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Abstract. The present work shows that essentially all small-amplitude periodic traveling waves of
the electronic Euler-Poisson system are spectrally unstable. This instability is neither modulational
nor co-periodic, and thus requires an unusual spectral analysis and, beyond specific computations,
newly devised arguments. The growth rate with respect to the amplitude of the background waves
is also provided when the instability occurs.
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1. Introduction

The present work achieves a two-fold goal. On one hand, we are interested in understanding
plasma dynamics, in its own right. On the other hand, we intend to contribute to the young but
rapidly growing field studying spectral instabilities of periodic traveling waves that are neither
modulational nor co-periodic.

1.1. The Euler-Poisson system. We consider the electronic Euler-Poisson system without magnetic
field, a hydrodynamical model of plasma which describes the dynamics of electrons, coupled to a
background density of ions through a self-consistent electric field. In such a model, one neglects
the ions motion, to account for the time-scale separation induced by the small mass ratio between
electrons and ions.

The dynamics of electrons is then described by the following Euler-Poisson system
∂tρ+ div(ρu) = 0 ,

∂t(ρu) + div(ρu⊗ u) +∇P (ρ) = ρ∇ϕ ,

ϵ∆ϕ = ρ− ρi .

(1.1)

Here the unknowns ρ(t,x) ∈ R+, u(t,x) ∈ R3, ∇ϕ(t,x) ∈ R3 are the electron density, the electron
velocity and the self-consistent electric field at time t ∈ R and position x ∈ R3. The reference ion
density ρi is fixed and could depend on x but not on t. In the present contribution, we assume
ρi to be constant so that the system remains invariant by spatial translations and it makes sense
to consider traveling-wave solutions. The thermal pressure of electrons P (ρ) is often assumed to
follow a polytropic γ law, P (ρ) = Tργ with T ∈ R+ and γ ≥ 1. The constant ϵ is the square of
the quasi-neutral parameter, a multiple of the Debye length. The associated dynamics preserves
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curl-free constraints on velocity fields and, when restricted to irrotational velocities, System (1.1)
admits a Hamiltonian formulation

∂t

(
ρ
u

)
= J δ(ρ,u)H[ρ,u]

with skew-adjoint operator J and Hamiltonian density H given by

J :=

(
0 −div

−∇ 0

)
, H[ρ,u] :=

1

2
ρ ∥u∥2 + F (ρ) + ϵ ∥∇ϕ∥2 ,

where δ denotes the variational derivative, the internal energy F satisfies F ′′(ρ) = P ′(ρ)/ρ and
ϕ = ϵ−1∆−1(ρ− ρi) is thought as a function of ρ.

Note that when, as here, ρi is taken to be constant, a steady constant solution is obtained by
setting ρ ≡ ρi and taking u constant and ϕ zero. Local well-posedness in suitable Sobolev spaces
near such constant states requires P ′(ρi) to be nonnegative and we assume its positivity throughout.
There is a large body of literature concerning the stability of the foregoing constant states. We refer
the reader to [Guo98, GMP13, IP13, JLZ14, LW14, GHZ17, Zhe19] for both significant contributions
and relevant introductions to the extensive literature. Let us stress that such steady solutions are
at best marginally spectrally stable so that the above references rely on dispersive estimates and
normal forms, thus they are relatively sensitive to the choice of the pressure law, especially the value
( ϵρ∂ρP )(ρi).

In contrast, other equilibria or relative equilibria — such as traveling waves — of the electronic
Euler-Poisson system, even those of small amplitude, seem to have received no attention at all. The
main reason is surely that none of the traveling waves whose existence requires the co-existence
of two distinct equilibria at the same phase speed may exist for this system. Among plane waves
this excludes both solitary1 waves and kinks. Incidentally we point out that the situation is
already significantly better for the two-species or ionic versions of the system; see for instance
[CDMS96, HS02, HNS03, BK19, BK22].

In the present work, we consider plane periodic traveling waves, that is, solutions to (1.1) of the
form

(t,x) 7→ (ρ,u) (k · (x− tV))

with wave vector k ∈ R3, wave speed V ∈ R3 and 1-periodic profile (ρ,u) depending on a one-
dimensional variable. Note that for profiles that are non characteristic in the weak sense that the set
where ρ (u−V) vanishes has empty interior, an elementary computation shows that the component
of u orthogonal to k is constant. Therefore one may use Galilean invariance to reduce to the case
when u and k are co-linear. A suitable nondimensionalization may also bring the reduction ϵ = 1,
ρi = 1. Hereafter we shall make all these notational simplifications.

Since we are using it a few times, let us make explicit that here the Galilean invariance is the
fact that if (t,x) 7→ (ρ,u)(t,x) solves (1.1) then so does (t,x) 7→ (ρ,u+ a)(t,x− t a), for any fixed
a ∈ R3.

The upshot of our main achievement is that essentially any plane periodic traveling wave of
sufficiently small amplitude is spectrally unstable under localized perturbations. To achieve this
goal, by a well-known combination of elementary Fourier and spectral arguments, it is sufficient (but
not necessary) to prove spectral instability under perturbations with the same planar symmetry
as the background wave. We refer the reader to [AR22] for a detailed version of the argument,
specialized to waves of the nonlinear Schrödinger equations. From now on, we thus specialize to

1The reduced traveling wave profile ODE is planar so that the existence of a homoclinic loop implies the existence
of another constant state.
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one-dimensional solutions, that is solutions that for some fixed unitary vector e, depend only on
(t, e · x) and whose velocity field points everywhere in the direction of e. Then, denoting x := e · x
and u = e · u, System (1.1) becomes

∂tρ+ ∂x(ρ u) = 0 ,

∂t(ρ u) + ∂x(ρ u
2) + ∂xP (ρ) = ρ∂xϕ ,

∂2
xϕ = ρ− 1 .

(1.2)

Obviously one-dimensional solutions are curl-free and, consistently, System (1.2) inherits a one-
dimensional version of the Hamiltonian formulation given hereabove.

There is a further reduction that we want to perform. The goal of this step is two-fold: to
obtain another Hamiltonian formulation where the skew-adjoint operator J is replaced with an
invertible one and to get rid of the Poisson equation. With this in mind, let us first observe that if

(t, x) 7→ (ρ, u) (k (x− t V ))

defines a traveling-wave solution to (1.2) with wave number k ∈ R, wave speed V ∈ R and 1-periodic
profile (ρ, u), then the relative discharge rate ρ(u− V ) is constant, thus so is u+ (u− V ) ∂2

xϕ. By a
further Galilean transformation one may force u+ (u− V ) ∂2

xϕ ≡ 0 and we do so henceforth. Now,
let us observe that more generally the first equation of System (1.2) implies that ∂t∂xϕ+ (1 + ∂2

xϕ)u
is constant with respect to x, so that by restricting to localized perturbations of such a background
wave, one derives ∂t∂xϕ+ (1 + ∂2

xϕ)u = 0. As a result for the class of solutions we are interested in
it is sufficient to set2 E = ∂xϕ and replace (1.2) with{

∂tE + (1 + ∂xE)u = 0 ,

∂tu+ u∂xu+ ∂x(F
′(1 + ∂xE)) = E .

(1.3)

It is even more straightforward to check that solutions to (1.3) do yield solutions to (1.2).

Therefore one may restrict the analysis to the study of System (1.3). The latter also admits a
Hamiltonian formulation,

∂t

(
E
u

)
= Jδ(E,u)H[E, u]

with skew-adjoint operator J and Hamiltonian density H given by

J :=

(
0 −1
1 0

)
, H[E, u] :=

1

2
(1 + ∂xE)u2 + F (1 + ∂xE) +

1

2
E2 .

Let us observe that for System (1.3) the only constant solution is (E, u) ≡ (0, 0). We have indeed lost
the freedom to fix the velocity field to an arbitrary constant in normalizations leading to System (1.3)
and based on Galilean invariance. Moreover if

(t, x) 7→ (E, u) (k (x− t V ))

defines a traveling-wave solution to (1.3) with 1-periodic profile (E, u), then for some constant µ

1

2
E2 +W(1 + k E′;V ) ≡ µ (1.4)

where

∂ρW(ρ;V ) := (ρ− 1)h(ρ;V ) , h(ρ;V ) :=
V 2

ρ3
− F ′′(ρ) =

V 2 − P ′(ρ) ρ2

ρ3
.

2Note that E is the opposite of the electric field.
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Since ∂2
ρW(1;V ) = h(1;V ) = V 2−P ′(1), a family of small amplitude periodic waves with velocity V

may exists only if V 2 ≥ P ′(1) and, as we prove later, the supersonic condition V 2 > P ′(1) is sufficient
to guarantee the existence of such a family. Besides, in such cases, normalizing with W(1;V ) ≡ 0
ensures that the small-limit limit is equivalently described by sending µ to zero from above.

Before stating our main result, we point out that since when (t, x) 7→ (E, u)(t, x) solves (1.3) so
does (t, x) 7→ (−E,−u)(t,−x), it is sufficient to consider cases when V ≥ 0.

