Feuille d'exercices nº 2

Premières notions de topologie métrique

Exercice 1. On munit **R** de sa distance usuelle. Soit $a, b \in \mathbf{R}$ tels que $a \leq b$.

- 1. Montrer que $]a,b[,]-\infty,a[$ et $]a,+\infty[$ sont des ouverts de ${\bf R}.$
- 2. Montrer que [a,b], $]-\infty,a]$ et $[a,+\infty[$ sont des fermés de ${\bf R}$.
- 3. Montrer que [a, b] et [a, b] ne sont ni ouverts, ni fermés dans \mathbf{R} .

Exercice 2. Montrer que les singletons des espaces métriques sont fermés.

Exercice 3. Soit (X, d) un espace métrique et $\Omega \subset X$.

Montrer que Ω est ouvert si et seulement si Ω est une réunion de boules ouvertes.

Exercice 4. Soit (X, d) un espace métrique .

Montrer que si O est un ouvert alors $O \subset \overline{O}$ et donner un exemple d'inclusion stricte.

De même montrer que si F est un fermé alors $\overset{\circ}{F} \subset F$ et donner un exemple d'inclusion stricte.

Exercice 5. Soit (X, d) un espace métrique et A une partie de X que l'on munit de la distance induite.

- 1. Montrer que les ouverts de A sont les ensembles de la forme $O \cap A$ où O est un ouvert de X.
- 2. En déduire que les fermés de A sont les ensembles de la forme $F \cap A$ où F est un fermé de X.
- 3. Montrer que A est ouvert si et seulement si tout ouvert de A est ouvert dans X et A est fermé si et seulement si tout fermé de A est fermé dans X.

Exercice 6. Soit (X,d) un espace métrique et A et B deux parties de X.

- 1. (a) Montrer que $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
 - (b) Montrer que $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$.
 - (c) Donner un exemple d'inclusion stricte.
- 2. De même comparer $(A \overset{\circ}{\cup} B)$ à $\overset{\circ}{A} \overset{\circ}{\cup} \overset{\circ}{B}$ et $(A \overset{\circ}{\cap} B)$ à $\overset{\circ}{A} \overset{\circ}{\cap} \overset{\circ}{B}$.

Exercice 7. Soit (X, d) un espace métrique, $x_0 \in X$ et $V \subset X$.

Montrer que V est un voisinage de x_0 si et seulement s'il existe Ω ouvert tel que $x_0 \in \Omega$ et $\Omega \subset V$.

Exercice 8. On considère $f: \mathbf{R}^* \to \mathbf{R}, x \mapsto \frac{1}{x}$.

- 1. Montrer que localement f est de signe constant, décroissante et bornée.
- 2. Montrer cependant que f n'est ni décroissante, ni de signe constant, ni bornée.

Exercice 9. On définit

$$f: \mathbf{R} \to \mathbf{R}, \quad x \mapsto \begin{cases} 0 & \text{si } x \notin \mathbf{Q}^* \\ q & \text{si } x = \frac{p}{q} \text{ avec } (p,q) \in \mathbf{Z}^* \times \mathbf{N}^*, \ p \wedge q = 1 \end{cases}.$$

Montrer que f n'est bornée au voisinage d'aucun point.

Exercice 10. Soit (X, d) un espace métrique et A une partie non vide et bornée de X. Montrer que \overline{A} est borné et que $\operatorname{diam}(\overline{A}) = \operatorname{diam}(A)$.

Exercice 11. On considère R muni de sa topologie usuelle.

- 1. Donner un exemple de partie $A \subset \mathbf{R}$ telle que Fr(A) = A.
- 2. Donner un exemple de partie $A \subset \mathbf{R}$ telle que $Fr(A) = \mathbf{R}$.

Exercice 12. Soit (X,d) un espace métrique et A une partie de X.

- 1. Montrer que $Fr(A) = \emptyset$ si et seulement si A est ouverte et fermée dans X.
- 2. Démontrer que A est ouverte si et seulement si $A \cap Fr(A) = \emptyset$.
- 3. Montrer que A est fermée si et seulement si $Fr(A) \subset A$.
- 4. Montrer que $\operatorname{Fr}(\overset{\circ}{A}) \subset \operatorname{Fr}(A)$.

Exercice 13. Soit (X,d) un espace métrique et A une partie de X.

- 1. Montrer que si A est fermée, Fr(A) est d'intérieur vide.
- 2. Établir : Fr(Fr(Fr(A))) = Fr(Fr(A)).

Exercice 14. On munit $E = \mathbf{R} \cup \{-\infty, +\infty\}$ de la distance

$$d: E^2 \to \mathbf{R}^+, (x,y) \mapsto |\arctan(x) - \arctan(y)|.$$

- 1. Montrer que $d_{|\mathbf{R}}$ est topologiquement équivalente à la distance usuelle sur \mathbf{R} mais ne lui est pas métriquement équivalente.
- 2. Montrer que pour cette distance $\overline{\mathbf{N}} = \mathbf{N} \cup \{+\infty\}$.
- 3. Montrer que pour cette distance \mathbf{R} est dense dans E.
- 4. Montrer que pour cette distance une propriété sur \mathbf{R} est vraie au voisinage de $+\infty$ si et seulement si elle est vraie sur un ensemble de la forme $[M, +\infty[$ où $M \in \mathbf{R}$.
- 5. Montrer que pour cette distance une propriété sur \mathbf{N} est vraie au voisinage de $+\infty$ si et seulement si elle est vraie à partir d'un certain rang.

2