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Abstract. The present contribution proves the asymptotic orbital stability of viscous regular-
izations of stable Riemann shocks of scalar balance laws, uniformly with respect to the viscosi-
ty/diffusion parameter ε. The uniformity is understood in the sense that all constants involved
in the stability statements are uniform and that the corresponding multiscale ε-dependent topol-
ogy reduces to the classicalW 1,8-topology when restricted to functions supported away from the
shock location. Main difficulties include that uniformity precludes any use of parabolic regular-
ization to close regularity estimates, that the global-in-time analysis is also spatially multiscale
due to the coexistence of nontrivial slow parts with fast shock-layer parts, that the limiting
smooth spectral problem (in fast variables) has no spectral gap and that uniformity requires
a very precise and unusual design of the phase shift encoding orbital stability. In particular,
our analysis builds a phase that somehow interpolates between the hyperbolic shock location
prescribed by the Rankine-Hugoniot conditions and the non-uniform shift arising merely from
phasing out the non-decaying 0-mode, as in the classical stability analysis for fronts of reaction-
diffusion equations.
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1. Introduction

In the present contribution, we prove for the very first time an asymptotic stability result,
uniform with respect to the viscosity parameter, for a viscous regularization of a discontinuous
traveling-wave of an hyperbolic equation. As detailed below, by this we mean that the discon-
tinuous wave of interest is asymptotically stable for the inviscid equation and that our result
provides, for parabolic approximations, uniformity in both decay rate and size of the bassin of
attraction. In turn, if one replaces asymptotic stability with bounded stability or simply drops
the requirement that decay rates should be uniform, then the topic is covered by an extensive
body of literature in the L1-setting and has been completely renewed in the L2-setting by an
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impressive series of work. Concerning the latter we point out [KV17, Kru20] as possible entering
gates among the most closely related to the present contribution.

1.1. The original hyperbolic result. The purely inviscid result [DR20], that we extend to the
slightly viscous regimes, is itself quite recent. More generally, despite the fact that hyperbolic
models are largely used for practical purposes and that for such models singularities such as
shocks and characteristic points are ubiquitous, the analysis of nonlinear asymptotic stability
of singular traveling-waves of hyperbolic systems is still in its infancy. The state of the art is
essentially reduced to a full classification of waves of scalar equations in any dimension [DR20,
DR22] (obtained using some significant insights about characteristic points from [JNR`19]) and
the case study of a discontinuous wave without characteristic point for a system of two equations
in dimension 1 [SYZ20, YZ20].

Let us stress that, in the foregoing, stability is understood in the sense of Lyapunov, that
is, globally in time, and for a topology encoding piecewise smoothness. This is consistent with
the fact that concerning stability in the sense of Hadamard, that is, short-time well-posedness,
for piecewise-smooth topologies, a quite comprehensive (but not complete) theory is already
available even for multidimensional systems; see [Maj83a, Maj83b, Mét01, BGS07]. At this
level of regularity, being a weak solution is characterized by a free-interface initial boundary
value problem, composed of equations taken in the classical sense in zones of smoothness, and
the Rankine-Hugoniot transmission conditions along the free interfaces of discontinuity.

As is well-known, for hyperbolic equations, weak solutions are not unique and one needs
to make an extra choice. The one we are interested in is the most classical one when the
extra condition is to be obtained as a vanishing viscosity limit. For scalar equations, in any
dimension, since the pioneering work of Kružkov [Kru70] (see also [Bre00, Chapters 4 and 6]),
this is known to be sufficient to ensure uniqueness and to be characterized by the so-called
entropy conditions, which at our level of smoothness are reduced to inequalities at the free
interfaces of discontinuity. For systems, even in dimension 1, despite decisive breakthroughs
achieved in [BB05], such questions are still the object of intensive research; see for instance
[KV21]. The present contribution lies at the crossroad of these questions related to the basic
definitions of the notion of solution for hyperbolic equations and the ongoing development of
a robust general theory for the stability of traveling waves, for which we refer the reader to
[Sat73, Hen81, Zum01, San02, KP13, JNRZ14]. From the former point of view, the present
contribution may be thought as a global-in-time scalar version of [GX92, GR01, Rou02]. From
the latter point of view, though of a very different technical nature, by many respects, it shares
similar goals with other vanishing viscosity stability programs — see for instance [BGM17, HR18]
— and the present contribution is thought as being to [DR20] what [BMV16] is to [BM15].

We focus on the most basic shock stability result of [DR20]. Consider a scalar balance law in
dimension 1,

(1.1) Btu` Bxpfpuqq “ gpuq

with traveling wave solutions RˆR Ñ R, pt, xq ÞÑ upx´ pψ0 ` σ0tqq with initial shock position
ψ0 P R, speed σ0 P R and wave profile u of Riemann shock type, that is,

upxq “

#

u´8 if x ă 0

u`8 if x ą 0

where pu´8, u`8q P R2, u`8 ‰ u´8. The fact that this does define a weak solution is equivalent
to

gpu`8q “ 0 , gpu´8q “ 0 , fpu`8q ´ fpu´8q “ σ0pu`8 ´ u´8q ,(1.2)

2



whereas a strict version of entropy conditions may be enforced in Oleinik’s form

(1.3)

$

’

’

’

&

’

’

’

%

σ0 ą f 1pu`8q ,

fpτ u´8`p1´τqu`8q´fpu´8q

τ u´8`p1´τqu`8´u´8
ą

fpτ u´8`p1´τqu`8q´fpu`8q

τ u´8`p1´τqu`8´u`8
for any τ P p0, 1q ,

f 1pu´8q ą σ0 .

Requiring a strict version of entropy conditions ensures that they still hold for nearby functions
and in particular they disappear at the linearized level. In the foregoing, and throughout the
text, for the sake of simplicity, we assume that f, g P C8pRq though each result only requires a
small amount of regularity.

The following statement is one of the alternative versions of [DR20, Theorem 2.2] described
in [DR20, Remark 2.3].

Theorem 1 ([DR20]). Let pσ0, u´8, u`8q P R3 define a strictly-entropic Riemann shock of
(1.1) in the above sense. Assume that it is spectrally stable in the sense that

g1pu`8q ă 0 and g1pu´8q ă 0 .

There exist δ ą 0 and C ą 0 such that for any ψ0 P R and v0 P BUC1pR˚q satisfying

}v0}W 1,8pR˚q ď δ ,

there exists ψ P C2pR`q with initial data ψp0q “ ψ0 such that the entropy solution to (1.1), u,
generated by the initial data up0, ¨q “ pu` v0qp¨ `ψ0q, belongs to BUC1pR` ˆRzt pt, ψptqq ; t ě

0 uq and satisfies for any t ě 0

}upt, ¨ ´ ψptqq ´ u}W 1,8pR˚q ` |ψ1ptq ´ σ0| ď }v0}W 1,8pR˚q C emaxptg1pu`8q,g1pu´8quq t ,

and moreover there exists ψ8 such that

|ψ8 ´ ψ0| ď }v0}L8pR˚qC ,

and for any t ě 0

|ψptq ´ ψ8 ´ t σ0| ď }v0}L8pR˚qC emaxptg1pu`8q,g1pu´8quq t .

In the foregoing, we have used notation BUCkpΩq to denote the set of Ck functions over
Ω whose derivatives up to order k are bounded, and uniformly continuous on every connected
component of Ω. In other words, BUCkpΩq is the closure ofW8,8pΩq for theW k,8pΩq topology.
Working with BUCk instead of W k,8 allows to use approximation by smooth functions, an
argument ubiquitous in local well-posedness theories, without imposing vanishing at 8.

Note that expressed in classical stability terminology the previous theorem provides asymp-
totic orbital stability with asymptotic phase. We stress however that the role of phase shifts is
here deeper than in the classical stability analysis of smooth waves since it is not only required
to provide decay of suitable norms in large-time but also to ensure that these norms are finite
locally in time. In particular here there is no freedom, even in finite time, in the definition
of phase shifts that need to synchronize discontinuities to allow for comparisons in piecewise
smooth topologies.

It is also instructive to consider the corresponding spectral problem. In a moving frame,
linearizing from upt, xq “ upx ´ pψ0 ` σ0tq ´ ψptqq ` vpt, x ´ pψ0 ` σ0tq ´ ψptqq gives a linear
IBVP in pv, ψq

pBt ` pf 1pu`8q ´ σ0qBx ´ g1pu`8qq vpt, ¨q “ 0 on R˚
` ,

pBt ` pf 1pu´8q ´ σ0qBx ´ g1pu´8qq vpt, ¨q “ 0 on R˚
´ ,

ψ1ptq ´

ˆ

f 1pu`8q ´ σ0
u`8 ´ u´8

vpt, 0`q ´
f 1pu´8q ´ σ0
u`8 ´ u´8

vpt, 0´q

˙

“ 0 .
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The corresponding spectrum on BUC1pR˚q ˆ R is
␣

λ ; ℜpλq ď maxptg1pu´8q; g1pu`8quq
(

Y t0u

and when maxptg1pu´8q; g1pu`8quq ă 0, 0 has multiplicity 1 (in the sense provided by resolvent
singularities) with eigenvector p0, 1q. This shows that Theorem 1 sharply reproduces linear
behavior.

1.2. The vanishing viscosity problem. Since even the local-in-time notion of solution in-
volves vanishing viscosity approximations, it is natural to wonder whether Theorem 1 may have
a small-viscosity extension or whether the local-in-time vanishing viscosity limits may be glob-
alized in time about the stable Riemann shocks of Theorem 1. We answer such a question for
the following parabolic approximation

(1.4) Btu` Bxpfpuqq “ ε B2
xu` gpuq .

Note that solutions to (1.4) are smooth (not uniformly in ε) so that techniques based on free-
interfaces IBVP formulations for (1.1) cannot easily be extended to the study of (1.4). In the
reverse direction, to gain a better control on smoothness of solutions to (1.4), it is expedient to
introduce fast variables

upt, xq “ ru

ˆ

t

ε
,
x

ε

˙

looomooon

prt,rxq

that turn (1.4) into

(1.5) B
rtru` B

rxpfpruqq “ B2
rxru` ε gpruq .

We stress however that this is indeed in original variables pt, xq that we aim at proving a uniform
result. In particular, a large part of the analysis is focused on distinctions between norms that
get large and norms that get small when going from slow to fast variables. For a closely related
discussion we refer the reader to [KV21, KV21].

In order to carry out the extension, the first step is to elucidate the existence of traveling
waves to (1.4) near u. A preliminary observation in this direction is that the formal ε Ñ 0 limit
of (1.5) does possess a smooth traveling-wave solution prt, rxq ÞÑ U0prx ´ σ0 rtq of speed σ0 and
profile U0 such that

lim
´8

U0 “ u´8 , lim
`8

U0 “ u`8 ,

simply obtained by solving

U0p0q “
u´8 ` u`8

2
, U 1

0 “ fpU0q ´ fpu`8q ´ σ0 pU0 ´ u`8q .

We recall that σ0 is tuned to ensure fpu´8q´fpu`8q´σ0 pu´8 ´u`8q “ 0 and observe that the
Oleinik’s entropy conditions imply that U0 is strictly monotonous. This ε “ 0 viscous profile is
often called viscous shock layer and plays the role of a short-time free-interface boundary layer.
This simple limiting fast profile may be perturbed to yield profiles for (1.5) hence for (1.4). To
state such a perturbation result with optimal spatial decay rates, we introduce, for ε ě 0,

θrε :“
1

2
|f 1pu`8q ´ σε| `

1

2

b

pf 1pu`8q ´ σεq2 ` 4 ε |g1pu`8q| ,

θℓε :“
1

2
pf 1pu´8q ´ σεq `

1

2

b

pf 1pu´8q ´ σεq2 ` 4 ε |g1pu´8q| .

Proposition 1. Under the assumptions of Theorem 1, for any 0 ă αℓ ă θℓ0, 0 ă αr ă θr0 and
k0 P N˚, there exist ε0 ą 0 and C0 ą 0 such that there exist a unique pσε, U εq, with U ε P C2pRq,

U εp0q “
u´8 ` u`8

2
, pfpU εq ´ σε U εq1 “ U2

ε ` ε gpU εq ,
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and

|σε ´ σ0| ` } eα
ℓ| ¨ |pU ε ´ U0q}W 1,8pR´q ` } eα

r ¨ pU ε ´ U0q}W 1,8pR`q ď C0 ε ,

and, moreover, there also holds

} eθ
ℓ
ε| ¨ |pU ε ´ u´8q ´ eθ

ℓ
0| ¨ |pU0 ´ u´8q}L8pR´q ď C0 ε ,

} eθ
r
ε ¨ pU ε ´ u`8q ´ eθ

r
0 ¨ pU0 ´ u`8q}L8pR`q ď C0 ε ,

} eθ
ℓ
ε| ¨ | U pkq

ε ´ eθ
ℓ
0| ¨ | U

pkq

0 }L8pR´q ď C0 ε , 1 ď k ď k0 ,

} eθ
r
ε ¨ U pkq

ε ´ eθ
r
0 ¨ U

pkq

0 }L8pR`q ď C0 ε , 1 ď k ď k0 .

Note that a traveling-wave pt, xq ÞÑ uεpx´ pψ0 `σεtqq with ψ0 P R arbitrary, is obtained from
U ε through

uεpxq :“ U ε

´x

ε

¯

and that, uniformly in ε,

|uεpxq ´ upxq| À e´θℓε
|x|

ε , x ă 0 ,

|uεpxq ´ upxq| À e´θrε
x
ε , x ą 0 ,

|upkq
ε pxq| À

1

εk
e´θℓε

|x|

ε , x ă 0 , k ě 1 ,

|upkq
ε pxq| À

1

εk
e´θrε

x
ε , x ą 0 , k ě 1 .

We prove Proposition 1 in Appendix A. The existence and uniqueness part with suboptimal
spatial rates follows from a rather standard Lyapunov-Schmidt argument. We stress however
that it is crucial for our linear and nonlinear stability analyses to gain control on U 1

ε with sharp
spatial decay rates. We obtain the claimed upgrade from suboptimal to optimal rates essentially
as a corollary to the refined spectral analysis needed to carry out the nonlinear study. We point
out that, despite the fact that the literature on the subject is quite extensive — see for instance
[Här00, Här03, CM07, Cro10, Gil10] and references therein —, we have not found there an
existence result with the level of generality needed here, that is, including non-convex fluxes and
yielding optimal spatial decay rates.