Theorem 1.1. Assume that P is smooth in a neighborhood of 1 with P ′(1) > 0. There exist
smooth functions δ0 : (

√
P ′(1),+∞) → R∗

+, Γ : (
√
P ′(1),+∞) → R and δ1 : Γ−1(R∗) → R∗

+

ω1 : Γ
−1(R∗) → R∗

+ such that on

Ω :=
{
(δ, V ) ; V >

√
P ′(1) , 0 ≤ δ < δ0(V )

}
there exists smooth functions

Ω → R∗
+ × C∞(R/Z)2 , (δ, V ) 7→ (k(δ,V ), E(δ,V )(·), u(δ,V )(·))

satisfying the following.

(1) For any V >
√

P ′(1), (E(0,V )(·), u(0,V )(·)) ≡ (0, 0).
(2) For any (δ, V ) ∈ Ω, (k(δ,V ), E(δ,V ), u(δ,V )) defines a periodic traveling wave to (1.3) with speed

V , solving (1.4) with µ = h(1;V ) δ2/2.
(3) For any V >

√
P ′(1) such that Γ(V ) ̸= 0 and 0 < δ < δ1(V ), the corresponding traveling

wave is spectrally unstable to localized perturbations with growth rate at least ω1(V ) δ3.

Furthermore, if P is analytic in a neighborhood of 1, then Γ is also analytic so that Γ−1({0}) is
either discrete or equal to (

√
P ′(1),+∞).

In the foregoing statement, δ plays the role of a small-amplitude parameter. The use of δ instead
of µ is motivated by the fact that then one may enforce

k(δ,V ) (E(δ,V ))′
δ→0
= δ cos(2π ·) +O(δ2) , u(δ,V ) δ→0

= V δ cos(2π ·) +O(δ2) ,

The function Γ is an instability index whose non vanishing ensures that corresponding small-
amplitude waves are unstable. We provide a relatively explicit — but quite awful — formula for Γ in
Proposition 5.5. The vanishing of Γ should be thought as rare and we indeed prove in Proposition 5.1
that in the case P (ρ) := T ργ , with T > 0, γ ≥ 1, the index Γ vanishes at most a finite number of
times.

Moreover, Γ detects only the strongest kind of instabilities due to one-dimensional perturbations.
However, as we sketch below, there is an infinite number of similar indices tracking possibly weaker
one-dimensional instabilities and whose vanishing is expected to be somehow independent of the one
of Γ. Thus we believe that all small-amplitude waves are unstable.

1.2. Periodic waves of Hamiltonian systems. We believe that the present case study also
provides significant insights for the stability analysis of periodic waves of Hamiltonian systems taken
in a broad sense and we take some time now to place it within this perspective. When doing so,
we allow ourselves to use standard technical terminology of the field whose definition is explicitly
recalled later in the text. With this in mind, we refer the reader to [KP13] for general background
on nonlinear wave dynamics, to [AP09, HK08, DBRN19] for material more specific to Hamiltonian
systems and to [Rod13, Rod15] for some perspectives on periodic traveling waves.
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Let us first recall that, as of now, there isn’t in the literature even a single instance of proof
of nonlinear stability under localized perturbations of a periodic traveling wave of a Hamiltonian
system. This is in strong contrast with on one side the situation for dissipative systems, in particular
parabolic ones, and on the other side the situation for periodic perturbations of the same period.
We refer the reader to [JNRZ13, JNRZ14] on the former. As for the latter, the starting point is that
with periodic boundary conditions one may integrate conservation laws accompanying the system
and use a Lyapunov-type argument to obtain bounded orbital stability. The precise analysis may
be thought as an extension of the classical Grillakis-Shatah-Strauss theory. On the latter we refer
the reader to [AP09, DBGRN15, DBRN19, BGMR16]. Likewise, to our knowledge there is only one
single contribution [Rod18] examining linear stability under localized perturbations, the latter being
the only piece of work discussed here analyzing dispersive properties of the dynamics near periodic
waves. At the nonlinear level, for localized perturbations, it is worth mentioning that some results
converting spectral instability into nonlinear instability do exist; see [JLL19]. Let us however warn
the reader that the instability result proved there is of orbital type, and not of space-modulated
type, which is the notion of stability proved to be sharp for parabolic systems in [JNRZ14]; for the
sake of comparison, see [DR22] for examples of proofs of nonlinear space-modulated instabilities (for
some hyperbolic equations).

In turn, spectral studies are well-developed and we provide here only a brief overview of the
literature. To begin with, we point out that results proving spectral stability for localized perturbation
of waves of arbitrary size are quite rare. Most of them have been obtained for systems that are
completely integrable by inverse scattering through a Lax pair representation. We refer the reader
to [UD20] for a quite systematic exposition of the argument and to references therein for a large
set of applications. A notable exception, using arguments that are arguably less systematic and
more special3 to the systems at hand, is the remarkable stability classification of waves of nonlinear
Klein-Gordon equations [JMMP14].

Concerning spectral instabilities of waves of arbitrary size, there are essentially two kinds of
results available. On one hand, it is possible a count modulo two of positive eigenvalues associated
with perturbations of the same period. The corresponding indices may be obtained either by a Krein
signature count [BJK11] or by an Evans function computation [BGMR16]. Note that the latter point
of view has the advantage of being quite robust and has been indeed applied previously to many other
kinds of waves and systems. For a quite large class of Hamiltonian systems, the corresponding index
has been computed in both small-amplitude and large-period regimes [BGMR20]. On the other hand,
one may analyze possible slow side-band instabilities, that is, those corresponding to spectrum near
the origin that are almost co-periodic. This relies on the understanding of the structure of nearby
traveling waves and may be carried out either by direct Floquet-Bloch expansions as described in
[BGNR14, BHJ16] or through Evans functions computations as in [AR22]. One of the points of
the latter is that it may be connected to formal geometrical optics and modulation theory. This
link is extremely robust and has also been proved for parabolic equations in [Ser05, NR13], lattice
dynamical systems in [KR16], and discontinuous waves of some hyperbolic systems in [JNR+19].
For a quite large class of Hamiltonian systems, the corresponding slow modulation criterion has been
elucidated in both small-amplitude and large-period regimes [BGMR21]. It is worth pointing out
that instabilities due to the non trivial part of the small-amplitude slow modulation criterion are
often designated as Benjamin–Feir instabilities, in reference to its formal derivation for Stokes waves
of free-surface water motion, and that they have been the object of many direct studies. See, in
particular, [BM95, BMV22] for rigorous proofs of the original Benjamin–Feir instability.

3In the same sense as the study of scalar reaction-diffusion equations through Sturm-Liouville theory.
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We now specialize the discussion to spectral stability/instability of small-amplitude periodic
waves. Beyond the results already mentioned, small-amplitude spectral stability results that have
been obtained so far [HLS06, GH07, Joh13] rely on a two-tier argument. On one hand one may rule
out slow modulational instabilities by a variation on the arguments mentioned above. On the other
hand in cases considered there one may prove that the latter was the only possible instability. This
follows by the quite robust argument that instability may only arise from the collision of eigenvalues
with opposite Krein signatures; see [Mac86, KKS04, KM14].

The situation for small-amplitude waves of the electronic Euler–Poisson system is dramatically
different in the sense that at zero amplitude there are not a single multiple eigenvalue but infinitely
many double eigenvalues with opposite signatures, including the one corresponding to slow modula-
tional perturbations. In this sense it is similar to the one occurring for Stokes waves and indeed, to our
knowledge, the only one other contribution aiming at the fully rigorously analysis of such a situation
is devoted to Stokes waves ; see the recent work [HY23]. Combining this new non-modulational
analysis with classical Benjamin–Feir instability they prove that all small-amplitude Stokes waves
are spectrally unstable. Let us stress that whereas we perform a direct Floquet-Bloch analysis,
the authors of [HY23] develop an Evans function approach, which does not seem to provide easily
information about expected growth rates. For a comparison of traditional advantages of the two
kinds of approaches we refer to [Rod13, p.47].

From a technical point of view, our mathematical analysis is closer in spirit to the formal
asymptotic analyses in [TDK18, CDT21, CDT22]. The latter differ from fully mathematical proofs
only by the fact that they assume the existence of smooth expansions for all quantities of interest,
a highly non trivial fact when multiple eingenvalues are to be perturbed. We stress that indeed,
already in the by now classical slow modulation theory, the main step of rigorous analyses is to prove
that this smoothness holds despite the initial presence of Jordan blocks, a result that is highly non
generic from the point of view of general linear algebra.

1.3. General mechanism. We believe that the mechanism yielding the spectral instability proved
here is quite robust. Thus we outline in the introduction the main wheels of the machinery. The
strategy of the actual proof is precisely to prove the claims sketched below and compute associated
key coefficients.

To begin with, for the sake of readability, let us drop any mark of the dependence on V in the
present discussion and denote Lδ the operator with 1-periodic coefficients obtained by linearizing
(1.3) about a traveling wave of parameter (δ, V ), in suitably scaled co-moving coordinates. Since we
are interested in localized perturbations, the operator is defined as acting on functions living in a
L2(R)-based space. Then, exactly as Fourier transform is used for constant-coefficient operators,
one may use the Floquet-Bloch transform to decompose the action of Lδ as the action of multipliers
Lδ
ξ by Floquet multiplier ξ. Each multiplier Lδ

ξ is a differential operator acting on functions living
in a L2(R/Z)-based space and has compact resolvents hence discrete spectra consisting entirely
of eigenvalues of finite multiplicity depending continuously on ξ. Moreover, as a consequence, the
spectrum of Lδ is the union over ξ of the spectra of all Lδ

ξ.

