finding roots of ∆̂(·, ξ) for any ξ ∈ [−π/X, π/X], where ∆̂ is as defined in (5.1).

Let us first explain how to compute (h, q) (or its reduced version (h̃, q̃)) from equations (4.6)-
(4.7) and, in particular, how to deal with the presence of the singular point at x = xs. At the
numerical level, we follow the pattern of the existence proof provided in Section A.2, that is, in
a small neighborhood of the singular point we carry out a specific, asymptotic treatment of the
problem and then solve outward from the boundary of the neighboring zone with a standard ODE
solver. Near the sonic point, we use the analyticity of the sought solution to approximate it by a
finite series whose coefficients are determined from the finite-order recursion relation imposed by
the equation. At this stage, since coefficients of the eigen equation and H ′ itself are expressed in
terms of H, it is convenient to use a truncated version of an expansion in terms of H(x) − Hs

instead of x− xs, that is, to approximate (h, q)(x) with a finite sum of the form

N−1∑
n=0

(H(x)−Hs)
n (an, bn)

where (an, bn) are determined recursively. Moreover the convergence of the corresponding series
is readily deduced by applying the general theory in Section (A.2) to the equation obtained from
(4.6) after the change of variable x 7→ H(x). Recurrence relations are obtained and solved by using
a numerical symbolic solver. To use a relatively small number N of terms in the expansion, the
size of the neighborhood of the sonic point on which the expansion is used is chosen adaptively, so
as to ensure reasonable accuracy of the power series expansion. This scheme turns out to be very
robust.

Once the above approximations of (h, q) has been achieved, our computations follow the by now
classical road map to investigate stability of periodic waves from Evans function computations. See
in particular [BJN+13] for comparison and for some implementation details omitted here.

Explicitly, to determine stability, we fix 0 < r < R with r � 1 and R � 1 and examine the
presence of spectrum associated to (4.6)-(4.7) within the set

Ω(r,R) := {λ : <(λ) > 0, r < |λ| < R } .

To this end, we compute for any ξ ∈ [−π/X, π/X] a winding number for the associated reduced

periodic Evans-Lopatinsky function ∆̂(·, ξ), i.e. we numerically compute the complex contour
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integral

n(ξ; Ω) :=
1

2πi

∮
∂Ω

∂λ∆̂(λ, ξ)

∆̂(λ, ξ)
dλ =

1

2πi

∮
∂Ω
∂λ arg

(
∆̂(λ, ξ)

)
dλ .

Since ∆̂(·, ξ) is complex analytic in λ, it is clear that this counts its number of zeros of ∆̂(·, ξ)
within the set Ω. To capture the structure of the full spectrum, this winding number must be
computed for a suitably fine discretization of ξ ∈ [−π/X, π/X]. Observe that a significant amount
of redundant calculation is spared by noting that18

∆̂(λ, ξ) = det


{H} −λ

∫ x−+X

x−

h̃ − (ch̃− q̃)(x−)

{λQ− (H − Q2

H2 )} λ{(−Q2

H2 + H
F 2 )h̃+ (2Q

H − c)q̃} + λ{Q}
+ (H − Q2

H2 )(x−)



+ eiξX det


{H} (ch̃− q̃)(x−)

{λQ− (H − Q2

H2 )} −λ
(
−Q2

H2 + H
F 2 )h̃+ (2Q

H − c)q̃
)

(x−)

− (H − Q2

H2 )(x−)


and that the computation of the two determinants above is independent of ξ. For illustration,
typical graphs of how the contour ∂Ω(r,R) maps under ∆̂(·, ξ) are given in Figure 9. We have used
the above method to verify medium-frequency stability, for 2.3 ≤ F ≤ 19, discretizing uniformly
into 6000 points the area of parameters corresponding to waves having passed our low-frequency
stability tests, choosing r = 0.01, R = 400 and ξ in a 1000-point uniform mesh of the interval
[−π/X, π/X]. From these calculations was determined an additional “medium-frequency stabil-
ity boundary” which crosses the low-frequency stability boundary I at about F = 16.3; see the
illustration in Figure 2(b).
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Figure 9. Images of the contour ∂Ω(r,R) under the function ∆̂(·, ξ) with F = 8,
H− = 0.22 (and Hs = 1, hence ` = X). The calculated winding numbers are
0, 1, 0, 0, respectively.