With the existence of ε-versions of traveling waves in hands, the next natural question is
whether these are spectrally stable. It is settled by standard arguments, as expounded in [KP13],
combining direct computations of the essential spectrum with Sturm-Liouville theory. The latter
uses crucially that U 1

ε is monotonous, a consequence of the Oleinik’s entropy conditions. The
upshot is that, in slow original variables, the spectrum of the linearization about uε in a co-
moving frame, acting on BUC1pRq, is stable and exhibits a spectral gap between the simple
eigenvalue 0 and the rest of the spectrum of size minpt|g1pu`8q|, |g1pu´8q|uq ` Opεq. Note that
in fast variables the spectral gap is of size εˆminpt|g1pu`8q|, |g1pu´8q|uq `Opε2q Details of the
latter are given in Section 2.

The real challenge is uniform nonlinear asymptotic stability. Indeed, if one removes the
uniformity requirement, nonlinear stability follows from spectral stability by now well-known
classical arguments as expounded in [Sat73, Hen81, San02, KP13], and initially developed in,
among others, [Sat76, Sat77, Hen81, Kap94, WX05, Xin05]. Since the limit is singular, it is
worth spelling out what we mean by uniform stability. There are two closely related parts in
the requirement. Explicitly, on initial data,

(1) the most obvious one is that the restriction on the sizes of allowed initial perturbations
(encoded by the smallness of δ in Theorem 1) should be uniform with respect to ε, so
that the lower bound on the size of the basin of attraction provided by the analysis is
nontrivial in the limit ε Ñ 0;
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(2) the second one is more intricate1, it states that the ε-dependent norms, say } ¨ }pεq,
used to measure this smallness (in slow original variables) should be controlled by an
ε-independent norm for functions supported away from the shock, so that in particular
for any v P C8

c pRq supported in R˚, lim supεÑ0 }v}pεq ă `8.

On the control of solutions arising from perturbations, we impose similar constraints but with
upper bounds replacing lower bounds in the requirements. Constraints on the control of solutions
ensure that the bounds provide a nontrivial control whereas constraints on the control of initial
data ensure that nontrivial perturbations are allowed.

It may be intuitive that the stringer the norm is the larger the size of the basin of attraction is
since a qualitatively better control is offered by the topology. In the present case, the discussion
is on the amount of localization encoded by the norm since, though this is somewhat hidden,
time decay is controlled by initial spatial localization (as opposed to cases where regularity
drives decay as for instance in [BM15, BMV16, BGM17]). To offer a quantitative insight, let
us use as in [HR18] a simple ODE as a toy model to predict the size constraints. Consider the
stability of y ” 0 for y1 “ ´τ y ` ρ y2 where τ ą 0 encodes the size of the spectral gap and
ρ ą 0 measures the size of nonlinear forcing. For such an equation, a ball of radius r0 and center
0 is uniformly attracted to 0 provided that r0 ă τ{ρ. Now, if one considers (1.4) directly in
BUC1pRq (or any reasonable unweighted topology) and forgets about issues related to phase
definitions and possible regularity losses, the spectral gap offered by a linearization about uε is
of order 1 whereas the forcing by nonlinear terms is of order ε´1 (since this is the size of u1

ε)

hence the rough prediction of a basin of size Opεq. Yet, working with weights such as e´θ ε´α |x|,
for some sufficiently small θ ą 0 and some 0 ă α ď 1, moves the spectrum to increase the size
of the gap to the order ε´α yielding the expectation of an Opε1´αq basin. Note that the choice
α “ 1 would provide a uniform size and is consistent with the size of viscous shock layers but
it would force initial perturbations to be located in an Opεq spatial neighborhood of the shock
location.

The foregoing simple discussion predicts quite accurately2 what could be obtained by applying
the most classical parabolic strategy to the problem at hand. The failure of the classical strategy
may also be read on the deeply related, but not equivalent, fact that it uses the phase only to
pull out the contribution of nonlinear terms through the spectrally non-decaying 0-mode. This
is inconsistent with the stronger role of the phase for the hyperbolic problem, all the spectrum
contributing to the phase in the latter case. A completely different approach is needed.

Additional strong signs of the very challenging nature of the uniform stability problem may
also be gathered from the examination of the viscous layer stability problem, that is, the stability
of prt, rxq ÞÑ U0prx ´ σ0 rtq as a solution to (1.5) with ε “ 0. The problem has been extensively
studied, see for instance [Liu85, Goo86, Goo89, JGK93, KK98, How99a, How99b] for a few key
contributions and [Zum01] for a thorough account. The spectrum of the linearization includes
essential spectrum touching the imaginary axis at 0, which is still an eigenvalue, so that the
decay is not exponential but algebraic and requires a trade-off, localization against decay, as
for the heat equation. This is a consequence of a conservative nature of the equation, but the
conservative structure may also be used to tame some of the apparent difficulties. To give one
concrete example: one may remove the embedded eigenvalue 0 from the essential spectrum by
using the classical antiderivative trick, dating back at least to [MN85], either directly at the
nonlinear level under the restriction of zero-mean perturbations (as in [Goo89] or in [MN85] for
a system case) or only to facilitate the linear analysis as in [How99a, How99b]. In fast variables,
turning on ε ą 0 moves the essential to the left, creating an Opεq spectral gap but breaks the
conservative structure thus rendering almost impossible, and at least quite inconvenient, the
use of classical conservative tools. Our stability analysis requires a description as detailed as
the one of [How99a, How99b] and, without the antiderivative trick at hand, this involves the

1But our result satisfies a much simpler and stronger version of the requirement.
2Actually it is even a bit optimistic for the unweighted and α ă 1 cases.
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full machinery of [ZH98, ZH02]. Roughly speaking, one of the main outcomes of our detailed
spectral analysis, expressed in fast variables, is that the ε-proximity of essential spectrum and
0-eigenvalue induces that the essential spectrum has an impact of size 1{ε on the linear time-
evolution, but that at leading-order the algebraic structure of the essential-spectrum contribution
is such that it may be absorbed in a suitably designed phase modulation. Note that this is
consistent with the fact that, in fast variables, variations in shock positions are expected to be
of size 1{ε and with the fact that, in slow variables, the phase is involved in the resolution of all
the hyperbolic spectral problems, not only the 0-mode.

To summarize and extend the discussion so far, we may hope

(1) to overcome the discrepancy between the Rankine-Hugoniot prescription of the phase
and the pure 0-mode modulation, and to phase out the hidden singularity caused by
the proximity of essential spectrum and 0 eigenvalue, by carefully identifying the most
singular contribution of the essential spectrum as phase variations and including this in
a carefully designed phase;

(2) to guarantee uniform nonlinear decay estimates provided that we can ensure that, in
sow variables, nonlinear terms of size 1{ε also come with a spectral-gap enhancing factor

e´θ |x|{ε (for some θ ą 0).

The latter expectation is motivated by the fact that it is indeed the case for terms forced by u1
ε

but we need to prove that it is so also for stiff terms caused by the derivatives of the perturbation
itself. Concerning the latter, we stress that even if one starts with a very gentle perturbation
supported away from the shock the nonlinear coupling instantaneously creates stiff parts of
shock-layer type in the perturbation thus making it effectively multi-scale.

There remains a somewhat hidden issue, that we have not discussed so far. Along the foregoing
discussion, we have done as if we could use Duhamel principle based on a straight-forward
linearization, as in classical semilinear parabolic problems. Yet, here, closing nonlinear estimates
in regularity by using parabolic regularization either explicitly through gains of derivatives or
indirectly through Lq Ñ Lp, q ă p, mapping properties, effectively induces losses in power of ε
in an already ε-critical problem thus is completely forbidden. Instead, we estimate

‚ the variation in shock position ψ, the shape variation v and the restriction of its derivative
Bxv to an Opεq neighborhood of the shock location through Duhamel formula and linear
decay estimates;

‚ the remaining part of Bxv by a suitably modified Goodman-type hyperbolic energy esti-
mate.

The latter energy estimate is similar in spirit to those in [Goo86, RZ16, YZ20] but the hard
part of its design is precisely in going from a classical hyperbolic estimate that would work
in the complement of an Op1q neighborhood of the shock location to a finely tuned estimate
covering the complement of an Opεq neighborhood, since this is required for the combination
with a lossless parabolic regularization argument. Moreover, there are two more twists in the
argument: on one hand we need the estimate to include weights encoding the multi-scale nature
of Bxv ; on the other hand, for the sake of sharpness, to remain at the C1 level of regularity, we
actually apply the energy estimates on a suitable nonlinear version of Bxv so that they yield L8

bounds for Bxv.
The arguments sketched above, appropriately worked out, provide the main result of the

present paper. To state such results, we introduce multi-scale weights and corresponding norms:
for k P N, ε ą 0, and θ ě 0,

ωk,ε,θpxq :“
1

1 ` 1
εk

e´θ |x|

ε

, }v}
Wk,8

ε,θ pRq
“

k
ÿ

j“0

}ωj,ε,θ Bj
xv}L8pRq

Note that
7



(1) Each norm } ¨ }
Wk,8

ε,θ pRq
is equivalent to any standard norm on } ¨ }Wk,8pRq but non

uniformly in ε and that the uniformity is restored if one restricts it to functions supported
in the complement of a fixed neighborhood of the origin.

(2) The norm } ¨ }
W 0,8

ε,θ pRq
is uniformly equivalent to } ¨ }L8pRq.

(3) If θ ă minptθℓ0, θ
r
0uq then }uε ´ u}

Wk,8
ε,θ pRq

is bounded uniformly with respect to ε.

Theorem 2. Enforce the assumptions and notation of Theorem 1 and Proposition 1.
There exists θ0 ą 0 such that for any 0 ă θ ď θ0, there exist ε0 ą 0, δ ą 0 and C ą 0 such that
for any 0 ă ε ď ε0, any ψ0 P R and any v0 P BUC1pRq satisfying

}v0}
W 1,8

ε,θ pRq
ď δ ,

there exists ψ P C1pR`q with initial data ψp0q “ ψ0 such that the strong3 solution to (1.4), u,
generated by the initial data up0, ¨q “ puε ` v0qp¨ ` ψ0q, is global in time and satisfies for any
t ě 0

}upt, ¨ ´ ψptqq ´ uε}
W 1,8

ε,θ pRq
` |ψ1ptq ´ σε| ď }v0}

W 1,8
ε,θ pRq

C emaxptg1pu`8q,g1pu´8quq t ,

and moreover there exists ψ8 such that

|ψ8 ´ ψ0| ď }v0}
W 1,8

ε,θ pRq
C ,

and for any t ě 0

|ψptq ´ ψ8 ´ t σε| ď }v0}
W 1,8

ε,θ pRq
C emaxptg1pu`8q,g1pu´8quq t .

Among the many variations and extensions of Theorem 1 provided in [DR20], the simplest
one to extend to a uniform small viscosity result is [DR20, Proposition 2.5] that proves that the
exponential time decay also holds for higher order derivatives without further restriction on sizes
of perturbations. It does not require any new insight besides the ones used to prove Theorem 2
and we leave it aside only to cut unnecessary technicalities.

Likewise, one may obtain in an even more direct way, that is, up to immaterial changes,
exponential damping of norms encoding further slow spatial localization. To give an explicit

example, let us extend notation W k,8
ε,θ , L8, into W k,8

ε,θ,θ1 , L8
θ1 , accordingly to weights

ωk,ε,θ,θ1pxq :“
1

e´θ1 |x| ` 1
εk

e´θ |x|

ε

, ωθ1pxq :“ eθ
1 |x| ,

with θ1 ě 0 arbitrary. One may prove for instance that for any θ1 ě 0 there exist Cθ1 and εθ1 ą 0
such that, under the sole further restrictions 0 ă ε ď εθ1 and eθ

1 | ¨ | v0 P L8pRq, there holds

}upt, ¨ ´ ψptqq ´ uε}L8
θ1 pRq ď }v0}L8

θ1 pRq Cθ emaxptg1pu`8q,g1pu´8quq t .

One point in considering these weighted topologies is that, when θ1 ą 0, L8
θ1 is continuously

embedded in L1XL8, so that an estimate on }upt, ¨´ψptqq´u}Lp is provided by the combination
of the foregoing bound with the already known bound

}uε ´ u}LppRq À ε
1
p .

3We ensure u P BUC0
pR`;BUC1

pRqq X C8
pR˚

`;BUC8
pRqq.
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1.3. Outline and perspectives. The most natural nontrivial extensions of Theorems 1/2 that
we have chosen to leave for future work concern on one hand the parabolic regularization by
quasilinear terms and on the other hand planar Riemann shocks in higher spatial dimensions
(see [DR20, Theorem 3.4] for the hyperbolic case). We expect many parts of the present analysis
to be directly relevant in quasilinear or multiD cases but we also believe that their treatments
would also require sufficiently many new arguments to deserve a separate treatment.

In the multidimensional case, even the outcome is expected to be significantly different. In this
direction, let us point out that the hyperbolic spectral problem is critical in the stronger sense
that the spectrum includes the whole imaginary axis, instead of having an intersection with the
imaginary axis reduced to t0u. This may be tracked back to the fact that the linearized Rankine-
Hugoniot equation takes the form of a transport equation in transverse variables for the phase.
Consistently, as proved in [DR20, Theorem 3.4], for the hyperbolic problem, perturbing a planar
shock may lead asymptotically in large time to another non-planar Riemann shock sharing the
same constant-states. This may still be interpreted as a space-modulated asymptotic stability
result, in the sense coined in [JNRZ14] and thoroughly discussed in [Rod13, Rod15, Rod18,
DR22]. A similar phenomenon is analyzed for scalar conservation laws in [Ser21].