A key element of the analysis is that Lδ inherits form the Hamiltonian structure the factorization
Lδ = J Aδ, with Aδ a self-adjoint operator. This yields the Hamiltonian symmetry (Lδ)∗ =
−J−1 Lδ J , and correspondingly (Lδ

ξ)
∗ = −J Lδ

ξ J
−1. This readily implies the classical Hamiltonian

properties that spectral stability is possible only if the spectrum lies on the imaginary axis and that
only multiple eigenvalues may leave the imaginary axis when varying parameters.
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Note that recasting Fourier analysis in terms of Bloch transform provides a complete description
of the spectrum of L0

ξ for any ξ, and that eigenvalues are at most of multiplicity 2. Let λ0 ∈ iR be
a double eigenvalue of L0

ξ0
for some ξ0. Then when (δ, ξ − ξ0) is sufficiently small, the spectrum of

Lδ
ξ near λ0 coincides with the one of any two-by-two matrix

Dδ
ξ =

(
⟨q̃δℓ (ξ, ·), Lδ

ξq
δ
m(ξ, ·)⟩L2

per

)
1≤ℓ,m≤2

defined from (qδ1(ξ, ·), qδ2(ξ, ·)) a basis of the sum of characteristic spaces of Lδ
ξ associated with

eigenvalues near λ0, and (q̃δ1(ξ, ·), q̃δ2(ξ, ·)) a dual basis of the corresponding space of (Lδ
ξ)

∗ associated
with eigenvalues near λ0. In the foregoing, ⟨·, ·⟩L2

per
denotes the canonical L2 scalar product on

L2(R/Z), skew-linear in its first variable. The classical Kato perturbation theory allows to construct
all the quantities involved hereabove smoothly and even to prescribe a choice when δ = 0 and to
extend it while preserving real and Hamiltonian symmetries.

Now, at δ = 0, Fourier analysis and Hamiltonian symmetry provides bases (p01(ξ, ·), p02(ξ, ·))
and (p̃01(ξ, ·), p̃02(ξ, ·)) for the direct and dual spaces, of the form p0m(ξ, ·) = e2π i j1 · Pm(ξ), m = 1, 2
and p̃0ℓ(ξ, ·) = i J−1p0ℓ(ξ, ·), ℓ = 1, 2, where (j1, j2) are some fixed integers independent of ξ and
distinct. We warn the reader that at this stage the two bases are not in duality. However, on one
hand, since j1 ̸= j2, p0m(ξ, ·) and p̃0ℓ (ξ, ·) are already orthogonal when ℓ ̸= m, and, on the other hand,
since4 i J−1 is self-adjoint, ⟨p̃0ℓ (ξ, ·), p0ℓ (ξ, ·)⟩L2

per
, ℓ = 1, 2, are real. As a consequence, one may scale

the foregoing bases into (q01(ξ, ·), q02(ξ, ·)) and (q̃01(ξ, ·), q̃02(ξ, ·)) such that q̃0ℓ (ξ, ·) = εℓ i J
−1q0ℓ (ξ, ·),

ℓ = 1, 2, where εℓ ∈ {−1, 1} is the sign of ⟨p̃0ℓ (ξ, ·), p0ℓ (ξ, ·)⟩L2
per

.

The latter property is preserved by the extension operator to δ > 0. This implies that when
ε1 ε2 > 0, the matrix Dδ

ξ is skew-adjoint, as a real multiple of

i
(
⟨qδℓ (ξ, ·), Aδ

ξq
δ
m(ξ, ·)⟩L2

per

)
1≤ℓ,m≤2

.

This recovers in concrete form the above claim about Krein signatures, that are signatures of i J−1

restricted to characteristic spaces. Concrete computations for (1.3) show however that this never
happens so that the case to consider is really when ε1 ε2 < 0. Then the above normalization puts
Dδ

ξ in the form

Dδ
ξ = i

(
α1(ξ, δ) β(ξ, δ)

−β(ξ, δ) α2(ξ, δ)

)
, αm(ξ, δ) ∈ R , m = 1, 2 .

The corresponding eigenvalues are

i

(
α1 + α2

2
±
√

(α1 − α2)2

4
− |β|2

)
(evaluated at (ξ, δ)). Therefore the possible emergence of unstable spectrum near (λ, ξ, δ) = (λ0, ξ0, 0)
is effectively reduced to the fact that (α1 − α2)

2/4− |β|2 could take negative values.

Now, on one hand from orthogonality of trigonometric monomials and the fact that in the
expansion of profiles as powers of δ the δm-coefficient is a trigonometric polynomial of power less
than m, one gets that

β(ξ, δ)
(ξ,δ)→(ξ0,0)

= Γ δ|j1−j2| +O(δ|j1−j2| ∥(ξ − ξ0, δ)∥)

4This is the reason why we have introduced an i in the definition of p̃ℓ from pℓ.
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for some coefficient Γ. On the other hand one readily checks that if (α1 − α2)(ξ, 0) splits linearly
in ξ − ξ0, by the Implicit Function Theorem, there exists a smooth function δ 7→ Ξ(δ) such that
Ξ(0) = ξ0 and (α1 − α2)(Ξ(δ), δ) = 0. When ∂ξ(α1 − α2)(ξ0, 0) ̸= 0 and Γ ̸= 0, one then concludes
that for any δ > 0 sufficiently small one gets at ξ = Ξ(δ) a spectral instability of size at least δ|j1−j2|.
With a little more work, one may fully describe the shape of the arising instability spectrum and
prove that it forms an instability bubble asymptotically shaped as an ellipse. This is illustrated in
Figure 1.

(a) (b)

(c) (d)

Figure 1. An example of spectral instability. The pressure law is P (ρ) = ρ2/4.
The velocity V is such that the limiting wavenumber is 1. The wave is the one
of second smallest amplitude (red curve) in Figure 2. In (a), the full spectrum
is displayed. In (b), (c), and (d), we zoom on the three first instability bubbles,
corresponding respectively to |j1 − j2| = 3, |j1 − j2| = 4 and |j1 − j2| = 5. The
bubble of (d) is too small to be seen on (a). The spectrum is computed following
Hill’s method, as detailed in [Rod13, Section 3.1].

To complete the discussion there remains mainly to discuss what are possible values of |j1 − j2|.
For (1.3), the value of |j1− j2| may be any integer larger or equal to 2. The minimal case |j1− j2| = 2
is reached at (λ0, ξ0) = (0, 0), whose perturbation corresponds to the slow modulational regime, but
there ∂ξ(α1 − α2)(ξ0, 0) = 0 and another kind of discussion is required, whose conclusion for (1.3)
is that no instability may arise there, at least for power pressure laws. We stress that the latter
vanishing is by no way accidental and is related to the fact that in the small-amplitude limit two
characteristic velocities of the modulation system coincide; see the detailed discussion in [BGMR21].
From the consideration of the next possible value, |j1 − j2| = 3, stems Theorem 1.1.
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We stress that when all the pieces of the sketched scenario have been carefully justified one may
still wish to obtain a concrete expression for the index Γ. We do so for Theorem 1.1 but we warn
the reader that despite the fact that this is probably one of the simplest possible computations of
its kind, it is still technically demanding. In even more challenging cases of [HY23, CDT22] similar
computations have been carried out using symbolic computation softwares.

In the next section, we prove the existence of small-amplitude periodic traveling-wave solutions
to (1.3) and provide corresponding asymptotic expansion. In Section 3 we provide some elements
of background about spectral problem, including elements of Floquet-Bloch theory and constant-
coefficient computations. Section 4 is devoted to ruling out slow modulational instabilities, and we
show in Appendix B that this is consistent with formal modulation theory. At last, Section 5 proves
Theorem 1.1.

Acknowledgment: L.M.R. would like to warmly thank Corentin Audiard for enlightening discussions
about Krein signatures, during the preparation of [AR22]. L.M.R. expresses his gratitude to INSA
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of the present contribution. P.N. and L.M.R. would like to thank the Isaac Newton Institute for
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its hospitality during the workshop Geometrical Methods, non Self-Adjoint Spectral Problems, and
Stability of Periodic Structures, organized by Ramón Plaza, where they have heard about an early
version of the arguments used in [TDK18, CDT21, CDT22].

2. Existence of small-amplitude periodic waves

We begin by discussing the existence part of Theorem 1.1. First, we eliminate u(δ,V ) through

u(δ,V ) = V
k(δ,V )(E(δ,V ))′

1 + k(δ,V )(E(δ,V ))′
= V

(
1− 1

1 + k(δ,V )(E(δ,V ))′

)
. (2.1)

Then, by examining (1.4) near the maximal value of E (in the small amplitude regime), one
derives that 1 must be a root of W(·;V ) of even order and that the associated first non-vanishing
derivative must be positive. Correspondingly we compute ∂2

ρW(1;V ) = h(1;V ) = V 2 − P ′(1) so
as to derive that V 2 − P ′(1) ≥ 0 is necessary, and moreover we observe that, when V 2 = P ′(1),
∂3
ρW(1;V ) = −P ′′(1)− 2P ′(1), the latter being nonzero for most common pressure laws, including

all convex ones.

