Feuille d'exercices nº 4

Compacité, connexité

Exercice 1. Soit (E, d) un espace métrique et $(u_n)_{n \in \mathbb{N}} \in E^{\mathbb{N}}$ une suite convergente de limite ℓ . Montrer que $\{u_n \mid n \in \mathbb{N}\} \cup \{\ell\}$ est compact.

Exercice 2. Montrer que $\mathbf{R} \cup \{-\infty, +\infty\}$ est compact pour sa topologie usuelle.

Exercice 3. Soit (E, d), (F, d') deux espaces métriques et $f : E \to F$. On suppose f localement Lipschitzienne et E compact. Montrer que f est Lipschitzienne.

Exercice 4. Soit (E, d) un espace métrique et A une partie compacte de E. Montrer qu'il existe $(a, b) \in A^2$ tel que d(a, b) = diam(A).

<u>Exercice 5.</u> Parmi les sous-ensembles qui suivent déterminer ceux qui sont compacts pour leur topologie usuelle.

- 1. \mathbf{Q} ; 2. $\mathbf{Q} \setminus [0,1]$; 3. $[0,\infty[$;
- 4. $\{ (x,y) \in \mathbf{R}^2 \mid x^2 + y^2 = 1 \};$ 5. $\{ (x,y) \in \mathbf{R}^2 \mid x^2 + y^2 \le 1 \};$
- 6. $\{ (x,y) \in \mathbf{R}^2 \mid 0 \le x \le 1 \text{ et } y = x^2 \};$ 7. $\{ (x,y) \in \mathbf{R}^2 \mid x \ge 1 \text{ et } 0 \le y \le \frac{1}{x} \}.$

Exercice 6. Soit $f: \mathbf{R} \to \mathbf{R}$ continue.

- 1. Montrer que si f est périodique alors f est bornée et atteint ses bornes.
- 2. Supposons que f posséde des limites finies ou infinies en $+\infty$ et en $-\infty$, notées

$$\ell_{+} = \lim_{+\infty} f \in \mathbf{R} \cup \{+\infty, -\infty\}$$
 et $\ell_{-} = \lim_{-\infty} f \in \mathbf{R} \cup \{+\infty, -\infty\}$,

et qu'il existe $x_0 \in \mathbf{R}$ tel que $f(x_0) < \min(\{\ell_-, \ell_+\})$.

Montrer que f est minorée et atteint sa borne inférieure.

Exercice 7. Soit (X, d) et (Y, d') deux espaces métriques et $f: X \to Y$ continue.

Montrer que si X est connexe — respectivement connexe par arcs — alors pour la toplogie produit le graphe de f est connexe — respectivement connexe par arcs.

Exercice 8. Parmi les sous-ensembles qui suivent déterminer ceux qui sont connexes et ceux qui sont connexes par arcs pour leur topologie usuelle. Pour ceux d'entre-eux qui ne sont pas connexes identifier leurs composantes connexes.

1.
$$(\{0\} \times \mathbf{R}) \cup (\mathbf{R} \times \{0\});$$
 2. $(\{0\} \times \mathbf{R}) \cup (\{1\} \times \mathbf{R});$

3.
$$\mathbf{R}^2 \setminus \{(-1,0),(1,0)\};$$
 4. $\{(x,y) \mid x^2 + y^2 = 1\} \setminus \{(1,0)\};$

5.
$$\{(x,y) \mid x^2 + y^2 = 1\} \setminus \{(-1,0),(1,0)\};$$
 6. $\{(x,\frac{1}{x}) \mid x \in \mathbf{R}^*\};$

7.
$$\{ (x,y) \in \mathbf{R}^2 \mid y = 0 \} \cup \{ (x,y) \in \mathbf{R}^2 \mid y = \exp(x) \}.$$

Exercice 9. On munit l'ensemble, noté X, des fonctions affines sur \mathbf{R} non constantes d'une topologie normée. Montrer que X possède exactement deux composantes connexes.

Exercice 10. Soit (X,d) un espace métrique connexe, (Y,d') un espace métrique et $f:X\to Y$.

- 1. Montrer que si f est localement constante alors f est constante.
- 2. En déduire que si f est continue et Y est discret alors f est constante.
- 3. Soit g_1 , g_2 continues de X dans \mathbf{R} telles que, pour tout $x \in X$, $e^{ig_1(x)} = e^{ig_2(x)}$. Montrer que $g_1 g_2$ est constante.

Exercice 11. Soit (X, d) un espace métrique, $A \subset X$ et $\gamma : [0, 1] \to X$ continue telle que $\gamma(0) \in A$ et $\gamma(1) \notin A$. Montrer que l'image de γ intersecte la frontière de A.

Exercice 12. Principe d'induction continue. Soit (X, d) un espace métrique connexe et H, C deux fonctions de X dans $\{0, 1\}$ telles que

- (i) $H^{-1}(\{1\})$ est non vide;
- (ii) $H^{-1}(\{1\}) \subset C^{-1}(\{1\})$;
- (iii) $C^{-1}(\{1\})$ est fermé;
- (iv) pour tout $x \in C^{-1}(\{1\})$ il existe r > 0 tel que $B(x, r) \subset H^{-1}(\{1\})$.

Montrer que $H^{-1}(\{1\}) = C^{-1}(\{1\}) = X$.