Concerning the quasilinear case, the main new difficulty is expected to arise from the fact
that, to close the argument, one needs to prove that the L8 decay of ε B2

xv, where v still denotes
the shape variation, is at least as good as the one of Bxv. A priori, outside the shock layer
this leaves the freedom to pick some initial typical size ε´η0 , η0 P r0, 1s, for B2

xv and to try
to propagate it. Indeed, roughly speaking, in the complement of an Opεq neighborhood of the
shock location, this L8 propagation stems from arguments similar to the ones sketched above
for Bxv. The key difference is that now one cannot complete it with a bound obtained through
Duhamel formula since this would involve an L8 bound on B3

xv. Thus the quasilinear study
seems to require to be able to close an estimate for B2

xv entirely with energy-type arguments, a
highly non-trivial task.

In another direction, we expect that the study of waves with characteristic points, as arising
in the full classification obtained in [DR22] for scalar balance laws, should not only involve some
new patches here and there but follow very different routes and thus will require significantly
new insights even at a general abstract level. As a strong token of this expectation, we point
out that regularity is expected to play a paramount role there since, at the hyperbolic level, the
regularity class chosen deeply modifies the spectrum when a characteristic point is present in
the wave profile ; see [JNR`19, DR22].

The rest of the paper is organized as follows. We have decided to shift the derivation of wave
profile asymptotics, proving Proposition 1, to Appendix A, because we believe that the backbone
of the paper is stability and provide it mostly for completeness’ sake. Next section contains a
detailed examination of the required spectral preliminaries. The following one explains how to
use these to obtain a practical representation of the linearized time-evolution. Though we mostly
follow there the arguments in [ZH98], with some twists here and there, we provide a detailed
exposition for two distinct reasons. The first one is that we need to track in constructions which
parts are ε-uniform and which parts are not, a crucial point in our analysis. The second one is
that most of the papers of the field requiring a detailed analysis, as we do, are either extremely
long [ZH98] or cut in a few long pieces [MZ03, MZ04] and we want to save the reader from
back-and-forth consultations of the literature. This makes our analysis essentially self-contained
(up to basic knowledge of spectral analysis) and we believe that it could serve as a gentle
introduction to the latter massive literature. Note however, that, to keep the paper within a
reasonable size, we only expound the bare minimum required by our analysis. After these two
preliminary sections, we enter into the technical core of the paper, with first a section devoted to
detailed linear estimates, including the identification of most-singular parts of the time-evolution
as phase variations, and then a section devoted to nonlinear analysis, including adapted nonlinear
maximum principles proved through energy estimates and the proof of Theorem 2.
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2. Spectral analysis

We investigate stability for traveling waves introduced in Proposition 1. We have chosen to
carry out all our proofs within co-moving fast variables. Explicitly, we introduce new unknowns
and variables through4

upt, xq “ ru

ˆ

t

ε
,
x´ σε t

ε

˙

looooooomooooooon

prt,rxq

.

However, since we never go back to the original slow variables, we drop tildes on fast quantities
from now on. One reason to opt for the fast variables is that it provides a simpler reading of
size dependencies on ε.

Therefore our starting point is

(2.1) Btu` Bxpfpuq ´ σε uq “ B2
xu` ε gpuq ,

about the stationary solution U ε. Accordingly we consider the operator

(2.2) Lε :“ ´Bxppf 1pU εq ´ σεq ¨ q ` B2
x ` εg1pU εq

on BUC0pRq with domain BUC2pRq.
Though the elements we provide are sufficient to reconstruct the classical theory, the reader

may benefit from consulting [KP13] for background on spectral analysis specialized to nonlinear
wave stability. In particular, we shall make extensive implicit use of the characterizations of
essential spectrum in terms of endstates of wave profiles and of the spectrum at the right-hand
side5 of the essential spectrum6 in terms of zeroes of Evans’ functions. The reader is referred to
[Kat76, Dav07] for less specialized, basic background on spectral theory.

The backbone of the theory is the interpretation of spectral properties of one-dimensional
differential operators in terms of spatial dynamics and a key-part of the corresponding studies
is the investigation of exponential dichotomies. It starts with the identification between the
eigenvalue equation

pλ´ Lεq v “ 0

and the system of ODEs
d

dx
Vpxq “ Aεpλ, xqVpxq

for the vector7 V “ pv, Bxv ´ pf 1pU εq ´ σεq vq where

(2.3) Aεpλ, xq :“

ˆ

f 1pU εq ´ σε 1
λ´ ε g1pU εq 0

˙

.

For later use, we shall denote Φλ
ε px, yq the corresponding solution operators, mapping datum at

point y to value at point x.
The essential spectrum is characterized in terms of matrices Ar

εpλq :“ Aεpλ;u`8q and

Aℓ
εpλq :“ Aεpλ;u´8q with

Aεpλ;uq :“

ˆ

f 1puq ´ σε 1
λ´ ε g1puq 0

˙

.(2.4)

4Note the slight co-moving inconsistency with the introduction.
5We picture the complex plane with the real axis pointing to the right and the imaginary axis pointing to the
top.
6There are (at least) two reasonable definitions of essential spectrum, either through failure of satisfying Fredholm
property or through failure of satisfying Fredholm property with zero index. In the context of semigroup generators
both definitions provide the same right-hand boundary thus the conventional choice is immaterial to stability
issues.
7The use of flux variables is not necessary but it simplifies a few computations here and there.
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Eigenvalues of Aεpλ;uq are given by

(2.5) µε˘pλ;uq :“
f 1puq ´ σε

2
˘

c

pf 1puq ´ σεq2

4
` λ´ ε g1puq

and are distinct when λ ‰ ε g1puq ´ 1
4 pf 1puq ´σεq2. In this case, the matrix may be diagonalized

as

Aεpλ;uq “
`

Rε
`pλ;uq Rε

´pλ;uq
˘

ˆ

µε`pλ;uq 0
0 µε´pλ;uq

˙ ˆ

Lε
`pλ;uq

Lε
´pλ;uq

˙

with

Rε
˘pλ;uq :“

ˆ

1
´µε¯pλ;uq

˙

, Lε
˘pλ;uq :“

`

˘µε˘pλ;uq ˘1
˘

µε`pλ;uq ´ µε´pλ;uq
.(2.6)

The eigenvalues µε˘pλ;uq have distinct real parts when λ does not belong to

Dεpuq :“ ε g1puq ´ 1
4 pf 1puq ´ σεq2 ` R´ .

All our spectral studies will take place far from the half-lines Dεpu`8q Y Dεpu´8q, that corre-
spond to the set termed absolute spectrum in [KP13].

From now on, throughout the text, we shall use
?

¨ to denote the determination of the square
root on CzR´ with positive real part.

2.1. Conjugation to constant coefficients. Our starting point is a conjugation of spectral
problems to a piecewise constant coefficient spectral problem. This is mostly relevant in compact
zones of the spectral plane and in the literature by Kevin Zumbrun and his collaborators this
is known as a gap lemma — since a gap or in other words an exponential dichotomy is the key
assumption —; see for instance [MZ05, Lemma 2.6] for a version relevant for the present analysis.
Since we need to ensure uniformity in ε for the case at hand we provide both a statement and
a proof.

Proposition 2. Let K be a compact subset of CzD0pu`8q. There exist positive constants

pε0, C, θq such that there exists8 a smooth map

P r : r0, ε0s ˆK ˆ R ÞÑ GL2pCq , pε, λ, xq ÞÑ P r
ε pλ, xq

locally uniformly analytic in λ on a neighborhood of K and such that, for any pε, λ, xq P r0, ε0s ˆ

K ˆ r0,`8q,

}P r
ε pλ, xq ´ I2} ď C e´θ |x| , }pP r

ε pλ, xqq´1 ´ I2} ď C e´θ |x| ,

and, for any pε, λ, x, yq P r0, ε0s ˆK ˆ pR`q2,

Φλ
ε px, yq “ P r

ε pλ, xq epx´yqAr
εpλq pP r

ε pλ, yqq´1 .

The same argument applies to the conjugation on p´8, 0s with the flow of Aℓ
εpλq and defines

a conjugation map denoted P ℓ from now on.

Proof. The proof is essentially a quantitative ”cheap” gap lemma — conjugating only one tra-
jectory instead of solution operators — but applied in M2pCq instead of C2.

Let us first observe that it is sufficient to define P r on r0, ε0sˆKˆrx0,`8q for some suitably
large x0. Indeed then one may extend P r by

P r
ε pλ, xq :“ Φλ

ε px, x0qP r
ε pλ, x0q epx0´xqAr

εpλq

and bounds are extended by a continuity-compactness argument. Likewise the uniformity in ε
is simply derived from a continuity-compactness argument since the construction below is con-
tinuous at the limit ε “ 0. Note moreover that in the large-x regime the bound on pP r

ε pλ, xqq´1

may be derived from the bound on P r
ε pλ, xq by using properties of the inverse map.

8As follows from the proof, P r
ε pλ, ¨q is defined as soon as λ R Dεpu`8q Y Dεpu´8q.
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The requirements on P r
ε pλ, ¨q are equivalent to the fact that it converges exponentially fast to

I2 at `8 (uniformly in ε) and that it satisfies for any x

d

dx
P r
ε pλ, xq “ Ar

εpλqpP r
ε pλ, xqq ` pAεpλ, xq ´ Ar

εpλqqP r
ε pλ, xq

where Ar
εpλq :“ Aεpλ;u`8q is a linear operator on M2pCq defined through

Aεpλ;uqpP q :“ rAεpλ;uq, P s “ Aεpλ;uqP ´ PAεpλ;uq .

When λ R Dεpuq, Aεpλ;uq admits

pRε
`pλ;uqLε

´pλ;uq, Rε
´pλ;uqLε

`pλ;uq, Rε
`pλ;uqLε

`pλ;uq, Rε
´pλ;uqLε

´pλ;uqq

as a basis of eigenvectors corresponding to eigenvalues

pµε`pλ;uq ´ µε´pλ;uq, ´pµε`pλ;uq ´ µε´pλ;uqq, 0, 0q .

Note that I2 always lies in the kernel of Aεpλ;uq. We denote by Πε
upλ;uq, Πε

spλ;uq, Πε
0pλ;uq the

corresponding spectral projections respectively on the unstable space, the stable space and the
kernel of Aεpλ;uq and for further later study we point out that they are given as

Πε
upλ;uqpP q “ Lε

`pλ;uqP Rε
´pλ;uq Rε

`pλ;uqLε
´pλ;uq ,

Πε
spλ;uqpP q “ Lε

´pλ;uqP Rε
`pλ;uq Rε

´pλ;uqLε
`pλ;uq ,

Πε
0pλ;uqpP q “ Lε

`pλ;uqP Rε
`pλ;uq Rε

`pλ;uqLε
`pλ;uq

` Lε
´pλ;uqP Rε

´pλ;uq Rε
´pλ;uqLε

´pλ;uq .

Then the result follows when θ is sufficiently small and x0 is sufficiently large from a use of
the implicit function theorem on

P r
ε pλ, xq “ I2 ´

ż `8

x
Πε

0pλ;u`8q ppAεpλ, yq ´ Ar
εpλqqP r

ε pλ, yqq d y

´

ż `8

x
e´py´xq pµε

`pλ;u`8q´µε
´pλ;u`8qq Πε

upλ;u`8q ppAεpλ, yq ´ Ar
εpλqqP r

ε pλ, yqq d y

`

ż x

x0

e´px´yq pµε
`pλ;u`8q´µε

´pλ;u`8qq Πε
spλ;u`8q ppAεpλ, yq ´ Ar

εpλqqP r
ε pλ, yqq d y

with norm control on matrix-valued maps through

sup
xěx0

eθ |x| }P pxq ´ I2} .

□

Remark 1. The properties of the foregoing proposition do not determine P r uniquely. The
normalizing choice made in the proof is Πε

spλ;u`8q pP r
ε pλ, x0qq “ 02 but we could have replaced

02 with any analytic choice of an element of the stable space of Aεpλ;u`8q.

Remark 2. The proposition is sufficient to prove classical results about the determination of
the essential spectrum from endstates spectra.

We now investigate possible failure of uniformity in the regime of large spectral parameters. In
the literature by Kevin Zumbrun and his collaborators, similar purposes are achieved through
comparison of unstable manifolds with their frozen-coefficients approximations by a type of
lemma termed there tracking lemma; see for instance [HLZ09, BJRZ11]. The rationale is that
to large-frequencies smooth coefficients seem almost constant and thus may be treated in some
adiabatic way, a fact ubiquitous in high-frequency/semiclassical analysis.

We follow here a different path and rather effectively build a conjugation as in the foregoing
gap lemma. The first step is a suitable scaling to ensure some form of uniformity in the large-
x contraction argument of the proof of Proposition 2. The second-step is a high-frequency
approximate diagonalization combined with an explicit solving of the leading-order part of the
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system ensuring that in the large-frequency regime the latter construction could actually be
carried out with x0 “ 0.

Proposition 3. There exist positive constants pε0, C, θ, δq such that setting

Ωδ :“

"

λ ; ℜ
´?

λ
¯

ě
1

δ

*

there exists a smooth map

P r,HF : r0, ε0s ˆ Ωδ ˆ R ÞÑ GL2pCq , pε, λ, xq ÞÑ P r,HF
ε pλ, xq

locally uniformly analytic in λ on a neighborhood of Ωδ and such that, for any pε, λ, xq P r0, ε0sˆ

Ωδ ˆ r0,`8q,

›

›

›

›

ˆ

1 0
0 1?

λ

˙

P r,HF
ε pλ, xq

ˆ

1 0

0
?
λ

˙

´ e´ 1
2

ş`8

x pf 1pUεpyqq´f 1pu`8qq d y I2

›

›

›

›

ď C
e´θ |x|

ℜ
´?

λ
¯ ,

›

›

›

›

ˆ

1 0
0 1?

λ

˙

pP r,HF
ε pλ, xqq´1

ˆ

1 0

0
?
λ

˙

´ e
1
2

ş`8

x pf 1pUεpyqq´f 1pu`8qq d y I2

›

›

›

›

ď C
e´θ |x|

ℜ
´?

λ
¯ ,

and, for any pε, λ, x, yq P r0, ε0s ˆ Ωδ ˆ R2,

Φλ
ε px, yq “ P r,HF

ε pλ, xq epx´yqAr
εpλq pP r,HF

ε pλ, yqq´1 .