For this reason, we assume from now on V >
√
P ′(1). To analyze (1.4), we point out that by

applying a suitable version of the Implicit Function Theorem, as in [BGMR20, Lemma C.1], one
derives that

W(1 + ζ n;V ) = ζ2
h(1;V )

2

is equivalent for n sufficiently close to 1, respectively −1, and ζ sufficiently small to

n = W†(ζ;V ) , resp. n = −W†(−ζ;V ) ,
9



for some smooth function W† taking the value 1 at (0, V ). With this in hands, variations on classical
computations of periods of nonlinear pendulums yield that necessarily

1

k(δ,V )
=
√
h(1;V )

∫ 1

−1

(
1

W†(δ
√
1− ν2;V )

+
1

W†(−δ
√
1− ν2;V )

)
dν√
1− ν2

=
√

h(1;V )

∫ π

−π

dθ

W†(δ cos(θ);V )
.

Note that the dependence of k(δ,V ) on δ is even.

With this choice of k(δ,V ), it is then sufficient to solve the ODE Cauchy problem

(E(δ,V ))′′ = − E(δ,V )

(k(δ,V ))2 h(1 + k(δ,V ) (E(δ,V ))′;V )
,

E(δ,V )(0) = 0 , (E(δ,V ))′(0) = δ
W†(δ;V )

k(δ,V )
.

To motivate the normalization (imposed to quotient the freedom due to the invariance by spatial
translations), let us point out that it follows from (1.4) that the maximum and minimum value of
E(δ,V ) are necessarily opposite. With the present choice, E(δ,V ) is odd and u(δ,V ) is even.

At this stage, we may already justify one of the claims of the introduction about the structure
of the expansion. Indeed one may check recursively that inserting

E(δ,V ) δ→0
=

M∑
j=1

δjEV
j +O(δM+1)

in the foregoing profile ODE yields an equation of the form

(EV
M )′′ + (2π)2EV

M = RV
M

where RV
M is a linear combination of sin(2π j ·), |j| ≤ M , so that EV

M is given by a similar combination.

To complete this short preliminary section, we compute a few coefficients in asymptotic expan-
sions when δ → 0. To begin with, note that

k(δ,V ) δ→0
= kV0 + δ2 kV2 +O(δ4) , kV0 =

1

2π
√

h(1;V )
,

whereas

kV0 EV
1 =

sin(2π ·)
2π

. (2.2)

Before going on we observe that

∂ℓ
ρW(1;V ) = (ℓ− 1) ∂ℓ−2

ρ h(1;V ) ℓ ≥ 2 ,

thus

∂ζW†(0;V ) = −1

6

∂3
ρW(1;V )

∂2
ρW(1;V )

= −1

3

∂ρh(1;V )

h(1;V )
,

∂2
ζW†(0;V ) = 5 (∂ζW†(0;V ))2 − 1

12

∂4
ρW(1;V )

∂2
ρW(1;V )

=
5

9

(
∂ρh(1;V )

h(1;V )

)2

− 1

4

∂2
ρh(1;V )

h(1;V )
.

Therefore,

kV2
kV0

=
1

2

(
∂2
ζW†(0;V )

2
− (∂ζW†(0;V ))2

)
=

1

12

(
∂ρh(1;V )

h(1;V )

)2

− 1

16

∂2
ρh(1;V )

h(1;V )
.

10



By expanding the Cauchy problem for the profile ODE one also gets

kV0 (EV
2 )

′′ + (2π)2 kV0 EV
2 = (2π)

∂ρh(1;V )

h(1, V )

sin(4π ·)
2

,

EV
2 (0) = 0 , (EV

2 )
′(0) =

∂ρW†(0;V )

kV0
= − ∂ρh(1;V )

3 kV0 h(1;V )
,

thus

kV0 EV
2 = −1

3

∂ρh(1;V )

h(1, V )

sin(4π ·)
4π

. (2.3)

At last,

kV0 (EV
3 )

′′ + (2π)2 kV0 EV
3

∈ −(2π)

(
1

2

(
∂ρh(1;V )

h(1, V )

)2

− 1

8

∂2
ρh(1;V )

h(1, V )

)
sin(6π ·) + Span{ sin(4π ·) , sin(2π ·) }

so that

kV0 EV
3 ∈ 3

16

((
∂ρh(1;V )

h(1, V )

)2

− 1

4

∂2
ρh(1;V )

h(1, V )

)
sin(6π ·)

6π
+ Span{ sin(4π ·) , sin(2π ·) } . (2.4)

To conclude we determine the sign of kV2 in the power law case.

Lemma 2.1. For the pressure law P = T (·)γ, with T > 0 and γ ≥ 1, we have

kV2 > 0. (2.5)

Proof. This stems from V 2 > Tγ and the following direct computations,

h(1;V ) = V 2 − Tγ , ∂ρh(1;V ) = −3V 2 − Tγ(γ − 2) ,

∂2
ρh(1;V ) = 12V 2 − Tγ(γ − 2)(γ − 3) .

Indeed those imply

−∂2
ρh(1;V )h(1;V ) +

4

3
(∂ρh(1;V ))2

= V 2Tγ(γ + 1)(γ + 2) + (Tγ)2
(
4

3
(γ − 2)2 − (γ − 2)(γ − 3)

)
> (Tγ)2

(
(γ + 1)(γ + 2)− (γ − 2)(γ − 3) +

4

3
(γ − 2)2

)
=

4

3
(Tγ)2(γ + 1)2.

□

For the sake of readability, from now on we shall drop marks of dependencies on V , since the role
of V is more passive than the one of δ. Correspondingly we shall denote with primes the derivatives
with respect to ρ of functions of (ρ;V ).

Before going on with our analysis, we would like to stress that the family of waves built here
can be continued beyond the small amplitude limit. It does terminate though, not as a solitary wave,
since the system does not admit solitary waves, but as a peakon. Explicitly, when the pressure law is
taken to be an increasing and strictly convex function, h vanishes exactly once at some value ρmax,
and ρmax > 1. This value is the maximal value for the electronic charge density of waves and the
family of periodic waves ends when this value is reached. The limiting object is a periodic peakon in
orginal variables (ρ, u), that is, in these variables the limiting wave is periodic, continuous, piecewise

11



C1, but has a jump in its first-order derivative. This jump takes place where ρ = ρmax and can be
easily computed. We illustrate this phenomenon in Figure 2. We leave as a possible interesting
further development the elucidation of the peakon instability and its use for smooth waves of nearly
maximal amplitude.

Figure 2. A family of wave profiles. Plot of the scaled profiles for the total
charge n = ρ − 1 = kE′ of various waves. The pressure law is P (ρ) = ρ2/4. The
velocity is held fixed to the value V such that kV0 = 1.

3. Spectral preliminaries

To benefit from the structure of nearby periodic waves, it is useful not only to go to a co-moving
frame, so as to make the wave stationary, but also to scale period. Namely, here, we analyze solutions
(E, u) to System (1.3) through (Ẽ, ũ) defined by5

(E, u)(t, x) = (Ẽ, ũ)(t, k(δ) (x− t V )) .

However for concision’s sake, we drop tildes and simply observe that after this change of coordinates
linearizing about (Eδ, uδ) yields,

∂tE + (uδ − V ) k(δ)∂xE + (1 + k(δ)(Eδ)′)u = 0 ,

∂tu+ k(δ)∂x

(
(uδ − V )u

)
+ k(δ)∂x

(
F ′′(1 + k(δ)(Eδ)′) k(δ)∂xE

)
= E .

The latter is also written, for U = (E, u), as

∂tU = LδU ,

5We recall that k(δ) also depends on V but we do not mark this dependency anymore.
12



where Lδ = ΣL
δ (x, k

(δ)∂x) is a 1-periodic differential operator, frequency-scaled from ΣL
δ (x, ∂x) the

differential operator associated through standard6 quantization with symbol ΣL
δ

ΣL
δ (·, ζ) :=

(
(V − uδ) ζ −(1 + k(δ)(Eδ)′)

1− F ′′(1 + k(δ)(Eδ)′)ζ2 − F ′′′(1 + k(δ)(Eδ)′) (k(δ))2(Eδ)′′ ζ (V − uδ)ζ − k(δ)(uδ)′

)
.

3.1. Functional-analytic framework. It is important to note that from V >
√
P ′(1) stems that,

when δ is sufficiently small,

(V − uδ)2 − F ′′(1 + k(δ)(Eδ)′)(1 + k(δ)(Eδ)′) = (V − uδ)2 − P ′(1 + k(δ)(Eδ)′)

does not vanish so that the operator Lδ is non characteristic. As a consequence, considering Lδ

as acting on H1(R) × L2(R) with domain H2(R) ×H1(R), turns it into a densely defined closed
operator. Moreover, from the fact that the same quantity is positively-valued one deduces that the
linearized system is symmetrizable, which implies, as expected, that Lδ does generate a C0-semigroup
on H1(R)× L2(R).

Note that Lδ has real coefficients, thus it commutes with complex conjugation so that its
spectrum is symmetric with respect to the real axis.

