Topologie des espaces métriques-L3

Contrôle continu

SECONDE PARTIE

L'étudiant attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Il veillera à justifier soigneusement toutes ses réponses.

Les exercices sont réputés indépendants et peuvent donc être traités dans n'importe quel ordre.

Dans ce qui suit, par défaut, les parties de \mathbb{R}^n , $n \in \mathbb{N}^*$, sont munies de leur topologie usuelle.

Exercice 1. Soit $f: \mathbf{R} \to \mathbf{R}$ continue, $m \in \mathbf{R}$ et $a \in \mathbf{R}$ tels que f(a) > m. Montrer qu'il existe $\delta > 0$ tel que, pour tout $x \in [a - \delta, a + \delta[$, l'on ait f(x) > m.

Exercice 2.

1. Pour $a \in \mathbf{R}$ on définit

$$K_a = [0,1[\cup \{a\}.$$

Donner une condition nécessaire et suffisante sur a pour que K_a soit compact.

2. Pour $\gamma \in \{-1, 0, 1\}$, on définit

$$\Sigma_{\gamma} = \{ (x, y, z) \in \mathbf{R}^3 \mid x^2 + y^2 + \gamma z^2 = 1 \}.$$

Donner une condition nécessaire et suffisante sur γ pour que Σ_{γ} soit compact.

Exercice 3. Soit (Y, d') un espace métrique, (X, d) un espace métrique compact et $f: X \to Y$ continue. Montrer que le graphe de f est compact pour la topologie produit.

Exercice 4. On pose $E = \mathbf{R}_+^* \times \mathbf{R}$ et l'on définit

$$d: E^2 \to \mathbf{R}_+, \quad (x,y) \mapsto \min(\{\|x+y\|, \|x-y\|\})$$

où $\|\cdot\|$ désigne la norme euclidienne canonique ℓ^2 sur \mathbf{R}^2 .

Montrer que d est une distance sur E.

<u>Exercice 5.</u> Pour chacune des propositions, décider si elle est vraie ou fausse, et surtout justifier avec précision cette réponse par une démonstration ou un contre-exemple.

- 1. $\mathbf{Q} \times \mathbf{R}$ est dense dans \mathbf{R}^2 .
- 2. [0,1[est un ouvert de [0,1].
- 3. Dans **R** les singletons sont ouverts.
- 4. Dans **R** tout compact est inclus dans un segment.
- 5. L'application $f: \mathbf{R} \to \mathbf{R}, x \mapsto \max(\{0, x\})$ est lipschitzienne.
- 6. L'application $g: \mathbf{R} \to \mathbf{R}, x \mapsto \sqrt{|x|}$ est lipschitzienne.