Both to improve accuracy by bisecting on H− and to shed some light on the transition to
instability, we have refined numerically all of the aforementioned stability boundaries. Concerning
the low-frequency stability boundaries, we have tracked as a function of the Bloch frequency ξ the
small root of ∆̂(·, ξ) by running a classical root solver. Consistently with our theoretical analysis,
we have observed that:

18We keep the x-notation for clarity but recall that actually we perform numerical computations after the change
of variable x 7→ H(x) has been performed.
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i. As H− decreases and crosses the low-frequency stability boundary I, the spectra first ap-
pears to be a “circle” on the right half plane (indicating instability), gradually shrink to
the origin (corresponding to α = 0), and finally grow to be a circle on the left half plane
(indicating low-frequency stability). See Figure 10.(a).

ii. As H− decreases and crosses the low-frequency stability boundary II, the spectra near the
origin initially curves into the left half plane (corresponding to β > 0), gradually becomes
more and more vertical, and finally curves to lie on the right half plane (corresponding to
β < 0). See Figure 10.(b).
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Figure 10. (a) Plots of the spectrum near the origin with Hs = 1 when H−
crosses the low-frequency stability boundary I at F = 2.492779325091594, H− =
0.806451612903226; (b) Plots of the spectrum near the origin with Hs = 1 when
H− crosses the low-frequency stability boundary II at F = 2.5, H− =
0.745329985201548.

Whereas the above is merely a consistency check for the low-frequency stability boundaries, the
computation of the medium-frequency transition is more instructive. To detect and trace it we
have again used a root solver, this time near roots that barely crossed the imaginary axis. The
behavior of these critical spectral curves seems to depend on F . Indeed, for 2 < F ≤ 12.2, the
curves connect back to the origin as ξ is varied, while for 12.3 ≤ F ≤ 16.3 the curves cross real axis
at about −1.5: see Figure 11 (a) and (b). Furthermore, for F ≈ 2.74 there appear to be multiple
(local) curves that touch the imaginary axis away from the origin, making the tracking of this
boundary potentially difficult. For example, as F decreases through 2.74 the location of the purely
imaginary points away from the origin in the spectrum changes from a pair farther away from the
origin to a pair nearer the origin; see Figure 11(c)-(e). It is this switching between critical branches
of spectrum that is responsible for the sharp edge of the stability boundary in Figure 3(d).

Appendix A. Local solvability

In this appendix we treat solvability in Sobolev spaces or analytic setting of a class of singular
ODEs. Our analysis significantly differs from, but obviously also overlaps with, the classical treat-
ment of regular-singular points of ODEs, as found in [Cod61]. We perform the required estimates
first for a “toy” model equation, and then for the general case at hand.
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Figure 11. Spectral plots for points on the mid-frequency boundary, with the
purely imaginary (non-zero) points of the spectrum indicated with a small black box.
Everywhere Hs = 1. (a) F = 16.3, H− = 0.0920122990378320; (b) F = 8, H− =
0.178726395676078; (c) F = 2.75H− = 0.658783869495317; (d) F = 2.74, H− =
0.661884455727258; (e) F = 2.73H− = 0.665012235912442. Note that panes (c)-(e)
show a jump in the imaginary part of the critical purely imaginary points as F
decreases through F ≈ 2.74.