Furthermore, Lδ has the Hamiltonian structure

Lδ = J Aδ

with skew-adjoint operator J given by

J =

(
0 −1
1 0

)
,

and Aδ a self-adjoint operator, explicitly, Aδ = ΣA
δ (x, k

(δ)∂x) where

ΣA
δ (·, ζ) :=

(
1− F ′′(1 + k(δ)(Eδ)′)ζ2 − F ′′′(1 + k(δ)(Eδ)′) (k(δ))2(Eδ)′′ ζ (V − uδ)ζ − k(δ)(uδ)′

(uδ − V ) ζ (1 + k(δ)(Eδ)′)

)
.

Up to scaling, Aδ is the variational Hessian of H+ V M at the background wave, where M is the
momentum density,

M[E, u] := −u ∂xE ,

or, in other words, where M generates spatial translations in the sense that JδM[E, u] = ∂x(E, u).
As a consequence, one obtains the following relation between Lδ and its adjoint7 (Lδ)∗,

(Lδ)∗ = −J−1LδJ .

In particular, the spectrum of Lδ is symmetric with respect to the imaginary axis.

We recall that one of the main consequences of the latter is that the traveling wave under
consideration is spectrally stable if and only if the spectrum of Lδ is contained in the imaginary axis.

6Not Weyl’s.
7Throughout the paper we use Hilbertian formalism for adjoints, that is, we identify Hilbert spaces with their duals

when considering adjoints so that operators and their adjoints act on the same spaces.
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3.2. Bloch transform. To analyze the spectrum of periodic coefficient operators it is expedient to
introduce Bloch symbols, associated with the (Floquet-)Bloch transform. Thus we recall here a few
basic elements of the corresponding theory.

Let us first introduce notation F(f) = f̂ for the Fourier transform of f , defined explicitly when
f ∈ L1(R) by

F(f)(ξ) = f̂(ξ) :=
1

2π

∫
R
e−iξxf(x)dx

and recall that when both f ∈ L1(R) and f̂ ∈ L1(R)

f(x) =

∫
R
eixξ f̂(ξ) dξ

holds in pointwise sense. The latter is extended by density and duality to less smooth and less
localized f , using mostly the classical L2 isometry of the Fourier transform.

Likewise, the inverse Bloch transform provides for any f ∈ L1(R) such that f̂ ∈ L1(R),

f(x) =

∫ π

−π
eixξ f̌(ξ, x) dξ (3.1)

where the direct Bloch transform of f , B(f) = f̌ , is defined as

B(f)(ξ, x) = f̌(ξ, x) :=
∑
j∈Z

ei2πjxf̂(ξ + 2jπ) =
∑
ℓ∈Z

e−iξ (x+ℓ)f(x+ ℓ) . (3.2)

Note that by design, for each ξ, f̌(ξ, ·) is periodic of period 1, so that f is written as an integral
of functions gξ = eiξ ·f̌(ξ, ·) satisfying gξ(x + 1) = eiξ gξ(x). Such functions are known as Bloch
waves, the number eiξ being a Floquet multiplier, and ξ is classically called Floquet exponent.
Various extensions are then carried out by exploiting that

√
2π B is an isometry from L2(R) to

L2((−π, π);L2(R/Z)).

With the help of the inverse Bloch transform (3.1), one can turn an operator with periodic
coefficients acting on a function over R into a family of operators, its Bloch symbols, acting on
periodic functions. Explicitly, for the case at hand,

Lδ(U)(x) =

∫ π

−π
eixξLδ

ξ(BU(ξ, ·))(x)dξ. (3.3)

where each Lδ
ξ := ΣL

δ (x, k
(δ)(∂x+iξ)) acts on H1(R/Z)×L2(R/Z) with domain H2(R/Z)×H1(R/Z).

The main gain when replacing the direct analysis of Lδ with those of Lδ
ξ is that each Lδ

ξ has compact
resolvent thus spectrum reduced to eigenvalues of finite multiplicity, arranged discretely. A key
related observation is that

σ(Lδ) =
⋃

ξ∈[−π,π]

σper(L
δ
ξ),

where we have added the suffix per to mark that each Lδ
ξ acts on functions over R/Z. The latter

decomposition is by now classical in the field and we refer the reader for instance to [Mie97,
Appendix A] or [Rod13, p.30-31] for a proof.

To conclude, we point out how real and Hamiltonian symmetries are transferred to Bloch
symbols, namely

Lδ
ξ U = Lδ

−ξ U , (Lδ
ξ)

∗ = −J−1Lδ
ξJ .
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3.3. Constant-coefficient computations. Since our analysis is perturbative from the constant-
coefficient case — when δ = 0 —, we need to recast some of the classical Fourier constant-coefficient
computations in terms of Floquet-Bloch analysis.

Since ΣL
0 (x, ζ) does not depend on x, let us accordingly denote by ΣL

0 (ζ) its value. By using
spectral decomposition arising from the introduction of Fourier series, one obtains

σper(L
0
ξ) =

⋃
j∈Z

σ
(
ΣL
0

(
k(0)(2π j + ξ)

))
=
⋃
j∈Z

{λj
−(ξ);λ

j
+(ξ)}

where

λj
±(ξ) := λ±(k

(0) (2πj + ξ)) , λ±(ζ) := i
(
V ζ ±

√
1 + P ′(1)ζ2

)
. (3.4)

Note incidentally that combining the latter Fourier series spectral decomposition with the Bloch
transform spectral decomposition recovers the classical Fourier transform spectral decomposition

σ(L0) =
⋃
ζ∈R

σ
(
ΣL
0 (ζ)

)
=
⋃
ζ∈R

{λ−(ζ);λ+(ζ)} .

For later use, we also introduce notation φj
±(ξ, ·) for Bloch eigenfunctions associated with λj

±(ξ),

φj
±(ξ, x) := ei 2πj x

(
1

∓ iωj(ξ)

)
(3.5)

where
ωj(ξ) :=

√
1 + P ′(1)(k(0))2(2πj + ξ)2. (3.6)

It follows readily from Hamiltonian symmetry that unstable spectra may only arise from
multiple eigenvalues. With this in mind, we observe that from V >

√
P ′(1) stems that the functions

ζ 7→ Im (λ±(ζ)) are both strictly increasing (with derivative bounded away from zero). Therefore
multiplicity is at most two and we only need to investigate the existence of (j, j′, ξ) such that
λj
−(ξ) = λj′

+(ξ). This is the purpose of the following lemma.

Lemma 3.1. (1) For any (j, j′, ξ) ∈ Z2 × [−π, π] such that j′ ≥ j − 1, λj
−(ξ) ̸= λj′

+(ξ).
(2) There exists a unique (j2, j

′
2, ξ2) ∈ Z2 × [−π, π) such that j′2 = j2 − 2 and λj2

− (ξ2) = λ
j′2
+ (ξ2).

(3) For any ℓ ∈ N, ℓ > 2, there exist exactly two (j±,ℓ, j
′
±,ℓ, ξ±,ℓ) ∈ Z2 × [−π, π) such that

j′±,ℓ = j±,ℓ − ℓ and λ
j±,ℓ

− (ξ±,ℓ) = λ
j′±,ℓ

+ (ξ±,ℓ).

Moreover, j2 = 1, j′2 = −1, ξ2 = 0 and one may normalize with

j±,ℓ =

⌊
1

2

(
ℓ+ 1±

√
ℓ2 − 4√
P ′(1)/V

)⌋
, j′±,ℓ = j±,ℓ − ℓ,

ξ±,ℓ

2π
=

{
1

2

(
ℓ+ 1±

√
ℓ2 − 4√
P ′(1)/V

)}
− 1

2

(3.7)

with ⌊·⌋ denoting the least integer part and {·} being the associated fractional part.

The proof of the lemma is elementary but relies on arguments far from those of the rest of the
paper so that we have postponed it to Appendix A.

Note that, except for the crossing associated with ℓ = 2, crossings occur at non zero eigenvalues
and

j+,ℓ +
ξ+,ℓ

2π
= −

(
j′−,ℓ +

ξ−,ℓ

2π

)
, j′+,ℓ +

ξ+,ℓ

2π
= −

(
j−,ℓ +

ξ−,ℓ

2π

)
,
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so that crossings associated with the same frequency gap ℓ ≥ 3 are obtained from the other by using
real symmetry. In particular, from the point of view of stability, by using real symmetry, one may
reduce studies to crossings labeled by (j2, j

′
2, ξ2) and (j+,ℓ, j

′
+,ℓ, ξ+,ℓ), ℓ ≥ 3.

In the rest of the paper we study how ℓ = 2 and ℓ = 3 crossings perturb.

4. Slow modulation stability

We begin with the ℓ = 2 crossing, that is, we study the spectrum of Lδ
ξ near the origin when

(δ, ξ) is small. Our main conclusion is summarized in the following result.

Theorem 4.1. Under the assumptions of Theorem 1.1, with

Imod :=
{
V ∈ (

√
P ′(1),+∞) ; kV2 > 0

}
there exists a smooth function ϵmod : Imod → R∗

+ such that when V ∈ Imod, for any 0 ≤ δ ≤ ϵmod(V ),
|ξ| ≤ ϵmod(V ),

σ
(
Lδ
ξ

)
∩Bϵmod(V )(0) ⊂ iR .