We point out that for our main purposes we do not need to identify explicitly the leading
order part of the conjugation.

As for Proposition 2 the same argument applies to the conjugation on p´8, 0s with the flow
of Aℓ

εpλq and defines a conjugation map denoted P ℓ,HF from now on.

Proof. As a preliminary remark, we observe that the condition ℜ
´?

λ
¯

" 1 and ℜpµε`pλ;u`8q´

µε´pλ;u`8qq " 1 are equivalent, with uniform control of one by the other and vice versa.
Scaling P r

ε to Qr
ε defined as

Qr
εpλ, ¨q :“

ˆ

1 0
0 µε`pλ;u`8q ´ µε´pλ;u`8q

˙´1

P r
ε pλ, ¨q

ˆ

1 0
0 µε`pλ;u`8q ´ µε´pλ;u`8q

˙

removes high-frequency singularities by replacing Rε
˘pλ;u`8q and Lε

˘pλ;u`8q with

˜

1

´
µε

¯pλ;u`8q

µε
`pλ;u`8q´µε

´pλ;u`8q

¸

,
´

˘µε
˘pλ;u`8q

µε
`pλ;u`8q´µε

´pλ;u`8q
˘1

¯

,

whereas the only other effect is the replacement of Aεpλ, yq ´ Ar
εpλq with

˜

f 1pU εq ´ f 1pu`8q 0

´ε
g1pUεq´g1pu`8q

µε
`pλ;u`8q´µε

´pλ;u`8q
0

¸

.

At this stage, let us choose coordinates to identify M2pCq with C4 in such a way that
C2 ˆ t0u2, t0u ˆ C ˆ t0u, t0u3 ˆ C, p1, 0, 0, 0q and p0, 1, 0, 0q correspond respectively — after
scaling and choice of coordinates — to the kernel of Ar

εpλq, its unstable space, its stable space,
13



I2 and
1

µε`pλ;u`8q ´ µε´pλ;u`8q
Ar

ε,HF . Then the problem to be solved takes the form

d

dx
αpxq “ B0pxqαpxq ` Ope´θ |x|q

ˆ

β
γ

˙

pxq

d

dx
βpxq “ pµε`pλ;u`8q ´ µε´pλ;u`8q ` ω`pxqqβpxq ` Ope´θ |x|q

ˆ

α
γ

˙

pxq

d

dx
γpxq “ ´pµε`pλ;u`8q ´ µε´pλ;u`8q ` ω´pxqq γpxq ` Ope´θ |x|q

ˆ

α
β

˙

pxq

with p1, 0, 0, 0q as limiting value at `8, for some9 θ ą 0, where B0pxq, ω`pxq, ω´pxq are also of

the form Ope´θ |x|q.
It follows that when µε`pλ;u`8q ´ µε´pλ;u`8q is sufficiently large, by a further change of

variables differing from I4 by a block off-diagonal term
¨

˝

αbis

βbis
γbis

˛

‚pxq “

˜

I4 ` O

˜

e´θ |x|

µε`pλ;u`8q ´ µε´pλ;u`8q

¸¸

¨

˝

α
β
γ

˛

‚pxq

one may transform the problem to

d

dx
αbispxq “ rB0pxqαbispxq ` O

˜

e´θ |x|

µε`pλ;u`8q ´ µε´pλ;u`8q

¸

ˆ

βbis
γbis

˙

pxq

d

dx
βbispxq “ pµε`pλ;u`8q ´ µε´pλ;u`8q ` rω`pxqqβbispxq

` O

˜

e´θ |x|

µε`pλ;u`8q ´ µε´pλ;u`8q

¸

ˆ

αbis

γbis

˙

pxq

d

dx
γbispxq “ ´pµε`pλ;u`8q ´ µε´pλ;u`8q ` rω´pxqq γbispxq

` O

˜

e´θ |x|

µε`pλ;u`8q ´ µε´pλ;u`8q

¸

ˆ

αbis

βbis

˙

pxq

with p1, 0, 0, 0q as limiting value at `8, where rB0 ´B0, rω´ ´ω´ and rω` ´ω` are all of the form

O

˜

e´θ |x|

µε`pλ;u`8q ´ µε´pλ;u`8q

¸

.

Now, we point out that there is a single solution to the leading-order part

d

dx
αmainpxq “ rB0pxqαmainpxq

with p1, 0q as limiting value at `8. This follows from a fixed point argument on x ě x0 for x0
large followed by a continuation argument. We may be even more explicit. Indeed an explicit
computation yields

rB0pxq “ Bmainpxq ` O

˜

e´θ |x|

µε`pλ;u`8q ´ µε´pλ;u`8q

¸

with

Bmainpxq

ˆ

1
0

˙

“
1

2
pf 1pU εpxqq ´ f 1pu`8qq

ˆ

1
0

˙

9Along the proof we allow ourselves to change the precise value of θ from line to line.
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so that

αmainpxq “ e´ 1
2

ş`8

x pf 1pUεpyqq´f 1pu`8qq d y

ˆ

1
0

˙

` O

˜

e´θ |x|

µε`pλ;u`8q ´ µε´pλ;u`8q

¸

.

The proof is thus achieved by a fixed point argument on a problem of type

αbispxq “ αmainpxq ´

ż `8

x
Φ0px, yqO

˜

e´θ |y|

µε`pλ;u`8q ´ µε´pλ;u`8q

¸

ˆ

βbis
γbis

˙

pyq d y

βbispxq “ ´

ż `8

x
e´py´xq pµε

`pλ;u`8q´µε
´pλ;u`8qq`

şx
y rω` O

˜

e´θ |y|

µε`pλ;u`8q ´ µε´pλ;u`8q

¸

ˆ

αbis

γbis

˙

pyq d y

γbispxq “

ż x

0
e´px´yq pµε

`pλ;u`8q´µε
´pλ;u`8qq´

şx
y rω´ O

˜

e´θ |y|

µε`pλ;u`8q ´ µε´pλ;u`8q

¸

ˆ

αbis

βbis

˙

pyq d y

where Φ0 denotes the solution operator associated with rB0. □

In the following we shall complete Proposition 3 that provides P r,HF on Ωδ with an application
of Proposition 2 on

Kδ :“

"

λ ; dpλ,D0pu`8qq ě δ and |λ| ď
1

δ

*

.

When δ is sufficiently small Ωδ and Kδ overlaps. Yet a priori P r and P r,HF differ from each
other even in regions where both exist. Fortunately the implied possible mismatch disappears
at the level of Green functions.

2.2. Evans’ function and its asymptotics. Now wherever it makes sense we set

Vr,s
ε pλ, xq :“ exµε

´pλ;u`8q P r
ε pλ, xqRε

´pλ;u`8q ,

Vr,u
ε pλ, xq :“ exµε

`pλ;u`8q P r
ε pλ, xqRε

`pλ;u`8q ,

Vℓ,s
ε pλ, xq :“ exµε

´pλ;u´8q P ℓ
ε pλ, xqRε

´pλ;u´8q ,

Vℓ,u
ε pλ, xq :“ exµε

`pλ;u´8q P ℓ
ε pλ, xqRε

`pλ;u´8q ,

and similarly for Vr,s,HF
ε , Vr,u,HF

ε , Vℓ,s,HF
ε and Vℓ,u,HF

ε . Note that notation is used here to
recall stable and unstable spaces, we also use them in areas of the spectral plane where they do
not match with stable and unstable spaces. Instead, this fits analytic continuation of generators
of stable/unstable spaces.

Correspondingly we define the Evans’ function

(2.7) Dεpλq :“ det
´

Vr,s
ε pλ, 0q Vℓ,u

ε pλ, 0q

¯

and its high-frequency counterpart DHF
ε . Note that we define the Evans function at point 0 but

on one hand, we do not make use of any particular property due to normalization so that the
point 0 could be replaced with any other point and on the other hand relations between Evans
functions at different points are simply derived from Liouville’s formula for Wronskians. For
instance,

(2.8) det
´

Vr,s
ε pλ, xq Vℓ,u

ε pλ, xq

¯

“ Dεpλq e
şx
0 TrpAεpλ,¨qq “ Dεpλq e

şx
0 pf 1pUεq´σεq .

A simple corollary to Proposition 3 is

Corollary 1. Uniformly in ε (sufficiently small)

lim
ℜp

?
λqÑ8

DHF
ε pλq
?
λ

“ 2 e´ 1
2

ş`8

0 pf 1pUεpyqq´f 1pu`8qq d y` 1
2

ş0
´8

pf 1pUεpyqq´f 1pu´8qq d y .

To complete Corollary 1, we derive information on compacts sets of λ in the limit ε Ñ 0.
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Proposition 4. There exists η0 ą 0 such that for any δ ą 0 there exist positive pε0, c0q such
that for any ε P r0, ε0s, Dεp¨q is well-defined on

Kη0,δ :“

"

λ ; dpλ, p´8,´η0sq ě min
´!

δ,
η0
2

)¯

and |λ| ď
1

δ

*

and for any λ P Kη0,δ,

|Dεpλq| ě c0 minpt1, |λ|uq .

Proof. We derive the result from Sturm-Liouville theory and regularity in ε. To apply Sturm-
Liouville theory, we introduce the weight

ωεpxq :“ e
1
2

şx
0 pf 1pUεpyqq´σεq d y .

We observe that considered as an operator on L2pRq with domain H2pRq the operator

Lε :“
1

ωε
Lε pωε ¨ q

is self-adjoint and in the region of interest it possesses no essential spectrum and its eigenvalues
agree in location and algebraic multiplicity with the roots of Dε. As a consequence the zeroes
of Dε are real and since U 1

ε{ωε is a nowhere-vanishing eigenvector for the eigenvalue 0, 0 is a
simple root of Dε and Dε does not vanish on p0,`8q. From here the corresponding bound is
deduced through a continuity-compactness argument in ε. □

3. Green functions

Now we use the introduced spectral objects to obtain representation formulas for linearized
solution operators.

3.1. Duality. To begin with, to provide explicit formulas for spectral Green functions to be
introduced below, we extend to dual problems the conclusions of Section 2. Note that the
duality we are referring to is not related to any particular choice of a specific Banach space but
rather distributional/algebraic.

To begin with, we introduce the formal adjoint

(3.1) Ladj
ε :“ pf 1pU εq ´ σεqBx ` B2

x ` εg1pU εq

and note that for any sufficiently smooth v, w, and any points px0, x1q

(3.2) V ¨

ˆ

0 ´1
1 0

˙ˆ

w
Bxw

˙

px1q ´ V ¨

ˆ

0 ´1
1 0

˙ˆ

w
Bxw

˙

px0q “

ż x1

x0

pwLεv ´ vLadj
ε wq

withV “ pv, Bxv´pf 1pU εq´σεq vq. As a first simple consequence of (3.2) note that if pλ, y, vry, v
ℓ
yq

are such that pλ´ Lεqvry “ 0 and pλ´ Lεqvℓy “ 0, then the function

φy : R Ñ C , x ÞÑ

#

vrypxq if x ą y

vℓypxq if x ă y

solves pλ´ Lεqφy “ δy if and only if

vrypyq “ vℓypyq ,

Bxv
r
ypyq ´ pf 1pU εqpyq ´ σεq vrypyq “ Bxv

ℓ
ypyq ´ pf 1pU εqpyq ´ σεq vℓypyq ´ 1 .

Specializing to the tensorized case where vrypxq “ vrpxqαpyq, vℓypxq “ vℓpxqβpyq, note that the
foregoing conditions are equivalent to

`

Vrpyq Vℓpyq
˘

ˆ

αpyq

´βpyq

˙

“

ˆ

0
´1

˙
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where V7 “ pv7, Bxv
7 ´ pf 1pU εq ´ σεq v7q, 7 P tr, ℓu. Hence, we need to find vectors satisfying

some orthogonality property to identify the inverse of the matrix :
`

Vrpyq Vℓpyq
˘

To go further, we identify

pλ´ Ladj
ε qw “ 0

and the system of ODEs

d

dx
Wpxq “ rAεpλ, xqWpxq

for the vector W “ pw, Bxwq where

(3.3) rAεpλ, xq :“

ˆ

0 1
λ´ ε g1pU εq ´pf 1pU εq ´ σεq

˙

.

Note that

rAεpλ, xq “ Aεpλ, xq ´ pf 1pU εq ´ σεq I2

so that all the proofs of Section 2 purely based on limiting-matrices spectral gaps arguments
apply equally well to the corresponding dual problems under the exact same assumptions. Alter-
natively one may derive results on dual problems by using directly the relation between solution
operators

rΦλ
ε px, yq “ Φλ

ε px, yq e´
şx
y pf 1pUεq´σεq .

Here and elsewhere throughout the text from now on we denote with a r all quantities arising
from dual problems. Let us point out that our choices lead to

rµε˘pλ;uq “ µε˘pλ;uq ´ pf 1puq ´ σεq , rRε
˘pλ;uq “ Rε

˘pλ;uq , rLε
˘pλ;uq “ Lε

˘pλ;uq ,

and

rP r
ε pλ, xq “ P r

ε pλ, xq e
ş`8

x pf 1pUεq´f 1pu`8qq , rP ℓ
ε pλ, xq “ P ℓ

ε pλ, xq e´
şx

´8
pf 1pUεq´f 1pu´8qq ,

(and likewise for high-frequency versions).