A.1. Model problems. Starting with the principal singular part, we are led to consider the model
constant-coefficient scalar equation

(A.1) xv′ + a0v = g,

on a bounded interval I ⊂ R containing 0, where here a0 ∈ C is a constant. Our goal here is
to study the continuous solvability of the equation (A.1) within different function classes and, in
particular, allowing a0 to have arbitrary large real part.

For exposition, we begin with the Lp-theory, 1 < p ≤ ∞. In this case, for each g ∈ Lp(I) and
<(a0) > 1/p there is at most one solution of (A.1) since x 7→ |x|−a0 does not belong to Lp(I) on
either side of zero. We show now that under the same condition there is indeed exactly one solution
in Lp(I), depending continuously on g ∈ Lp(I). The claimed solution is given explicitly by

(A.2) v(x) =

∫ x

0

(
|y|
|x|

)a0
g(y)

dy

y
=

∫ 1

0
ta0g(x t)

dt

t
.

Note that the condition <(a0) > 1/p ensures that the map y 7→ |y|a0/y belongs to Lp
′
(I), where

p′ is Lebesgue-conjugate to p, i.e. 1/p + 1/p′ = 1, since then p′(<(a0) − 1) > −1. In particular,

(A.2) makes sense19 whenever x 6= 0. Moreover, since |x v(x)| . |x|1−1/p → 0 as x 7→ 0, one readily
checks that (A.2) provides a distributional solution to (A.1). The continuity of the solution map
follows from the elementary estimate

‖v‖Lp(I) ≤
∫ 1

0
t<(a0)‖g(· t)‖Lp(I)

dt

t
≤ ‖g‖Lp(I)

∫ 1

0
t<(a0)−1/p dt

t
=

1

<(a0)− 1/p
‖g‖Lp(I) ,

which proves the claim.
Extending to W k,p-solvability, k ∈ N∗, 1 < p ≤ ∞, we expect to relax the condition on a0. The

fastest way to check this claim is to observe that at this level of regularity (A.1) may be equivalently
written as

x (v(k))′ + (a0 + k) v(k) = g(k)

19We warn the reader, however, that the corresponding pessimistic pointwise bound |v(x)| . |x|−1/p incorrectly
suggests that v /∈ Lp(I).
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(to be solved with v(k) ∈ Lp(I)), supplemented by initial data constraints

(a0 + `)v(`)(0) = g(`)(0) , 0 ≤ ` ≤ k − 1 .

As a result, when <(a0) > −k + 1/p any W k,p-solution satisfies

‖v(k)‖Lp(I) ≤
1

<(a0) + k − 1/p
‖g(k)‖Lp(I) ,

and the set of solutions is a singleton if a0 /∈ {−(k−1), · · · , 0}, and a line parametrized by v(−a0)(0)
otherwise.

Finally, we consider the solvability of (A.1) within the class of analytic functions on I. Given
an analytic function g on I, then as above we find that if a0 /∈ −N there is at most one solution
of (A.1) while if a0 ∈ −N then any solution, if it exists, is determined only up to a multiple of
x 7→ x−a0 . For simplicity, here we only discuss the case when <(a0) > −1. Since a0 v(0) = g(0) is
a necessary condition for solvability, when a0 = 0 we assume moreover that g(0) = 0 and otherwise
choose v(0) such that this constraint is satisfied (uniquely when a0 6= 0, arbitrarily otherwise). In
this case, it is easy to check that the W 1,∞-formula

v(x) = v(0) +

∫ 1

0
ta0

g(x t)− g(0)

t
dt

actually defines an analytic solution on I whenever g is analytic on I. In particular, the above
solution formula may be extended to x lying in a complex convex neighborhood B of 0, defining a
holomorphic extension satisfying the continuity estimate

max
z∈B

|v(z)− v(0)|
|z|N

≤ 1

<(a0) +N
max
z∈B

|g(z)− g(0)|
|z|N

,

where here N is chosen so that 0 is a root of g − g(0) of order at least N .