In the foregoing statement and throughout the text Br(γ0) denotes the open ball of the complex
plane centered at γ0 with radius r.

Our proof also shows that kV2 < 0 implies instability for sufficiently small-amplitude waves; see
Remark 4.3. But since for power laws, Imod = (

√
P ′(1),+∞), we do not give details on the latter.

The result covers a region larger than obtained by taking the small-amplitude limit of the slow
modulational regime, as in [BGMR21, AR22]. The latter corresponds to first, holding (δ, V ) fixed,
consider small spectral and Floquet parameters, then sending δ to 0 in the obtained criterion. One of
the interesting features of the slow modulational regime is that it is connected to geometrical optics
à la Whitham, so that its conclusions may be guessed by arguing heuristically. For the convenience
of the reader, we provide some elements of this formal analysis in Appendix B.

4.1. Finite-dimensional reduction. Our first step is to provide a reduction to the consideration
of the spectrum of a 2× 2 matrix parametrized by (δ, ξ).

For comparison, note that the starting point of the rigorous mathematical spectral analysis of
the slow modulational regime is that for any δ > 0 the spectrum of Lδ

0 near the origin is reduced to
{0} and the associated structure is described8 in terms of the structure of the family of traveling
waves. Note in particular that the spectrum does not move when one varies δ but holds ξ fixed to
zero. For this reason, it is convenient even for our analysis where no size comparison is assumed
between |ξ| and δ to organize the computation as in [BGNR14, BGMR21, AR22].

Thus, as in these references, we begin by gathering what may be obtained by differentiating
wave profile ODEs with respect to parameters, namely,

Lδ
0((U

δ)′) = 0 ,

Lδ
0(∂δU

δ) = −∂δk
(δ)Lδ

[1](U
δ)′ ,

Lδ
0(∂V U

δ) = −k(δ)(U δ)′ − ∂V k
(δ)Lδ

[1](U
δ)′

where we have introduced notation for the following Floquet expansion

Lδ
ξ = Lδ

0 + i k(δ)ξ Lδ
[1] + (i k(δ)ξ)2Lδ

[2] .

8Under generic assumptions, satisfied here for small-amplitude waves.
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Consistently with the above claim one obtains a Jordan chain of size 2 for the eigenvalue 0 by
combining (U δ)′ and a suitable combination of ∂δU δ and ∂V U

δ. In view of expansions from Section 2,
in order to obtain smooth non trivial limits when δ → 0, we set

qδ1(0, ·) :=
(U δ)′

δ
, qδ2(0, ·) := ∂δU

δ − ∂δk
(δ)

∂V k(δ)
∂V U

δ (4.1)

so that

Lδ
0q

δ
1(0, ·) = 0, Lδ

0q
δ
2(0, ·) = δk(δ)

∂δk
(δ)

∂V k(δ)
qδ1(0, ·) (4.2)

and, at the limit δ = 0,

q01(0, x) = 2π

( √
h(1) cos(2πx)
−V sin(2πx)

)
, qδ2(0, x) =

( √
h(1) sin(2πx)
V cos(2πx)

)
. (4.3)

Therefore for some ϵ0 > 0, when 0 ≤ δ < ϵ0, (qδ1(0, ·), qδ2(0, ·)) form a basis of the sum of
characteristic spaces of Lδ

0 associated with eigenvalues in Bϵ0(0), and in this basis, Lδ
0 restricted to

this space has matrix

Dδ
0 :=

(
0 δk(δ) ∂δk

(δ)

∂V k(δ)

0 0

)
(4.4)

where

δk(δ)
∂δk

(δ)

∂V k(δ)
δ→0
= c02δ

2 +O(δ3) , c02 := −kV2 (V 2 − P ′(1))

V
< 0 ,

provided that kV2 > 0 as we have assumed.

We want to extend these computations to small nonzero ξ. This may be carried out by extending
the basis (qδ1(0, ·), qδ2(0, ·)) following Kato’s perturbation theory, especially [Kat66, p.99-100]. To
begin with, when (ξ, δ, ϵ0) is sufficiently small, we may define

Πδ
ξ :=

1

2iπ

∮
∂(Bϵ0 (0))

(λI − Lδ
ξ)

−1dλ. (4.5)

the spectral projector of Lδ
ξ on the sum of characteristic spaces associated with eigenvalues in Bϵ0(0).

An extension operator Uδ(ξ) is then obtained by solving the Cauchy problem

∂ξUδ(ξ) = [∂ξΠ
δ
ξ,Π

δ
ξ] Uδ(ξ) , Uδ(0) = I , (4.6)

where [·, ·] denotes the commutator, [A,B] := AB −BA. Setting

qδj (ξ, ·) := Uδ(ξ)qδj (0, ·) , j = 1, 2,

does provide a basis of Ran(Πδ
ξ). To obtain a matrix for the action of Lδ

ξ in the corresponding basis,
it is convenient to introduce a dual basis, associated with the spectrum of (Lδ

ξ)
∗ in Bϵ0(0), that is,

spanning Ran(Πδ
ξ)

∗.

We first provide a dual basis when ξ = 0, so as to extend it later. By Hamiltonian symmetry,
(J−1 qδ1(0, ·), J−1 qδ2(0, ·)) spans Ran(Πδ

0)
∗. By skew-symmetry of J ,

⟨J−1qδj (0, ·), qδj (0, ·)⟩ = 0 , j = 1, 2, ⟨J−1qδ1(0, ·), qδ2(0, ·)⟩ = −⟨J−1qδ2(0, ·), qδ1(0, ·)⟩ ,
whereas a direct computation gives

⟨J−1q02(0, ·), q01(0, ·)⟩ = V 2π
√

h(1) ̸= 0 ,
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where ⟨·, ·⟩ denotes L2(R/Z)2 scalar product,

⟨f, g⟩ :=
∫ 1

0
f · g .

Thus

q̃δ1(0, ·) :=
J−1qδ2(0, ·)

⟨J−1qδ2(0, ·), qδ1(0, ·)⟩
, q̃δ2(0, ·) :=

−J−1qδ1(0, ·)
⟨−J−1qδ1(0, ·), qδ2(0, ·)⟩

,

provides the sought basis for ξ = 0. Then one gets the required (q̃δ1(ξ, ·), q̃δ2(ξ, ·)) through

q̃δj (ξ, ·) := Vδ(ξ) q̃δj (ξ, ·) , j = 1, 2,

where the dual extension operator Vδ(ξ) is obtained from the Cauchy problem

∂ξVδ(ξ) = [∂ξ(Π
δ
ξ)

∗, (Πδ
ξ)

∗] Vδ(ξ) , Vδ(0) = I .

Note that the general construction gives (Vδ(ξ))∗ Uδ(ξ) = I, for any small ξ, which is the key to
preserve duality relations. Moreover the Hamiltonian symmetry also yields for any small ξ

(Πδ
ξ)

∗ = −J−1Πδ
ξ J

thus for any small ξ
Vδ(ξ) = J−1 Uδ(ξ) J .

To check the latter equality one simply needs to notice that the right-hand side term solves the same
Cauchy problem as Vδ. As a direct consequence,

q̃δ1(ξ, ·) :=
J−1qδ2(ξ, ·)

⟨J−1qδ2(ξ, ·), qδ1(ξ, ·)⟩
, q̃δ2(ξ, ·) :=

−J−1qδ1(ξ, ·)
⟨−J−1qδ1(ξ, ·), qδ2(ξ, ·)⟩

, (4.7)

with
⟨J−1qδj (ξ, ·), qδℓ (ξ, ·)⟩ ≡ ⟨J−1qδj (0, ·), qδℓ (0, ·)⟩ , 1 ≤ j, ℓ ≤ 2 .

We have achieved the sought reduction since

σ(Lδ
ξ) ∩Bϵ0(0) = σ(Dδ

ξ)

with
Dδ

ξ :=
(
⟨q̃δj (ξ, ·), Lδ

ξq
δ
ℓ (ξ, ·)⟩

)
1≤j,ℓ≤2

.

Before expanding Dδ
ξ in (ξ, δ) small, we would like to point out a few of its symmetries, inherited

from those of Lδ
ξ. From (4.7) and the Hamiltonian structure Lδ

ξ = J Aδ
ξ, with J skew-symmetric and

Aδ
ξ self-adjoint, one readily gets

Dδ
ξ = − 1

⟨J−1qδ2(0, ·), qδ1(0, ·)⟩

(
⟨qδ2(ξ, ·), Aδ

ξq
δ
1(ξ, ·)⟩ ⟨qδ2(ξ, ·), Aδ

ξq
δ
2(ξ, ·)⟩

−⟨qδ1(ξ, ·), Aδ
ξq

δ
1(ξ, ·)⟩ −⟨qδ1(ξ, ·), Aδ

ξq
δ
2(ξ, ·)⟩

)
with ⟨J−1qδ2(0, ·), qδ1(0, ·)⟩ ∈ R,

⟨qδ2(ξ, ·), Aδ
ξq

δ
1(ξ, ·)⟩ = ⟨qδ1(ξ, ·), Aδ

ξq
δ
2(ξ, ·)⟩ , ⟨qδj (ξ, ·), Aδ

ξq
δ
j (ξ, ·)⟩ ∈ R , j = 1, 2 .