Proposition 5. Let K be a compact subset of CzpD0pu`8q Y D0pu`8qq. There exists ε0 ą 0
such that there exist smooth maps

τ r : r0, ε0s ˆK ÞÑ C , pε, λq ÞÑ τ rε pλq , ρr : r0, ε0s ˆK ÞÑ C , pε, λq ÞÑ ρrεpλq ,

τ ℓ : r0, ε0s ˆK ÞÑ C , pε, λq ÞÑ τ ℓε pλq , ρℓ : r0, ε0s ˆK ÞÑ C , pε, λq ÞÑ ρℓεpλq ,

rτ r : r0, ε0s ˆK ÞÑ C , pε, λq ÞÑ rτ rε pλq , rρr : r0, ε0s ˆK ÞÑ C , pε, λq ÞÑ rρrεpλq ,

rτ ℓ : r0, ε0s ˆK ÞÑ C , pε, λq ÞÑ rτ ℓε pλq , rρℓ : r0, ε0s ˆK ÞÑ C , pε, λq ÞÑ rρℓεpλq ,

locally uniformly analytic in λ on a neighborhood of K and such that, for any pε, λq P r0, ε0sˆK,
for any x P R

Vr,s
ε pλ, xq “ ρrεpλqVℓ,s

ε pλ, xq ` τ rε pλqVℓ,u
ε pλ, xq ,

Vℓ,u
ε pλ, xq “ ρℓεpλqVr,u

ε pλ, xq ` τ ℓε pλqVr,s
ε pλ, xq ,

rVr,s
ε pλ, xq “ rρrεpλq rVℓ,s

ε pλ, xq ` rτ rε pλq rVℓ,u
ε pλ, xq ,

rVℓ,u
ε pλ, xq “ rρℓεpλq rVr,u

ε pλ, xq ` rτ ℓε pλq rVr,s
ε pλ, xq ,
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and

ρrεpλq “ Dεpλq
e´

ş0
´8

pf 1pUεq´f 1pu´8qq

µε`pλ;u´8q ´ µε´pλ;u´8q
,

ρℓεpλq “ Dεpλq
e
ş`8

0 pf 1pUεq´f 1pu`8qq

µε`pλ;u`8q ´ µε´pλ;u`8q
,

rρrεpλq “ Dεpλq
e
ş`8

0 pf 1pUεq´f 1pu`8qq

µε`pλ;u´8q ´ µε´pλ;u´8q
,

rρℓεpλq “ Dεpλq
e´

ş0
´8

pf 1pUεq´f 1pu´8qq

µε`pλ;u`8q ´ µε´pλ;u`8q
.

As a consequence for such a pε, λq and any x P R

Vℓ,u
ε pλ, xq ¨

ˆ

0 ´1
1 0

˙

rVℓ,u
ε pλ, xq “ 0 , Vr,s

ε pλ, xq ¨

ˆ

0 ´1
1 0

˙

rVr,s
ε pλ, xq “ 0 ,

Vr,s
ε pλ, xq ¨

ˆ

0 ´1
1 0

˙

rVℓ,u
ε pλ, xq “ ´Dεpλq e´

ş0
´8

pf 1pUεq´f 1pu´8qq ,

Vℓ,u
ε pλ, xq ¨

ˆ

0 ´1
1 0

˙

rVr,s
ε pλ, xq “ Dεpλq e

ş`8

0 pf 1pUεq´f 1pu`8qq .

Notation τ , ρ is used here to echo transmission/reflection coefficients of the classical scattering
framework.

A corresponding proposition holds for the high-frequency regime.

Proof. All the properties are readily obtained by combining the fact that both pVr,s
ε pλ, ¨q,Vr,u

ε pλ, ¨qq

and pVℓ,s
ε pλ, ¨q,Vℓ,u

ε pλ, ¨qq form a basis of solutions of the spectral system of ODEs, the Liouville
formula for Wronskians and duality relation (3.2). □

We thus have that :

´

Vr,s
ε pyq Vℓ,u

ε pyq

¯

´1 “

¨

˚

˚

˚

˚

˝

e2 ¨ rVℓ,u
ε pλ, yq

Dεpλq e´
ş0

´8
pf 1pUεq´f 1pu´8qq

e1 ¨ rVℓ,u
ε pλ, yq

´Dεpλq e´
ş0

´8
pf 1pUεq´f 1pu´8qq

´
e2 ¨ rVr,s

ε pλ, yq

Dεpλq e
ş`8

0 pf 1pUεq´f 1pu`8qq

e1 ¨ rVr,s
ε pλ, yq

Dεpλq e
ş`8

0 pf 1pUεq´f 1pu`8qq

˛

‹

‹

‹

‹

‚

.

Proposition 6. There exist positive constants pε0, C, δq such that setting with Ωδ as in Propo-
sition 3

Ωδ :“

"

λ ; ℜ
´?

λ
¯

ě
1

δ

*

there exist on r0, ε0sˆΩδ maps τ r,HF , ρr,HF , τ ℓ,HF , ρℓ,HF , rτ r,HF , rρr,HF , rτ ℓ,HF , rρℓ,HF , satisfying
high-frequency versions of the conclusions of Proposition 5 and moreover all these functions are
uniformly bounded on r0, ε0s ˆ Ωδ.

Proof. Most of the proof is contained in the proof of Proposition 5. The remaining part is directly
derived from the observation that Proposition 3 provides asymptotics for pP ℓ

ε pλ, 0qq´1 P r
ε pλ, 0q

thus also for the coefficients under consideration. □

This leads to the following definition (wherever it makes sense)

Gεpλ;x, yq :“

$

’

’

’

&

’

’

’

%

e
ş0

´8
pf 1pUεq´f 1pu´8qq

Dεpλq
e1 ¨Vr,s

ε pλ, xq e1 ¨rVℓ,u
ε pλ, yq if x ą y ,

e´
ş`8

0 pf 1pUεq´f 1pu`8qq

Dεpλq
e1 ¨Vℓ,u

ε pλ, xq e1 ¨rVr,s
ε pλ, yq if x ă y ,

(3.4)
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where e1 :“ p1, 0q. Note that pλ´LεqGεpλ; ¨, yq “ δy and, for ℜpλq sufficiently large, Gεpλ;x, yq

is exponentially decaying as }x ´ y} Ñ 8. To bound Gεpλ;x, yq, we shall refine the alternative
x ă y vs. x ą y. For instance, when x ą y, more convenient equivalent representations of
Gεpλ;x, yq are

e
ş0

´8
pf 1pUεq´f 1pu´8qq

Dεpλq
e1 ¨Vr,s

ε pλ, xq e1 ¨rVℓ,u
ε pλ, yq when x ą 0 ą y ,

e
ş0

´8
pf 1pUεq´f 1pu´8qq e1 ¨Vr,s

ε pλ, xq e1 ¨

ˆ

rρℓεpλq

Dεpλq
rVr,u
ε pλ, yq `

rτ ℓε pλq

Dεpλq
rVr,s
ε pλ, yq

˙

when x ą y ą 0 ,

e
ş0

´8
pf 1pUεq´f 1pu´8qq e1 ¨

ˆ

ρrεpλq

Dεpλq
Vℓ,s

ε pλ, xq `
τ rε pλq

Dεpλq
Vℓ,u

ε pλ, xq

˙

e1 ¨rVℓ,u
ε pλ, yq when 0 ą x ą y .

Remark 3. The representation of spectral Green functions, thus of resolvent operators, with
Evans’ functions is sufficient to prove classical results about the identification of spectrum —
including algebraic multiplicity — at the right-hand side of the essential spectrum with zeros of
Evans’ functions.

We use similar formulas in the high-frequency regime. Yet the Green functions of the high-
frequency regime and the compact-frequency regime agree where they co-exist (by uniqueness of
the spectral problem (in a suitably weighted space) in some overlapping regions and uniqueness
of analytic continuation elsewhere) so that we do not need to introduce a specific piece of notation
for the high-frequency regime.

We also point out that it follows from Proposition 3 that in the zone of interest

|BxGεpλ;x, yq| ď C maxpt1,
a

|λ|uq |Gεpλ;x, yq|

for some uniform constant C.

3.2. Time-evolution. It follows from standard semigroup theory that the representation

(3.5) Sεptq “
1

2 iπ

ż

R
eΛpξq t Λ1pξq pΛpξqI ´ Lεq´1 d ξ

holds in LpBUC0pRqq when Λ : R Ñ C is a continuous, piecewise C1 simple curve such that

(1) Λ is valued in the right-hand connected component of10

␣

λ ; for u P tu´8, u`8u , ℜ
`

µε`pλ, uq
˘

ą 0 ą ℜ
`

µε´pλ, uq
˘(

;

(2) there hold

lim
ξÑ˘8

ℑpΛpξqq “ ˘8 ,

ż

R
eℜpΛpξqq t |Λ1pξq|

1 ` |Λpξq|
d ξ ă `8

and there exist positive pR, cq such that for |ξ| ě R

ℜpΛpξqq ě ´c |ℑpΛpξqq| ;

(3) there is no root of Dε on the right11 of ΛpRq.

Failure of the third condition could be restored by adding positively-oriented small circles to the
contour Λ. This is the first condition that we want to relax by going to Green functions.

For curves as above, applying the above formula to functions in W8,8pRq and testing it
against functions in C8

c pRq leads to a similar representation for Green functions

(3.6) Gε
t px, yq “

1

2 iπ

ż

R
eΛpξq t Λ1pξqGεpΛpξq;x, yq d ξ .

10This set contains tλ;ℜpλq ě ωu when ω is sufficiently large.
11The second condition implies that this makes sense.
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The point is that at fixed pt, x, yq, the constraints on Λ ensuring the representation formula
are significantly less stringent and one may use this freedom to optimize bounds. In particular
depending on the specific regime for the triplet pt, x, yq or the kind of data one has in mind, one
may trade spatial localization for time-decay and vice versa by adjusting contours to the right
so as to gain spatial decay or to the left in order to improve time decay.

When doing so, we essentially follow the strategy of [ZH98]. The critical decay is essentially
encoded in limiting-endstates spectral spatial decay and Evans’ function root location. There-
fore, roughly speaking, leaving aside questions related to the presence of a root of the Evans’
function at zero, contours are chosen here to approximately12 optimize bounds on

ż

R
eℜpΛpξqq t`ℜpµε

7
pΛpξq,usgnpxq8qqx`ℜprµε

5
pΛpξq,usgnpyq8qq y |Λ1pξq|

|DεpΛpξqq|
d ξ

with p7, 5q P t`,´u2. More precisely, at fixed pt, x, yq, one picks Λ0 real in r´1
2η0,`8s (with η0

as in Proposition 4), approximately minimizing

ℜpλq t` ℜpµε7pλ, usgnpxq8qqx` ℜprµε5pλ, usgnpyq8qq y

among such real λ in r´1
2η0,`8s and then depending on cases one defines Λ through one of the

equations

ℜpµε7pΛpξq, usgnpxq8qqx` ℜprµε5pΛpξq, usgnpyq8qq y

“ ℜpµε7pΛ0, usgnpxq8qqx` ℜprµε5pΛ0, usgnpyq8qq y ` i ξ ζsgnpξq p7x` 5 yq

ℜprµε5pΛpξq, usgnpyq8qq y “ ℜprµε5pΛ0, usgnpyq8qq y ` i ξ ζsgnpξq ˆ p5 yq

ℜpµε7pΛpξq, usgnpxq8qqx “ ℜpµε7pΛ0, usgnpxq8qqx` i ξ ζsgnpξq ˆ p7xq

with ζ˘ conveniently chosen to ensure a condition analogous to the second condition of the
semigroup representation and including

lim
|ξ|Ñ8

ℜp
a

Λpξqq “ `8 , lim
ξÑ˘8

ℑpΛpξqq “ ˘8 .

This should be thought as an approximate/simplified version of the saddlepoint method in the
sense that Λ0 “ Λp0q is an approximate maximizer of the exponential decay rate among real
numbers, but a minimizer along the curve Λp¨q.

Computational details — carried out in next section — are cumbersome but the process is
rather systematic.

4. Linear stability

We now make the most of our spectral preparation to derive linear stability estimates.
To motivate the analysis, let us anticipate that our achievement is the splitting of pSεptqqtě0

as

(4.1) Sεptqpwqpxq “ U 1
εpxq spε ptqpwq ` rSεptqpwqpxq .

for some pspε ptqqtě0, prSεptqqtě0 with rSεp0q “ Id, so that the following proposition holds.

Proposition 7. There exists ε0 ą 0 such that

(1) there exists C ą 0 such that for any t ě 0, any 0 ď ε ď ε0 and any w P BUC0pRq

}rSεptqpwq}L8pRq ` min
´

t1,
?
tu
¯

}Bx rSεptqpwq}L8pRq ` |Bts
p
εptqpwq|

ď C e´minpt|g1pu´8q|,|g1pu`8q|uq ε t }w}L8pRq ,

12In some cases a genuine optimization — as in direct applications of the Riemann saddle point method — would
be impractical.
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and when moreover w P BUC1pRq

}rSεptqpwq}W 1,8pRq ď C e´minpt|g1pu´8q|,|g1pu`8q|uq ε t }w}W 1,8pRq ,

(2) for any θ ą 0 there exist positive pCθ, ωθq such that for any t ě 0, any 0 ď ε ď ε0 and
any w P BUC0pRq

}rSεptqpwq}L8pRq ` min
´

t1,
?
tu
¯

}Bx rSεptqpwq}L8pRq ` |Bts
p
εptqpwq|

ď Cθ e´ωθ t } eθ | ¨ | w}L8pRq .

Estimates on operators are derived through pointwise bounds on Green kernels from the trivial
fact that if T is defined through

Tpwqpxq “

ż

R
Kpx, yqwpyq d y

then

}Tpwq}L8pRq ď }K}L8
x pL1

yq }w}L8pRq .

4.1. Auxiliary lemmas. To begin with, to gain a practical grasp on the way the placement
of spectral curves impacts decay rates, we provide two lemmas, that will be of ubiquitous use
when establishing pointwise bounds on Green functions.

Both lemmas are motivated by the fact that when β ě 0 and t ą 0 the minimization of

Λ0 t`

˜

α

2
´

c

α2

4
´ b ` Λ0

¸

β

over Λ0 P p´α2

4 ` b ,`8q is equivalent to

(4.2) 2

c

α2

4
´ b ` Λ0 “

β

t
.

The first lemma directly elucidates the consequences of this choice of Λ0 in the approximate
saddlepoint method sketched above.

Lemma 1. Let t ą 0, α P R, β ě 0, β0 ě 0 b ă 0, and pζ´, ζ`q P C2 such that

ℜpζ˘q ą |ℑpζ˘q| , ¯ℑpζ˘q ą 0 .