Having considered the scalar model (A.1) above and with actual singular problem deriving from
(1.1) in mind, we now consider the continuous solvability of a triangular constant-coefficient system
of the form

(A.3)

{
v′1 = g1

x v′2 = L0v1 − a0 v2 + g2,

considered again on a bounded interval I ⊂ R containing 0, where here L0 ∈ M1,n−1(C) is a
matrix, a0 ∈ C is a constant, v1 is Rn−1-valued and v2 is scalar-valued. Given 1 < p ≤ ∞
and given g1, g2 ∈ Lp(I), we find that if <(a0) > 1/p then the set of Lp-solutions of (A.3) is an
(n− 1)-dimensinoal space, parametrized by v1(0), with solutions satisfying the continuity estimate

‖v1‖Lp(I) ≤ |v1(0)| |I|1/p + ‖g1‖Lp(I) |I|

‖v2‖Lp(I) ≤
1

<(a0)− 1/p

[
|L0| |v1(0)| |I|1/p + |L0|‖g1‖Lp(I) |I|+ ‖g2‖Lp(I)

]
.

Likewise when k ∈ N∗ and g1, g2 ∈W k,p(I), we find that if

(A.4) <(a0) > −k + 1/p , a0 /∈ {−(k − 1), · · · ,−1} and (a0, L0) is non-zero,

then the set of W k,p(I)-solutions is again an (n − 1)-dimensional space, parametrized by values
(v1(0), v2(0)) ∈ Rn satisfying the condition

0 = L0v1(0) − a0 v2(0) + g2(0)
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with solutions satisfying the continuity estimate

‖v(k)
1 ‖Lp(I) ≤ |g

(k−1)
1 (0)| |I|1/p + ‖g(k)

1 ‖Lp(I) |I|

‖v(k)
2 ‖Lp(I) ≤

1

<(a0)− 1/p

[
|L0| |g(k−1)

1 (0)| |I|1/p + |L0|‖g(k)
1 ‖Lp(I) |I|+ ‖g

(k)
2 ‖Lp(I)

]
,

and data at x = 0 being determined via the relations

v
(`)
1 (0) = g

(`−1)
1 (0) , v

(`)
2 (0) =

1

a0 + `

[
L0g

(`−1)
1 (0) + g

(`)
2 (0)

]
, 1 ≤ ` ≤ k − 1 .

Finally, we consider the solvability of (A.3) within the class of analytic functions on I under the
assumptions that

<(a0) > −1 , and (a0, L0) is non-zero.

To this end, fix (v1(0), v2(0)) such that

0 = L0v1(0) − a0 v2(0) + g2(0) .

Then an easy calculation shows there exists a unique analytic solution to (A.3) starting from
(v1(0), v2(0)) and its complex extension to a complex convex neighborhood of zero B satisfying the
continuity estimate

max
z∈B

|v1(z)− v(0)|
|z|N+1

≤ 1

N + 1
max
z∈B

|g1(z)|
|z|N

max
z∈B

|v2(z)− v(0)|
|z|N+1

≤ 1

<(a0) +N + 1

[
|L0|
N + 1

max
z∈B

|g1(z)|
|z|N

+ max
z∈B

|g2(z)− g2(0)|
|z|N+1

]
,

provided (g1, g2) are holomorphic on B and 0 is a root of g1 of order at least N and of g2 − g(0) of
order at least N + 1.

A.2. The general case. We now replace (A.3) with an inhomogeneous system in the form

(A.5)

(
v′1
x v′2

)
=

(
Ã C
L −a

)(
v1

v2

)
+

(
g1

g2

)
with smooth coefficients and show that the problem keeps the same structure as above, with
a0 := a(0) and L0 := L(0).