For the sake of concreteness, let us write

Dδ
ξ =

(
a(ξ, δ) c(ξ, δ)

b(ξ, δ) −a(ξ, δ)

)
, b(ξ, δ), c(ξ, δ) ∈ R .

Moreover from the evenness of (uδ, (Eδ)′), we also have

Lδ
ξI = −I Lδ

ξ , Aδ
ξI = I Aδ

ξ , (4.8)
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where
(Ig)(x) := diag(1,−1)g(−x) .

This implies that

Πδ
ξI = −I Πδ

ξ , Uδ(ξ)I = I Uδ(ξ) .

Therefore

qδ1(ξ, ·) = I qδ1(ξ, ·) , qδ2(ξ, ·) = −I qδ2(ξ, ·) ,

since the equality holds when ξ = 0, thanks to the evenness properties of nearby profiles. By using
that

⟨If, g⟩ = ⟨f, Ig⟩
we deduce that a(ξ, δ) = −a(ξ, δ), hence

a(ξ, δ) ∈ iR .

4.2. Further constant-coefficient expansions. We know Dδ
0 rather explicitly. To expand Dδ

ξ in
(ξ, δ) small, a significant part of missing information may be derived by expanding, as we do now,
D0

ξ in ξ small.

To begin with, we expand U0(ξ).

Proposition 4.2. The extension operator U0(ξ), defined in (4.6), satisfies

U0(ξ)(g)
ξ→0
= g + α ξ diag(1,−1)

(
e−2iπ·⟨e−2iπ·, g⟩ − e2iπ·⟨e2iπ·, g⟩

)
+ ξ2

(
1

2
α2 I + β diag(1,−1)

)(
e−2iπ·⟨e−2iπ·, g⟩+ e2iπ·⟨e2iπ·, g⟩

)
+O(ξ3)∥g∥L2(R/Z) , (4.9)

where the constants α, β are given by

α :=
∂ξω1(0)

2ω1(0)
, β :=

(∂ξω1(0))
2 − ∂2

ξω1(0)ω1(0)

2ω1(0)2
, (4.10)

with ω1 is as in (3.6).

The proof of the proposition is elementary but a bit long so we moved it to Appendix C.1.
Combined with (4.3), it yields

k0 q
0
1(ξ, x) =

(
cos(2πx)

−ω1(0) sin(2πx)

)
+ iα

(
− sin(2πx)

ω1(0) cos(2πx)

)
ξ

+
1

2

(
(α2 + β) cos(2πx)

(β − α2)ω1(0) sin(2πx)

)
ξ2 +O(ξ3),

2π k0 q02(ξ, x) =

(
sin(2πx)

ω1(0) cos(2πx)

)
+ iα

(
cos(2πx)

ω1(0) sin(2πx)

)
ξ

+
1

2

(
(α2 + β) sin(2πx)

(α2 − β)ω1(0) cos(2πx)

)
ξ2 +O(ξ3) .

From a simple examination of the first coordinate, one deduces an expansion for the transition
matrix T (ξ) (

q01(ξ, ·) q02(ξ, ·)
)
=
(
φ1
−(ξ, ·) φ−1

+ (ξ, ·)
)
T (ξ) (4.11)
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in the form

T (ξ) =

(
(1− αξ + 1

2(α
2 + β)ξ2) 0

0 (1 + αξ + 1
2(α

2 + β)ξ2)

)( 1
2 k0

− i
4π k0

1
2 k0

i
4π k0

)
+O(ξ3) .

This is sufficient to derive the sought expansion

D0
ξ = T−1(ξ)

(
λ1
−(ξ) 0
0 λ−1

+ (ξ)

)
T (ξ)

=
1

2

(
λ1
− + λ−1

+ − 1
2iπ (λ

−1
+ − λ1

−)
−2iπ(λ−1

+ − λ1
−) λ1

− + λ−1
+

)
(ξ) +O(ξ3)

=

(
i(V k0 − ω′

1(0))ξ −ω′′
1 (0)
4π ξ2

πω′′
1(0)ξ

2 i(V k0 − ω′
1(0))ξ

)
+O(ξ3) .

Let us observe that ω′′
1(0) > 0 since

ω′′
1(ξ) =

(ω′
1(ξ))

2

ω1(ξ)
+ ω1(ξ)P

′(1)k20 > 0 .

4.3. Expansion of Dδ
ξ . We now turn to the full expansion of Dδ

ξ in (ξ, δ) small. We recall that

Dδ
ξ = a(ξ, δ) I +

(
0 c(ξ, δ)

b(ξ, δ) 0

)
, a(ξ, δ) ∈ iR , b(ξ, δ) ∈ R, c(ξ, δ) ∈ R

so that we want to prove that b(ξ, δ)c(ξ, δ) < 0 when (ξ, δ) is small.

We already know that for some real b1(δ), c1(δ),

b(ξ, δ)
(ξ,δ)→(0,0)

= b1(δ)ξ + b20ξ
2 +O

(
|ξ|2(|ξ|+ δ)

)
c(ξ, δ)

(ξ,δ)→(0,0)
= c1(δ)ξ + c20ξ

2 + c02δ
2 +O

(
|ξ|2(|ξ|+ δ) + δ3

)
with b20 > 0, c20 < 0, c02 < 0. We prove now that

b1(δ) ≡ 0 , c1(δ)
δ→0
= O(δ2) ,

which is sufficient to conclude the proof.

The vanishing of b1 is an extremely robust property, directly related to the rigorous analysis of
slow modulation theory. It follows from computations at the beginning of Section 4.1. Indeed since
qδ1(0, ·) lies in the kernel of Lδ

0 and q̃δ2(0, ·) lies in the kernel of (Lδ
0)

∗,

b1(δ) = ⟨q̃δ2(0, ·), ik(δ)Lδ
[1]q

δ
1(0, ·)⟩ .

Moreover we already know that

Lδ
[1]q

δ
1(0, ·) +

k(δ)

∂V k(δ)
qδ1(0, ·) ∈ Ran(Lδ

0)

hence Lδ
[1]q

δ
1(0, ·) is orthogonal to q̃δ2(0, ·). This proves the claim on b1.

Let us now prove that c1(δ) = O(δ2). We already know that Lδ
0q

δ
2(0, ·) = O(δ2) and

(Lδ
0)

∗q̃δ1(0, ·) = O(δ2) so that

c1(δ) = ⟨q̃δ1(0, ·), ik(δ)Lδ
[1]q

δ
2(0, ·)⟩+O(δ2) .

Now, since both c1(δ) and ⟨q̃δ1(0, ·), Lδ
[1]q

δ
2(0, ·)⟩ are real, this implies the claim on c1.

This achieves the proof of Theorem 4.1.
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Remark 4.3. When kV2 < 0, one has c02 > 0 and concludes to instability with eigenvalues of positive
real part of size O(δ).

5. Non modulational spectral instability

In the present section we prove Theorem 1.1 by considering the ℓ = 3 crossings of Lemma 3.1.

We shall also complement Theorem 1.1 with the following proposition that proves that the
instability index Γ vanishes at most a finite number of times.

Proposition 5.1. In the case P (·) = T (·)γ with T > 0 and γ ∈ [1,+∞[, the instability index from
Theorem 1.1 vanishes at most a finite number of times.

Let us first recall that the two crossings ℓ = 3 crossings of Lemma 3.1 are conjugate one to the
other through real symmetry. We may thus focus on (j+,3, j

′
+,3, ξ+,3). For the sake of concision, in

the present section, we simply set

j := j+,3 , j′ := j′+,3 , ξ0 := ξ+,3 , λ0 := λj′

+(ξ0) = λj
−(ξ0) .

For some values of V , it happens that ξ0 = −π. With our normalization of the Floquet parameter
ξ as belonging to [−π, π), perturbing in ξ then requires to consider both ξ near −π and ξ near π.
This introduces extra notational complexity but no significant mathematical difference. Therefore
for the sake of simplicity we restrict our proof to the case ξ0 ̸= −π.

5.1. Finite-dimensional reduction. Our proof of Theorem 1.1 follows very closely its sketch in
the introduction. It also shares many similarities with the proof of Theorem 4.1.

The main strategical difference is that we build our basis by extending in δ an explicit choice
made for δ = 0. An obvious reason for this discrepancy is that here the ξ = ξ0 analysis has no
evident structure when δ > 0. The main departure in computations is that here we need expansions
that are higher-order with respect to δ.

To begin with, we thus set

q0+(ξ, ·) := φj′

+(ξ, ·) , q0−(ξ, ·) := φj
−(ξ, ·) ,

with φl
± being defined in (3.5). Then we extend those through

qδ+(ξ, ·) := Uξ(δ)q0+(ξ, ·) , qδ−(ξ, ·) := Uξ(δ)q0+(ξ, ·) .

where the extension operator Uξ(δ) is obtained by solving

∂δUξ(δ) = [∂δΠ
δ
ξ,Π

δ
ξ] Uξ(δ) , Uξ(0) = I , (5.1)

from the spectral projector

Πδ
ξ :=

1

2iπ

∮
∂Bϵ1 (λ0)

(λI − Lδ
ξ)

−1 dλ

defined with ϵ1 > 0 sufficiently small, 0 ≤ δ ≤ ϵ1, |ξ − ξ0| ≤ ϵ1.