Then the curve Λ : R Ñ C defined through13

2

c

α2

4
´ b ` Λpξq “

β0
t

` i ξ ζsgnpξq ,

satisfies for any ξ P R, when either β “ β0 or (β ě β0 and α ď 0)

ℜ

˜

Λpξq t`

˜

α

2
´

c

α2

4
´ b ` Λpξq

¸

β

¸

ď ´

ˆ

α2

4
` |b|

˙

t`
α

2
β0 ´

β20
4 t

´
ξ2

4
ℜpζ2sgnpξqq t

“ ´ |b| t´
pβ0 ´ α tq2

4 t
´
ξ2

4
ℜpζ2sgnpξqq t

and for any ξ P R˚

|Λ1pξq| ď |ζsgnpξq|

ˆ

1 `
ℜpζsgnpξqq

|ℑpζsgnpξqq|

˙

ℜ

˜

c

α2

4
´ b ` Λpξq

¸

.

13Sign conditions on ℑpζ˘q ensure that this is a licit definition.

21



We omit the proof of Lemma 1 as straightforward and elementary.
The second lemma is designed to deal with cases when the natural choice (4.2) is not available

because of extra constraints arising from Evans’ function possible annulation in p´α2

4 ` b , 0q.
Explicitly, it focuses on the case when β{t ď ω0 when ω0 is typically picked as either ωη0

r or ωη0
r

with

ωη0
r :“ 2

c

pf 1pu`8q ´ σεq2

4
´
η0
2
, ωη0

ℓ :“ 2

c

pf 1pu´8q ´ σεq2

4
´
η0
2
,(4.3)

where η0 is as in Proposition 4. Since β{t ď ω0 should be thought as a bounded-domain
restriction, it is useful to let the second lemma also encode the possible trade-off between spatial
localization and time decay.

Lemma 2. Let t ą 0, α P R, β ě 0, b ă 0, pζ´, ζ`q P C2 such that

ℜpζ˘q ą |ℑpζ˘q| , ¯ℑpζ˘q ą 0 ,

and ω0 ě 0 such that

β ď ω0 t .

Then the curve Λ : R Ñ C defined through

2

c

α2

4
´ b ` Λpξq “ ω0 ` i ξ ζsgnpξq ,

satisfies for any ξ P R˚

|Λ1pξq| ď |ζsgnpξq|

ˆ

1 `
ℜpζsgnpξqq

|ℑpζsgnpξqq|

˙

ℜ

˜

c

α2

4
´ b ` Λpξq

¸

.

and for any ξ P R and η ą 0,

ℜ

˜

Λpξq t`

˜

α

2
´

c

α2

4
´ b ` Λpξq

¸

β

¸

ď ´

ˆ

α2 ´ p1 ` ηqω2
0

4
` |b|

˙

t´
ω0 ´ α

2
β ´

ξ2

4

ˆ

ℜpζ2sgnpξqq ´
1

η
|ℑpζsgnpξqq|2

˙

t

and, when moreover ω0 ă |α|,

ℜ

˜

Λpξq t`

˜

α

2
´

c

α2

4
´ b ` Λpξq

¸

β

¸

ď ´ |b| t´
p|α| t´ βq2

4 t

ˆ

1 ´ p1 ` ηq
ω2
0

α2

˙

´
ξ2

4

ˆ

ℜpζ2sgnpξqq ´
1

η
|ℑpζsgnpξqq|2

˙

t .

Note that to guarantee for some η ą 0 both

ℜpζ2sgnpξqq ą
1

η
|ℑpζsgnpξqq|2 , 1 ą p1 ` ηq

ω2
0

α2
,

one needs to enforce

ℜpζsgnpξqq ą
|α|

a

α2 ´ ω2
0

|ℑpζsgnpξqq| .(4.4)

Likewise when ω0 ą |α|, one may extract large-time decay for |ξ| ě ξ0 ą 0 provided that
ℜpζsgnpξqq is sufficiently large.
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Proof. The starting point is that for any η ą 0,

ℜ

˜

Λpξq t`

˜

α

2
´

c

α2

4
´ b ` Λpξq

¸

β

¸

ď ´

¨

˚

˝

α2 ´ ω2
0 ´ η

´

ω0 ´
β
t

¯2

4
` |b|

˛

‹

‚

t´
ω0 ´ α

2
β ´

ξ2

4

ˆ

ℜpζ2sgnpξqq ´
1

η
|ℑpζsgnpξqq|2

˙

t

“ ´ |b| t´
pα t´ βq2

4 t
´
ξ2

4

ˆ

ℜpζ2sgnpξqq ´
1

η
|ℑpζsgnpξqq|2

˙

t`
pω0 t´ βq2

4 t
p1 ` ηq .

The first bound on the real part is then obtained by using the first formulation of the foregoing
bound jointly with

ˆ

ω0 ´
β

t

˙2

ď ω2
0

whereas the second bound, specialized to the case |α| ą ω0, stems from the second formulation
and

p|α| t´ βq2 ď pα t´ βq2 , pω0 t´ βq2 ď
ω2
0

α2
p|α| t´ βq2 .

□

4.2. First separations. We would like to split Gε
t px, yq into pieces corresponding to different

behaviors. Yet we must take into account that our description of Gεpλ;x, yq is different in
high-frequency and compact regimes. To do so, we pick some curves and break them into pieces.

Explicitly, motivated by (4.4) with ω0 either ωη0
r or ωη0

r — defined in (4.3) with η0 as in
Proposition 4 —, we first choose ζHF

˘ such that

ℜpζHF
˘ q ě 2

max
`␣

|f 1pu`8q ´ σε|, f 1pu´8q ´ σε
(˘

?
2 η0

|ℑpζHF
˘ q| , ¯ℑpζHF

˘ q ą 0 .

Then we define curves Λr
ε, Λ

ℓ
ε through

2

c

pf 1pu`8q ´ σεq2

4
´ ε g1pu`8q ` Λr

εpξq “ ωHF
r ` i ξ ζHF

sgnpξq ,

2

c

pf 1pu´8q ´ σεq2

4
´ ε g1pu´8q ` Λℓ

εpξq “ ωHF
ℓ ` i ξ ζHF

sgnpξq ,

where ωHF
r and ωHF

ℓ are fixed such that

ωHF
r ą |f 1pu`8q ´ σ0| , ωHF

ℓ ą |f 1pu´8q ´ σ0| .

Note that this is sufficient to guarantee that both curves satisfy requirements ensuring (3.5) thus
also (3.6).

We shall do a particular treatment of the parts of the curves corresponding to |ξ| ď ξHF

where we choose ξHF as

ξHF :“
2 max

`␣

ωHF
r ´ ωη0

r , ωHF
ℓ ´ ωη0

ℓ

(˘

min
`␣

|ℑpζHF
` q|, |ℑpζHF

´ q|
(˘ .

Once again the motivation for the definition of ξHF stems from Lemma 2. Indeed the definition
ensures that for ω P R, a curve Λ, defined through

2

c

pf 1pu`8q ´ σεq2

4
´ ε g1pu`8q ` Λpξq “ ω ` i ξ ζωr,sgnpξq ,
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respectively through

2

c

pf 1pu´8q ´ σεq2

4
´ ε g1pu´8q ` Λpξq “ ω ` i ξ ζωℓ,sgnpξq ,

with

ζω7,˘ :“ ℜpζHF
˘ q ` i

˜

ℑ
`

ζHF
˘

˘

¯
ωHF

7 ´ ω

ξHF

¸

, 7 P tr, ℓu ,

satisfies

Λp˘ξHF q “ Λr
εp˘ξHF q , respectively Λp˘ξHF q “ Λℓ

εp˘ξHF q ,

whereas, for 7 P tr, ℓu, ω P rωη0
7
, ωHF

7 s,

ℜpζω7,˘q “ ℜpζHF
˘ q , ¯ℑpζω7,˘q ą 0 , |ℑpζω7,˘q| ď

3

2
|ℑpζHF

˘ q| .

In the following, for 7 P tr, ℓu, we use notation Λ7,LF
ε :“ pΛ7

εq|r´ξHF ,ξHF s and Λ7,HF
ε :“ pΛ7

εq|Rzr´ξHF ,ξHF s.
To ensure that Lemma 2 provides exponential time decay for the part of the evolution arising

from Λ7,HF
ε , we reinforce the constraint on ℜpζHF

˘ q by adding

ℜpζHF
˘ q ě

d

ℑpζHF
˘ q2 ` 2

max
`␣

pωHF
r q2 ´ pf 1pu`8q ´ σεq2, pωHF

ℓ q2 ´ pf 1pu´8q ´ σεq2
(˘

pξHF q2
.

After these preliminaries, to account for different behaviors, when t ą 0 we break Gε
t as

(4.5) Gε
t “ Gε,pt

t `Gε,ess
t

with Gε,pt
t and Gε,ess

t defined as follows. First

Gε,pt
t px, yq “ 0 , if xy ą 0 and

`

y ě ωHF
r t or y ď ´ωHF

ℓ t
˘

Gε,pt
t px, yq “

1

2 iπ

ż

Λ
eλ t Gεpλ;x, yq dλ if xy ă 0 ,

and when xy ą 0 and ´ωHF
ℓ t ă y ă ωHF

r t

Gε,pt
t px, yq

“

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

1
2 iπ

ş

Λr,LF
ε

eλ t e
ş0

´8
pf 1pUεq´f 1pu´8qq e1 ¨Vr,s

ε pλ, xq
rτ ℓε pλq

Dεpλq
e1 ¨rVr,s

ε pλ, yq dλ if x ą y ą 0

1
2 iπ

ş

Λℓ,LF
ε

eλ t e
ş0

´8
pf 1pUεq´f 1pu´8qq τ rε pλq

Dεpλq
e1 ¨Vℓ,u

ε pλ, xq e1 ¨rVℓ,u
ε pλ, yq dλ if 0 ą x ą y

1
2 iπ

ş

Λℓ,LF
ε

eλ t e´
ş`8

0 pf 1pUεq´f 1pu`8qq e1 ¨Vℓ,u
ε pλ, xq

rτ rε pλq

Dεpλq
e1 ¨rVℓ,u

ε pλ, yq dλ if 0 ą y ą x

1
2 iπ

ş

Λr,LF
ε

eλ t e´
ş`8

0 pf 1pUεq´f 1pu`8qq τ ℓε pλq

Dεpλq
e1 ¨Vr,s

ε pλ, xq e1 ¨rVr,s
ε pλ, yq dλ if y ą x ą 0 ,

where, here and in the definition of Gε,ess
t , Λ is either Λ “ Λr

ε or Λ “ Λℓ
ε, and we use compact

notation for integrals over curves instead of explicitly parametrized versions. Second,

Gε,ess
t px, yq “ 0 , if xy ă 0

Gε,ess
t px, yq “

1

2 iπ

ż

Λ
eλ t Gεpλ;x, yq dλ , if xy ą 0 and

`

y ě ωHF
r t or y ď ´ωHF

ℓ t
˘

,
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and when xy ą 0 and ´ωHF
ℓ t ă y ă ωHF

r t

Gε,ess
t px, yq

“

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

1
2 iπ

ş

Λr,LF
ε

eλ t e
ş0

´8
pf 1pUεq´f 1pu´8qq e1 ¨Vr,s

ε pλ, xq
rρℓεpλq

Dεpλq
e1 ¨rVr,u

ε pλ, yq dλ

` 1
2 iπ

ş

Λr,HF
ε

eλ t Gεpλ;x, yq dλ if x ą y ą 0

1
2 iπ

ş

Λℓ,LF
ε

eλ t e
ş0

´8
pf 1pUεq´f 1pu´8qq ρrεpλq

Dεpλq
e1 ¨Vℓ,s

ε pλ, xq e1 ¨rVℓ,u
ε pλ, yq dλ

` 1
2 iπ

ş

Λℓ,HF
ε

eλ t Gεpλ;x, yq dλ if 0 ą x ą y

1
2 iπ

ş

Λℓ,LF
ε

eλ t e´
ş`8

0 pf 1pUεq´f 1pu`8qq e1 ¨Vℓ,u
ε pλ, xq

rρrεpλq

Dεpλq
e1 ¨rVℓ,s

ε pλ, yq dλ

` 1
2 iπ

ş

Λℓ,HF
ε

eλ t Gεpλ;x, yq dλ if 0 ą y ą x

1
2 iπ

ş

Λr,LF
ε

eλ t e´
ş`8

0 pf 1pUεq´f 1pu`8qq ρℓεpλq

Dεpλq
e1 ¨Vr,u

ε pλ, xq e1 ¨rVr,s
ε pλ, yq dλ

` 1
2 iπ

ş

Λr,HF
ε

eλ t Gεpλ;x, yq dλ if y ą x ą 0 .

Note that the above splitting implies

BxG
ε
t “ BxG

ε,pt
t ` BxG

ε,ess
t

where here and elsewhere throughout the text, Bx acting on either Gε,pt
t or Gε,ess

t is understood
as a pointwise derivative wherever these functions are continuous.

The rationale behind the splitting is that the large-time decay of Gε,ess
t is essentially limited

by spatial decay hence may be thought as purely explained by essential spectrum considerations
whereas the large-time asymptotics of Gε,pt

t is driven by the presence near the spectral curves
of a root of Dε at λ “ 0, hence is due to the interaction of essential and point spectra.

Some extra complications in the splitting are due to the fact that we need to prepare the
identification of the most singular part as a phase modulation, which comes into a tensorized
form. This explains why we define zones in terms of the size of |y|, instead of the otherwise
more natural |x´ y|.

4.3. First pointwise bounds. We begin our use of Lemmas 1 and 2 with short-time bounds.

Lemma 3. There exist positive pε0, C, ω, θq such that for any t ą 0, any 0 ď ε ď ε0 and any
px, yq P R2

|Gε,pt
t px, yq| ` min

´

t1,
?
tu
¯

|BxG
ε,pt
t px, yq| ď C eω t e´θ |x| 1

?
t
e´θ y2

t ,

The foregoing lemma does not contain estimates on Gε,ess
t because those would be redundant

with the corresponding large-time estimates. The point of Lemma 3 is to show that for short-
time estimates the singularity at λ “ 0 may be avoided whereas this singularity is not present
in Gε,ess

t .