Concerning Sobolev solving, it stems from the estimates on the model system (A.3) through
a contraction argument that (A.5) is continuously solvable in W k,p(I) provided (A.4) holds and
I = (−ε, ε) with ε sufficiently small (depending only on coefficients). This may then be extended
to an arbitrary bounded interval containing 0 by relying on the classical regular ODE theory to
solve outside a small ball about the singular point x = 0.

As for analytic solving when

<(a(0)) > −1 , and (a(0), L(0)) is non-zero,

with initial data (v1(0), v2(0)) satisfying the condition

0 = L(0)v1(0) − a(0) v2(0) + g2(0) ,

we again only need to examine analyticity in a neighborhood of 0. The latter also follows from
estimates of the previous subsection through Picard iteration. Indeed if (g1, g2) is holomorphic
on B, a complex convex neighborhood of zero, the above estimates yield that, setting (v1, v2) =∑

N∈N(v
(N)
1 , v

(N)
2 ) with (v

(0)
1 , v

(0)
2 ) constant equal to (v1(0), v2(0)), there exists a constant K de-

pending only on coefficients (and blowing up when <(a(0))→ −1) such that

max
z∈B

|(v(1)
1 , v

(1)
2 )(z)|
|z|

≤ K
[
‖(v1(0), v2(0))‖+ max

z∈B
|g1(z)|+ max

z∈B

|g2(z)− g2(0)|
|z|

]
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and, for any integer N ≥ 1

max
z∈B

|(v(N+1)
1 , v

(N+1)
2 )(z)|

|z|N+1
≤ K

N + 1
max
z∈B

|(v(N)
1 , v

(N)
2 )(z)|
|z|N

Thus, any integer N ≥ 1 solutions of (A.5) satisfy the estimate

max
z∈B

|(v(N)
1 , v

(N)
2 )(z)|
|z|N

≤ KN

N !

[
‖(v1(0), v2(0))‖+ max

z∈B
|g1(z)|+ max

z∈B

|g2(z)− g2(0)|
|z|

]
.

This is sufficient to deduce the claimed convergence, providing an analytic solution of (A.5) provided
the gj are themselves analytic.

A.3. Application to (1.1). We now demonstrate that the above general theory applies to the
spectral problem associated with our roll waves of (1.1), yielding that local solvability in H1 for
the system (4.6)-(4.7) occurs whenever the spectral parameter λ satisfies

<(λ) > −1

4

F − 2√
Hs

as well as analytic solvability when

<(λ) > −1

2

F − 2√
Hs

.

We begin by rewriting the inhomogeneous version of (4.6) as

λh+ (q − ch)′ = f1

λ q +

((
p′(H)− Q2

H2

)
h+

(
2Q

H
− c
)
q

)′
= ∂hr(H,Q)h+ ∂qr(H,Q) q + f2

where

p(h) =
h2

2F 2
and r(h, q) = h− |q| q

h2

and where f1 and f2 are given functions. By changing the unknown from (h, q) to (w1, w2) =
(ch− q, h), the above system becomes

w′1 = λw2 − f1(
p′(H)− q2

0

H2

)
w′2 =

(
−
(
p′(H)− q2

0

H2

)′
+ ∂hr(H,Q) + c∂qr(H,Q)− 2λ q0

H

)
w2

+

(
λ− ∂qr(H,Q)−

(
2q0

H

)′)
w1 + f2 +

(
2q0

H
− c
)
f1

where we have introduced the constant q0 such that Q− cH = −q0: see (2.4).
Now, let xs denote the unique point in (0, X) where H(xs) = Hs, where Hs is such that p′(Hs)−

q20
H2
s

= 0. Recalling (2.1), we see that differentiating the profile equation(
p′(H)− q2

0

H2

)
H ′ = r(H,Q) , Q− cH = −q0 ,

and evaluating at xs yields

−
(
p′(H)− q2

0

H2

)′
(xs) + ∂hr(H(xs), Q(xs)) + c∂qr(H(xs), Q(xs)) = 0 .
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In particular, factoring (
−p′(H)− q2