Proof. To bound Gε,pt
t px, yq when xy ă 0, we separate between x ą 0 ą y and x ă 0 ă y. The

analyses being completely similar, we only discuss here the former case. To treat it, we move
curves as in Lemmas 1 and 2 with β0 “ β “ |y|, α “ f 1pu´8q ´ σε, b “ ε g1pu´8q and note that

ℜpµε´pλ, u`8qq ď
1

2

`

f 1pu`8q ´ σε
˘

ă 0 .

More explicitly, we use Lemma 1 to bound the regime |y| ě ωHF
ℓ t which leads to the claimed

heat-like bound since

e´
p|y|´α tq2

4 t ď e
´

ˆ

1´
|α|

ωHF
ℓ

˙

y2

4 t
, |y| ě ωHF

ℓ t .
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In the remaining zone where |y| ď ωHF
ℓ t we use instead Lemma 2 to derive a bound that may

be converted into a heat-like bound through

e´
ωHF
ℓ ´α

2
|y| ď e

´

ˆ

1´
|α|

ωHF
ℓ

˙

y2

2 t
, |y| ď ωHF

ℓ t .

The estimates on Gε,pt
t px, yq when xy ą 0 are obtained in exactly the same way. □

We proceed with bounds on Gε,ess
t .

Lemma 4. There exist positive pε0, C, ω, θq such that for any t ą 0, any 0 ď ε ď ε0 and any
px, yq P R2

|Gε,ess
t px, yq| ` min

´

t1,
?
tu
¯

|BxG
ε,ess
t px, yq|

ď C 1|x´y|ď|y| e
´minpt|g1pu´8q|,|g1pu`8q|uq ε t 1

?
t

ˆ

e´θ
|x´y´pf 1pu`8q´σεq t|2

t ` e´θ
|x´y´pf 1pu´8q´σεq t|2

t

˙

` C e´ω t 1
?
t
e´θ y2

t .

This also implies that there exist positive pε0, C, θq such that for any θ1 ą 0 there exists ω1 ą 0
such that for any t ą 0, any 0 ď ε ď ε0 and any px, yq P R2

e´θ1|y|
´

|Gε,ess
t px, yq| ` min

´

t1,
?
tu
¯

|BxG
ε,ess
t px, yq|

¯

ď C e´ω1 t 1
?
t

ˆ

e´θ
|x´y´pf 1pu`8q´σεq t|2

t ` e´θ
|x´y´pf 1pu´8q´σεq t|2

t ` e´θ y2

t

˙

.

In the foregoing statement and throughout the text we use 1A to denote a characteristic
function for the condition A.

Proof. To deduce the second bound from the first we observe that for any α

θ

2 t
|x´ y ´ α t|2 ` θ1|x´ y| ě

#

1
2 θ

1 |α| t if |x´ y ´ α t| ď 1
2 |α| t

θ
4 |α|2 t if |x´ y ´ α t| ě 1

2 |α| t
.

To prove the first bound we should distinguish between regimes defined by 0 ă y ă x,
y ă x ă 0, 0 ą y ą x and y ą x ą 0. Regimes 0 ă y ă x and 0 ą y ą x on one hand and
y ă x ă 0 and y ą x ą 0 on the other hand may be treated similarly and we give details only
for the cases y ă x ă 0 and 0 ă y ă x.

Note that when y ă x ă 0, we have |x ´ y| ď |y|. When y ă x ă 0 and |y| ě ωHF
ℓ t, we

decompose the Green function in two parts according to

Vℓ,s
ε pλ, xq “ ρrεpλqVℓ,s

ε pλ, xq ` τ rε pλqVℓ,u
ε pλ, xq .

The τ rε -contribution is bounded by choosing the curve according to Lemma 1 with β0 “ β “ |y|,

α “ f 1pu´8q´σε, ζ˘ “ ζ
|y|{t
ℓ,˘ and b “ ε g1pu´8q. As for the ρrε-contribution, we choose the curve

according to Lemma 1 with β0 “ β “ |x´ y|, α “ σε ´ f 1pu´8q, ζ˘ “ ζ
|x´y|{t
ℓ,˘ and b “ ε g1pu´8q

when |x ´ y| ě tωη0
ℓ , and according to Lemma 2 with ω0 “ ωη0

ℓ , ζ˘ “ ζ
ω
η0
ℓ

ℓ,˘ , β “ |x ´ y| and

α “ f 1pu´8q ´ σε otherwise. To analyze the regime when y ă x ă 0 and |y| ă ωHF
ℓ t, we never

move the curve Λℓ,HF
ε (but bound its contribution according to Lemma 2) whereas we move

Λℓ,LF
ε as in Lemma 1 with ζ˘ “ ζ

|x´y|{t
ℓ,˘ when |x ´ y| ě ωη0

ℓ t or as in Lemma 2 with ζ˘ “ ζ
ω
η0
ℓ

ℓ,˘

when |x´ y| ď ωη0
ℓ t.

To bound the contribution of the regime 0 ă y ă x, we may proceed as when y ă x ă 0
provided that |x´y| ď |y| or ´ωHF

ℓ t ď y ď ωHF
r t. The remaining case is dealt with by applying

Lemma 1 with β0 “ |y| and β “ |x´ y| using the fact that f 1pu`8q ´ σε ă 0. □
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4.4. Linear phase separation. The large-time estimates for Gε,pt
t require a phase separation.

To carry it out we first recall that there exist parε, a
ℓ
εq P R2, each uniformly bounded from below

and above, such that

e1 ¨Vr,s
ε p0, ¨q “ arε U

1
ε , e1 ¨Vℓ,u

ε p0, ¨q “ aℓεU
1
ε .

Then we split Gε,pt
t as

Gε,pt
t px, yq “ U 1

εpxqGε,p
t pyq ` rGε,pt

t px, yq

with

Gε,p
t pyq “ 0 , if

`

y ě ωHF
r t or y ď ´ωHF

ℓ t
˘

,

whereas when ´ωHF
ℓ t ă y ă ωHF

r t

Gε,p
t pyq “

$

’

’

&

’

’

%

1

2 iπ

ż

Λr,LF
ε

eλ t e´
ş`8

0 pf 1pUεq´f 1pu`8qq aℓε e1 ¨rVr,s
ε pλ, yq

dλ

Dεpλq
if y ą 0

1

2 iπ

ż

Λℓ,LF
ε

eλ t e
ş0

´8
pf 1pUεq´f 1pu´8qq arε e1 ¨rVℓ,u

ε pλ, yq
dλ

Dεpλq
if y ă 0 .

As a result, when (y ě ωHF
r t or y ď ´ωHF

ℓ t),

rGε,pt
t px, yq “

#

0 , if xy ą 0
1

2 iπ

ş

Λ eλ t Gεpλ;x, yq dλ if xy ă 0 ,

whereas when xy ă 0 and ´ωHF
ℓ t ă y ă ωHF

r t

rGε,pt
t px, yq

“

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

1
2 iπ

ş

Λr,LF
ε

eλ t e
ş0

´8
pf 1pUεq´f 1pu´8qq e1 ¨ pVr,s

ε pλ, xq ´ Vr,s
ε p0, xqq e1 ¨rVℓ,u

ε pλ, yq
dλ

Dεpλq

` 1
2 iπ

ş

Λr,HF
ε

eλ t Gεpλ;x, yq dλ if x ą 0 ą y

1
2 iπ

ş

Λℓ,LF
ε

eλ t e´
ş`8

0 pf 1pUεq´f 1pu`8qq e1 ¨

´

Vℓ,u
ε pλ, xq ´ Vℓ,u

ε p0, xq

¯

e1 ¨rVr,s
ε pλ, yq

dλ

Dεpλq

` 1
2 iπ

ş

Λℓ,HF
ε

eλ t Gεpλ;x, yq dλ if y ą 0 ą x ,

and when xy ą 0 and ´ωHF
ℓ t ă y ă ωHF

r t, rGε,pt
t px, yq equals

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

1
2 iπ

ş

Λr,LF
ε

eλ t e
ş0

´8
pf 1pUεq´f 1pu´8qq

`

rτ ℓε pλq e1 ¨Vr,s
ε pλ, xq ´ rτ ℓε p0q e1 ¨Vr,s

ε p0, xq
˘ 1

Dεpλq
e1 ¨rVr,s

ε pλ, yq dλ

if x ą y ą 0

1
2 iπ

ş

Λℓ,LF
ε

eλ t e
ş0

´8
pf 1pUεq´f 1pu´8qq

´

τ rε pλq e1 ¨Vℓ,u
ε pλ, xq ´ τ rε p0q e1 ¨Vℓ,u

ε p0, xq

¯

e1 ¨rVℓ,u
ε pλ, yq

dλ

Dεpλq

if 0 ą x ą y

1
2 iπ

ş

Λℓ,LF
ε

eλ t e´
ş`8

0 pf 1pUεq´f 1pu`8qq
´

rτ rε pλq e1 ¨Vℓ,u
ε pλ, xq ´ rτ rε p0q e1 ¨Vℓ,u

ε p0, xq

¯

e1 ¨rVℓ,u
ε pλ, yq

dλ

Dεpλq

if 0 ą y ą x

1
2 iπ

ş

Λr,LF
ε

eλ t e´
ş`8

0 pf 1pUεq´f 1pu`8qq
`

τ ℓε pλq e1 ¨Vr,s
ε pλ, xq ´ τ ℓε p0q e1 ¨Vr,s

ε p0, xq
˘

e1 ¨rVr,s
ε pλ, yq

dλ

Dεpλq

if y ą x ą 0 ,

where, here again Λ is either Λ “ Λr
ε or Λ “ Λℓ

ε.
Proceeding as above, we obtain the following lemmas.
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Lemma 5. There exist positive pε0, C, ω, θq such that for any t ą 0, any 0 ď ε ď ε0 and any
px, yq P R2

| rGε,pt
t px, yq| ` min

´

t1,
?
tu
¯

|Bx rG
ε,pt
t px, yq|

ď C e´minpt|g1pu´8q|,|g1pu`8q|uq ε t e´θ |x| 1
?
t

ˆ

e´θ
|y´pf 1pu`8q´σεq t|2

t ` e´θ
|y`pf 1pu´8q´σεq t|2

t

˙

` C e´ω t e´θ |x| e´θ |x´y| .

This also implies that there exist positive pε0, C, θq such that for any θ1 ą 0 there exists ω1 ą 0
such that for any t ą 0, any 0 ď ε ď ε0 and any px, yq P R2

e´θ1|y|
´

| rGε,pt
t px, yq| ` min

´

t1,
?
tu
¯

|Bx rG
ε,pt
t px, yq|

¯

ď C e´ω1 t

ˆ

1
?
t

ˆ

e´θ
|y´pf 1pu`8q´σεq t|2

t ` e´θ
|y`pf 1pu´8q´σεq t|2

t

˙

` e´θ |x| e´θ |x´y| e´θ1|y|

˙

.

Lemma 6. There exist positive pε0, C, ω, θq such that for any t ą 0, any 0 ď ε ď ε0 and any
y P R

|Gε,p
t pyq| ď C eω t 1

?
t
e´θ y2

t .

Moreover, there exist positive pε0, C, ω, θq such that for any t ą 0, any 0 ď ε ď ε0 and any y P R

|BtG
ε,p
t pyq| ď C e´minpt|g1pu´8q|,|g1pu`8q|uq ε t 1

?
t

ˆ

e´θ
|y´pf 1pu`8q´σεq t|2

t ` e´θ
|y`pf 1pu´8q´σεq t|2

t

˙

.

This also implies that there exist positive pε0, C, θq such that for any θ1 ą 0 there exists ω1 ą 0
such that for any t ą 0, any 0 ď ε ď ε0 and any y P R

e´θ1|y| |BtG
ε,p
t pyq| ď C e´ω1 t 1

?
t

ˆ

e´θ
|y´pf 1pu`8q´σεq t|2

t ` e´θ
|y`pf 1pu´8q´σεq t|2

t

˙

.

To conclude and prove Proposition 7, we pick a smooth cut-off function χ on r0,`8q such

that χ ” 1 on r2,`8q and χ ” 0 on r0, 1s and define spε , rSε by

spε ptqpwq :“

ż

R
χptqGε,p

t pyqwpyq d y ,

rSεptqpwqpxq :“

ż

R

´

χptq pGε,ess
t px, yq ` rGε,pt

t px, yqq ` p1 ´ χptqqGε
t px, yq

¯

wpyq d y .

The definitions are extended to t “ 0 by spε p0qpwq “ 0 and rSεp0qpwq “ w.
As explained near its statement, Proposition 7 follows then from L8

x L
1
y bounds on Green

kernels, which themselves are derived from pointwise bounds proved above.

5. Nonlinear stability

In the present section we conclude the proof of Theorem 2.
To do so, we seek for u solving (2.1) under the form

(5.1) upt, xq “ U εpx` ψptqq ` vpt, x` ψptqq

with pv, ψ1q exponentially decaying in time. In these terms the equation becomes

Btv ` pf 1pU ε ` vq ´ σε ` ψ1qBxv ´ B2
xv(5.2)

“ ε pgpU ε ` vq ´ gpU εqq ´ pf 1pU ε ` vq ´ f 1pU εq ` ψ1qU 1
ε .
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Equation (5.2) may be solved through

vpt, ¨q “ rSεptq pv0q `

ż t

0

rSεpt´ sqNεrvps, ¨qq, ψ1psqs d s ,(5.3)

ψ1ptq “ Bts
p
ε ptq pv0q `

ż t

0
Bts

p
ε pt´ sqNεrvps, ¨qq, ψ1psqs d s ,(5.4)

with

Nεrw,φs :“ ´pf 1pU ε ` wq ´ f 1pU εq ` φqBxw ` ε pgpU ε ` wq ´ gpU εq ´ g1pU εqwq

´ pf 1pU ε ` wq ´ f 1pU εq ´ f2pU εqwqU 1
ε .

In the present section, for notational concision’s sake, we denote

ω8 “ minp|g1pu´8q|, |g1pu`8q|q .

To begin with, we observe that estimates of the foregoing section are almost sufficient to run
a continuity argument on (5.3)-(5.4). Indeed they provide the following proposition.