0

H2

)
(x) = (x− xs) d(x)

with d nonvanishing on (0, X), dividing the second resolvent equation by d, translating xs to 0
and defining (v1, v2), (g1, g2) accordingly, we see the above inhomogeneous system takes abstract
general form (A.5) with

a(0) =
1

d(xs)

2λ q0

H(xs)
=

2λ q0

Hs

(
p′′(Hs) +

2q20
H3

)
H ′(xs)

=
2λ
√
Hs

F − 2

and

L(0) =
1

d(xs)

(
λ− ∂qr(H(xs), Q(xs)) +

2q0

H2
s

H ′(xs)

)
=

F

F − 2

(
λ+

2

3

F + 1√
Hs

)
where we have used formulas computed in Section 2, q0 = H

3/2
s /F , c = H

1/2
s (1 + 1/F ) and

H ′(xs) = F (F − 2)/3. Notice that (a(0), L(0)) cannot vanish and that, since F > 2, the conditions
<(a(0)) > −1/2 and <(a(0)) > −1 correspond, respectively, to the announced constraints for H1

and analytic solvability.
As an outcome of the above analysis, note that when

<(λ) > −1

2

F − 2√
Hs

,

taking (f1, f2) ≡ 0 above implies the set of analytic solutions of (4.6) can be parametrized by data
at the sonic point (h(xs), q(xs)), which may be chosen arbitrarily provided it satisfies the condition

−2λ q0

Hs
h(xs) +

(
λ− ∂qr(H(xs), Q(xs)) +

2q0

H2
s

H ′(xs)

)
(ch(xs)− q(xs)) = 0.

Note the above condition may be written more explicitly as(
λ
√
Hs(F − 1) +

2

3
(F + 1)2

)
h(xs)−

(
λ+

2

3

F + 1√
Hs

)
F q(xs) = 0 .

Appendix B. Computational framework

B.1. Computational environment. In carrying out our numerical investigations, we have used
a Lenovo laptop with 8GB memory and a quad core AMD processor with 1.9GHz processing
speed and a 2009 Mac Pro with 16GB memory and two quad-core Intel processors with 2.26 GHz
processing speed for coding and debugging. The main parallelized computation is done in the
compute nodes of IU Karst, a high-throughput computing cluster. It has 228 compute nodes.
Each node is an IBM NeXtScale nx360 M4 server equipped with two Intel Xeon E5-2650 v2 8-core
processors and with 32 GB of RAM and 250 GB of local disk storage.

B.2. Computational time. The following computational times are times elapsed in a single pro-
cessor of IU Karst.

aaaaaaa
λ, ξ

F,H− 3, Hhom(3) + 10−5 3, 0.8 8, Hhom(8) + 10−5 8, 0.8 16, Hhom(16) + 10−5 16, 0.8

0.001, 0 0.04s 0.02s 0.09s 0.01s 0.02s 0.01s
1, 0 0.08s 0.02s 0.14s 0.01s 0.08s 0.01s
1000, 0 6.06s 2.95s 2.11s 0.13s 1.25s 0.03s

Table 1. Times to compute a single Evans-Lopatinsky determinant.
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F,H− 3, Hhom(3) + 10−5 3, 0.8 8, Hhom(8) + 10−5 8, 0.8 16, Hhom(16) + 10−5 16, 0.8
Time 92974s 9055s 24373s 173s 14002s 112s
Stability stable unstable unstable unstable unstable unstable

Table 2. Times using winding numbers to classify points as stable/unstable. In all
situations, r = 0.01, R = 400 and `ξ ∈ [−π : 2π

1000 : π] where the small half circle is
divided uniformly into 1000 pieces, the two straight line segments are each divided
uniformly into 2000 pieces, and the large half circle is divided uniformly into 2000
pieces. The split Evans-Lopatinsky determinant is then evaluated at 7000 points on
the contour.
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