Proposition 8. There exist θ0 ą 0 and ε0 ą 0 such that for any 0 ă θ ď θ0 and δ ą 0, there
exist C ą 0 such that for any 0 ă ε ď ε0 and T ą 0, if pv, ψ1q solves (5.3)-(5.4) on r0, T s, with

}vpt, ¨q}L8pRq ď δ , t P r0, T s ,

then, for any t P r0, T s,

|ψ1ptq| ` }vpt, ¨q}W 1,8pRq

ď C }vp0, ¨q}W 1,8pRq e´ε ω8t

ˆ exp

ˆ

C sup
0ďsďT

eε ω8sp|ψ1psq| ` }vps, ¨q}L8pRq ` }pε` e´θ|¨|q´1Bxvps, ¨q}L8pRqq

˙

.

The estimate fails to close by the fact that }Bxw}L8pRq provides a weaker ε-uniform control

on w than }pε` e´θ|¨|q´1Bxw}L8pRq. Note however that for any x˚ ą 0,

}pε` e´θ|¨|q´1Bxw}L8pr´x˚,x˚sq ď eθx˚ }Bxw}L8pRq

so that we only need to improve the estimates on Bxvpt, ¨q on the complement of some compact
neighborhood of 0.

5.1. Maximum principle and propagation of regularity. To close our nonlinear estimates
without using neither localization nor parabolic smoothing — which would cause loss in powers
of ε—, we shall use a maximum principle argument.

To begin with, we state and prove a convenient classical abstract maximum principle. We
provide a proof mostly to highlight that it may be thought as an energy estimate on a suitable
nonlinear function.

Lemma 7. Let T ą 0, x˚ P R, η ą 0, a P L1pr0, T s;W 1,8prx˚,`8qqq bounded from above away
from zero and h P C0pr0, T sˆrx˚,`8qˆRq. If w P C2pp0, T qˆrx˚,`8qqXC0pr0, T sˆrx˚,`8qq

is a bounded function such that

Btw ` ap¨, ¨q Bxw ď B2
xw ` hp¨, ¨, wq , on r0, T s ˆ rx˚,`8q

and M is a positive constant such that

M ě wp¨, x˚q , on r0, T s ,

M ě wp0, ¨q , on rx˚,`8q ,

´η ¨ ě 1¨ąM hpt, x, ¨q ,

then
w ď M , on r0, T s ˆ rx˚,`8q .
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Proof. When moreover

M ą lim sup
xÑ8

wp¨, xq , on r0, T s

the claim is proved by a Grönwall argument on

t ÞÑ

ż `8

x˚

pwpt, xq ´Mq` dx .

The general case is recovered by applying this special case to pt, xq ÞÑ e´θ px´x˚q wpt, xq with
θ ą 0 sufficiently small and taking the limit θ Ñ 0. □

We now use the foregoing lemma to derive a weighted bound on Bxv outside a sufficiently
large compact neighborhood of 0. We shall insert such a bound in a continuity argument so that
we only need to prove that as long as Bxv does not become too large it remains small. This is
the content of the following proposition.

Proposition 9. There exists θ0 ą 0 such that for any 0 ă θ ď θ0, there exist x˚ ą 0, ε0 ą 0,
δ ą 0 and C ą 0 such that for any 0 ă ε ď ε0 and T ą 0, if pv, ψ1q solves (5.2) on r0, T s ˆ R,
with

|ψ1ptq| ` }vpt, ¨q}L8pRq ď δ e´ε ω8t , t P r0, T s ,

|Bxvpt, xq|

ε` e´θ|x|
ď δ e´ε ω8t , pt, xq P r0, T s ˆ R ,

then for any pt, xq P r0, T s ˆ pRzr´x˚, x˚sq

|Bxvpt, xq|

ε` e´θ|x|
ď C e´ε ω8t ˆ

´

sup
0ďsďT

eε ω8sp|ψ1psq| ` }vps, ¨q}L8pRq ` }Bxvps, ¨q}L8pr´x˚,x˚sqq

` }pε` e´θ|¨|q´1Bxvp0, ¨q}L8pRq

¯

.

Proof. We may argue separately to deal with bounds on x ě x˚ on one hand and on x ď ´x˚

on the other hand, and provide details only for the former. From now on we focus on x ě x˚.
We would like to apply Lemma 7 to both Aε Bxv and ´Aε Bxv for a suitable weight Aε

equivalent to pt, xq ÞÑ eε ω8t pε` e´θ|x|q´1. Our choice is

Aεpt, xq :“
eω8 ε t e

ş`8

t ε e´ε ω8s d s

ε` e´θ |x|
.

Note that one has

BtpAεBxvq `

˜

pf 1pU ε ` vq ´ σε ` ψ1q ` 2
θ e´θ|x|

ε` e´θ|x|

¸

BxpAεBxvq ´ B2
xpAεBxvq

“ pf 1pU εq ´ f 1pU ε ` vq ´ ψ1qAεU
2
ε ` pf2pU εq ´ f2pU ε ` vqqAεU

12
ε

´AεBxv
´

ε e´ε ω8t ´pf 1pU ε ` vq ´ σε ` ψ1q
θ e´θ|x|

ε` e´θ|x|

´ ε pω8 ` g1pU ε ` vqq ´
θ2 e´θx p2 ε ` e´θxq

pε` e´θxq2
` f2pU ε ` vqp2U 1

ε ` Bxvq

¯

.

Fixing first θ ą 0 sufficiently small, then x˚ sufficiently large and δ and ε sufficiently small, one
enforce that the term in front of BxpAεBxvq is bounded from above away from zero and the term

in front of AεBxv is bounded from below by a multiple of ε e´ε ω8t `θ e´θ|x|. This is sufficient to
apply Lemma 7 and derive the claimed upper bound on x ě x˚. □
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5.2. Proof of Theorem 2. Our very first task when proving Theorem 2 is to convert classical
local well-posedness yielding maximal solutions u to (2.1) into convenient local existence results
for pv, ψ1q.

This follows from the following simple observation. By design, spε ptq ” 0 when 0 ď t ď 1.
Thus if u solves (2.1) on r0, T s ˆ R then pv, ψ1q satisfying (5.1)-(5.3)-(5.4) may be obtained
recursively through

ψptq “ ψ0 , vpt, ¨q “ upt, ¨ ´ ψptqq ´ U ε , when 0 ď t ď minpt1, T uq ,

and, for any n P N,

ψ1ptq “ Bts
p
ε ptq pv0q `

ż t´1

0
Bts

p
ε pt´ sqNεrvps, ¨qq, ψ1psqs d s ,

ψptq “ ψ0 `

ż t

0
ψ1psq d s ,

vpt, ¨q “ upt, ¨ ´ ψptqq ´ U ε , when minptn, T uq ď t ď minptn` 1, T uq .

Now, combining together Propositions 8 and 9, one obtains that for any θ ą 0 sufficiently
small, there exist ε0 ą 0, δ ą 0 and C ě 1 such that for any 0 ă ε ď ε0, and pv0, ψ0q with

}v0}L8pRq ` }pε` e´θ|¨|q´1Bxv0}L8pRq ď δ ,

the corresponding solution u to (2.1), in the form (5.1), satisfies that if for some T ą 0 and any
0 ď t ď T

|ψ1ptq| ` }vpt, ¨q}L8pRq ` }pε` e´θ|¨|q´1Bxvpt, ¨q}L8pRq

ď 2C e´ε ω8t
´

}v0}L8pRq ` }pε` e´θ|¨|q´1Bxv0}L8pRq

¯

then for any 0 ď t ď T

|ψ1ptq| ` }vpt, ¨q}L8pRq ` }pε` e´θ|¨|q´1Bxvpt, ¨q}L8pRq

ď C e´ε ω8t
´

}v0}L8pRq ` }pε` e´θ|¨|q´1Bxv0}L8pRq

¯

.

From this and a continuity argument stem that u is global and that the latter estimate holds
globally in time. One achieves the proof of Theorem 2 by deriving bounds on ψ by integration
of those on ψ1 and going back to original variables.

Appendix A. Wave profiles

In the present Appendix, we prove Proposition 1. Let us first reformulate the wave profile
equation in terms of

rU ε :“
U ε ´ U0

ε
, rσε :“

σε ´ σ0
ε

.

The equation to consider is

rU
2

ε ´

´

pf 1pU0q ´ σ0q rU ε

¯1

“ ´ gpU0 ` ε rU εq ´

´

rσε pU0 ` ε rU εq

¯1

`

˜

fpU0 ` ε rU εq ´ fpU0q ´ ε f 1pU0q rU ε

ε

¸1

,

with rU εp0q “ 0, prσε, e
θ | ¨ |

rU ε, e
θ | ¨ |

rU
1

εq uniformly bounded, for some sufficiently small θ ą 0. As
announced in the introduction the framework we first consider is suboptimal from the point of
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view of spatial localization but we shall refine it in a second step. To carry out the first step we

introduce spaces W k,8
θ and their subspaces BUCk

θ , corresponding to norms

}v}
Wk,8

θ pRq
“

k
ÿ

j“0

} eθ | ¨ | Bj
xv}L8pRq .

In this first step, we just pick some 0 ă θ ă minptθℓ0, θ
r
0uq and let all the constants depend on

this particular choice.
We begin with two preliminary remarks. Firstly note that a simple integration yields that a

necessary constraint is

rσε “ ´
1

u`8 ´ u´8

ż

R
gpU0 ` ε rU εq “: rΣεrrU εs

and that

rNεrrU εs :“ ´ gpU0 ` ε rU εq ´

´

rΣεrrU εs pU0 ` ε rU εq

¯1

`

˜

fpU0 ` ε rU εq ´ fpU0q ´ ε f 1pU0q rU ε

ε

¸1

defines a continuous map from BUC1
θ to the closed subspace of BUC0

θ whose range is contained
in the set of functions with zero integral and that, on any ball of BUC1

θ , has an Opεq-Lipschitz
constant.

Secondly, denoting L0 the operator defined by

L0pvq :“ v2 ´ pf 1pU0q ´ σ0qvq1

on BUC0
θ , with domain BUC2

θ , we observe that L0 is Fredholm of index 0 (as a continuous
operator from BUC2

θ to BUC0
θ ), its kernel is spanned by U 1

ε and the kernel of its adjoint is
reduced to constant functions. The foregoing claims are easily proved by direct inspection but
may also be obtained with the arguments of Sections 2 and 3, combining spatial dynamics point
of view with a Sturm-Liouville argument. Since evaluation at 0 acts continuously on BUC2

θ and
U 1

0p0q ‰ 0, this implies that the restriction of L0 from the closed subspace of BUC2
θ consisting

of functions with value 0 at 0 to the closed subspace of BUC0
θ consisting of functions with zero

integral is boundedly invertible. Indeed, the inverse of this restriction is readily seen to be given
by

L:
0phqpxq :“ ´

ż x

0

ż `8

z

U 1
0pxq

U 1
0pzq

hpyq d y d z “

ż x

0

ż z

´8

U 1
0pxq

U 1
0pzq

hpyq d y d z .

Note that from the profile equation itself stems that if rU ε is a BUC1
θ -solution it is also a

BUC2
θ -solution so that the problem reduces to

rσε “ rΣrrU εs , rU ε “ L:
0p rNεrrU εsq .

If C0 is chosen such that C0 ą }L:
0
rNεr0Rs}

W 1,8
θ pRq

, it follows that, when ε is sufficiently small,

the map L:
0 ˝ rNε sends the complete space

!

v P BUC1
θ pRq ; vp0q “ 0 and }v}

W 1,8
θ pRq

ď C0

)

into itself and is strictly contracting with an Opεq-Lipschitz constant. Thus resorting to the
Banach fixed-point theorem achieves the first step of the proof of Proposition 1.

Note that, in order to conclude the proof, it is sufficient to provide asymptotic descriptions

of eθ
ℓ
ε| ¨ |pU ε ´u´8q, eθ

r
ε ¨ pU ε ´u`8q, eθ

ℓ
ε| ¨ | U 1

ε and eθ
r
ε ¨ U 1

ε. Indeed, on one hand, the asymptotic

comparisons for eθ
ℓ
ε| ¨ | U

pkq
ε and eθ

r
ε ¨ U

pkq
ε , k ě 2, are then deduced recursively by using the profile

equation (differentiated pk´2q times). On the other hand, since, for # P tℓ, ru, θ#ε “ θ#0 `Opεq,
32



the asymptotic descriptions are sufficient to upgrade the existence part of the first step arbitrarily

close to optimal spatial decay rates, α# Ñ θ#0 .

As a further reduction, we observe that the asymptotics for eθ
ℓ
ε| ¨ |pU ε ´u´8q, eθ

r
ε ¨ pU ε ´u`8q,

may be deduced from the ones for eθ
ℓ
ε| ¨ | U 1

ε and eθ
r
ε ¨ U 1

ε by integration since

e´θℓε x pU εpxq ´ u´8q ´ e´θℓ0 x pU0pxq ´ u´8q

“

ż x

´8

eθ
ℓ
ε py´xq

´

e´θℓε y U 1
εpyq ´ e´θℓ0 y U 1

0pyq

¯

d y

`

ż x

´8

eθ
ℓ
0 py´xq

´

epθℓε´θℓ0q py´xq ´1
¯

e´θℓ0 y U 1
0pyq d y

and likewise near `8.
To conclude, we derive the study of eθ

ℓ
ε| ¨ | U 1

ε and eθ
r
ε ¨ U 1

ε from the analysis of Proposition 2
(with K “ t0u). Indeed,

θℓε “ µε`p0;u´8q , θℓε “ ´µε´p0;u`8q ,

and

U 1
εpxq “

`

u`8 ´ u´8

˘

2

eθ
ℓ
ε x e1 ¨P ℓ

ε p0, xqRε
`p0;u´8q

ş0
´8

eθℓε y e1 ¨P ℓ
ε p0, yqRε

`p0;u´8q d y
,

“

`

u`8 ´ u´8

˘

2

´ eθ
r
ε x e1 ¨P r

ε p0, xqRε
´p0;u`8q

ş`8

0 e´θrε y e1 ¨P r
ε p0, yqRε

´p0;u`8q d y
.

Thus the claimed expansion stems from the smoothness in ε afforded by Proposition 2.
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