Let us also determine a dual basis spanning the sum of characteristic spaces of (Lδ
ξ)

∗ associated
with eigenvalues in Bϵ1(λ0). Since j ̸= j′,

⟨J−1 q0+(ξ, ·), q0−(ξ, ·)⟩ = 0 , ⟨J−1 q0−(ξ, ·), q0+(ξ, ·)⟩ = 0 ,

whereas direct computations give

⟨J−1q0+(ξ, ·), q0+(ξ, ·)⟩ = 2iωj′(ξ) , ⟨J−1q0−(ξ, ·), q0−(ξ, ·)⟩ = −2iωj(ξ) . (5.2)
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Therefore

q̃0+(ξ, ·) =
i J−1q0+(ξ, ·)

2ωj′(ξ)
, q̃0−(ξ, ·) = −

i J−1q0−(ξ, ·)
2ωj(ξ)

.

Then one may extend these formula with an extension operator associated with (Lδ
ξ)

∗ and use
Hamiltonian symmetry to check that still

q̃δ+(ξ, ·) =
i J−1qδ+(ξ, ·)

2ωj′(ξ)
, q̃δ−(ξ, ·) = −

i J−1qδ−(ξ, ·)
2ωj(ξ)

.

With this in hands, we may set

Dδ
ξ =

(
⟨q̃δ+(ξ, ·), Lδ

ξq
δ
+(ξ, ·)⟩ ⟨q̃δ+(ξ, ·), Lδ

ξq
δ
−(ξ, ·)⟩

⟨q̃δ−(ξ, ·), Lδ
ξq

δ
+(ξ, ·)⟩ ⟨q̃δ−(ξ, ·), Lδ

ξq
δ
−(ξ, ·)⟩

)
.

so that
σ(Lδ

ξ) ∩Bϵ1(λ0) = σ(Dδ
ξ),

when 0 ≤ δ ≤ ϵ1, |ξ − ξ0| ≤ ϵ1.

Remark 5.2. Our present normalization differs from the one used in the discussion of the introduc-
tion, by the fact that that we do not scale (qδ+(ξ, ·), qδ−(ξ, ·)) to force symmetry between the direct and
dual problems. A basis as in the introduction is obtained by setting

qδ1(ξ, ·) =
qδ+(ξ, ·)√
2ωj′(ξ)

, qδ2(ξ, ·) =
qδ−(ξ, ·)√
2ωj(ξ)

,

so that

q̃δ1(ξ, ·) = iJ−1qδ1(ξ, ·) , q̃δ2(ξ, ·) = −iJ−1qδ2(ξ, ·) .
Consistently the index Γ derived here differs from the one of the introductory exposition by an
immaterial nonzero scaling factor. Let us also point out that it is (5.2) that shows that the two
eigenvalues colliding at ξ = ξ0 have opposite Krein signature, which prevents to enforce either
(q̃δ1(ξ, ·), q̃δ2(ξ, ·)) = (iJ−1qδ1(ξ, ·), iJ−1qδ2(ξ, ·)) or (q̃δ1(ξ, ·), q̃δ2(ξ, ·)) = (−iJ−1qδ1(ξ, ·),−iJ−1qδ2(ξ, ·)),
which would lead to

either Dδ
ξ = i

(
⟨qδ1(ξ, ·), Aδ

ξq
δ
1(ξ, ·)⟩ ⟨qδ1(ξ, ·), Aδ

ξq
δ
2(ξ, ·)⟩

⟨qδ2(ξ, ·), Aδ
ξq

δ
1(ξ, ·)⟩ ⟨qδ2(ξ, ·), Aδ

ξq
δ
2(ξ, ·)⟩

)
,

or Dδ
ξ = −i

(
⟨qδ1(ξ, ·), Aδ

ξq
δ
1(ξ, ·)⟩ ⟨qδ1(ξ, ·), Aδ

ξq
δ
2(ξ, ·)⟩

⟨qδ2(ξ, ·), Aδ
ξq

δ
1(ξ, ·)⟩ ⟨qδ2(ξ, ·), Aδ

ξq
δ
2(ξ, ·)⟩

)
.

We stress that the computation (5.2) holds for any of the crossings in Lemma 3.1.

By using the Hamiltonian structure, one gets that Dδ
ξ takes the following form

Dδ
ξ =

i

2


b+(ξ, δ)

ωj′(ξ)

a(ξ, δ)

ωj′(ξ)

−a(ξ, δ)

ωj(ξ)
−b−(ξ, δ)

ωj(ξ)


with

b+(ξ, δ) = ⟨qδ+(ξ, ·), Aδ
ξq

δ
+(ξ, ·)⟩ ∈ R , b−(ξ, δ) = ⟨qδ−(ξ, ·), Aδ

ξq
δ
−(ξ, ·)⟩ ∈ R ,
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and

a(ξ, δ) = ⟨qδ+(ξ, ·), Aδ
ξq

δ
−(ξ, ·)⟩ = ⟨qδ−(ξ, ·), Aδ

ξq
δ
+(ξ, ·)⟩ .

Eigenvalues of Dδ
ξ are given by

i

2

1

2

(
b+(ξ, δ)

ωj′(ξ)
− b−(ξ, δ)

ωj(ξ)

)
±

√
1

4

(
b+(ξ, δ)

ωj′(ξ)
+

b−(ξ, δ)

ωj(ξ)

)2

− |a(ξ, δ)|2
ωj′(ξ)ωj(ξ)

 .

Note that moreover by design,

D0
ξ =

(
λj′

+(ξ) 0

0 λj
−(ξ)

)
.

In particular

∂ξ

(
b+(·, 0)
2ωj′

+
b−(·, 0)
2ωj

)
(ξ0) =

1

i
∂ξ(λ

j′

+ − λj
−)(ξ0) = ∂ξ(ωj′ + ωj)(ξ0) > 0

where the sign information stems from the fact that ζ 7→
√
1 + P ′(1) ζ2 is even and strictly convex

and |j′ + ξ0/(2π)| < j + ξ0/(2π) since j′ = j − 3 and j + ξ0/2π > 3/2. Therefore there exists a
smooth Ξ defined on a neighborhood of 0 in R+ such that Ξ(0) = ξ0 and, for any small δ,(

b+(·, δ)
2ωj′

+
b−(·, δ)
2ωj

)
(Ξ(δ)) = 0 .

To conclude the proof it is thus sufficient to find a Γ such that

a(Ξ(δ), δ)
δ→0
= Γ δ3 +O(δ4) . (5.3)

Remark 5.3. The above argument may be extended to any of the crossings of Lemma 3.1 with ℓ ≥ 3
since j+,ℓ + ξ+,ℓ/(2π) > ℓ/2. It fails however for the crossing at the origin since j2 + ξ2/(2π) = 1.
Since the remaining part of the argument applies to any crossing, a statement similar to Theorem 1.1
may be obtained for any crossing far from the origin. In contrast, as seen in Section 4, the analysis
of the ℓ = 2 crossing required a different analysis, with instability decided not by a non-vanishing
condition (which is easily satisfied) but by a sign condition, here by the sign of kV2 .

The sought (5.3) is derived from the fact that for any m ∈ N

∂m
δ (E, u)0 ∈ Span

({
e2π p (·) X ; |p| ≤ m, X ∈ C2

})
and j − j′ = 3. To be more concrete, we introduce notation Mm

p : C2 → C2 defined by

Mm
p (X) := ⟨e2π (m+p) (·);M(e2πm (·)X)⟩

for any operator M on L2(R/Z)2. The above piece of information on profiles readily yields

(∂m
δ L0

ξ)
p
r ≡ 0 , (∂m

δ Π0
ξ)

p
r ≡ 0 , when |r| > m .

Then, by expanding in δ, for σ ∈ {+,−},

qδσ(ξ, ·) = Πδ
ξ(q

δ
σ(ξ, ·)) , Lδ

ξq
δ
σ(ξ, ·) = Πδ

ξ(L
δ
ξq

δ
σ(ξ, ·)) ,

we derive recursively that for any ξ and any m

∂m
δ q0+(ξ, ·), ∂m

δ (Lδ
ξq

δ
+(ξ, ·))|δ=0 ∈ Span

({
e2π (j′+p) (·) X ; |p| ≤ m, X ∈ C2

})
,

∂m
δ q0−(ξ, ·), ∂m

δ (Lδ
ξq

δ
−(ξ, ·))|δ=0 ∈ Span

({
e2π (j+p) (·) X ; |p| ≤ m, X ∈ C2

})
.
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Since j = j′ − 3, by orthogonality of trigonometric monomials, this implies that for any ξ,

∂m
δ a(ξ, 0) = 0 , when m ∈ {0, 1, 2} .

This concludes the proof of (5.3) with Γ := ∂3
δa(ξ0, 0)/6 (since Ξ(δ) = ξ0 +O(δ)).

It also concludes the proof of Theorem 1.1. Yet the value of Theorem 1.1 hinges on the fact
that most of the time Γ is nonzero. To support this claim, we provide a relatively explicit formula
for Γ and use it to prove Proposition 5.1.

5.2. Computation of Γ. The computation of Γ is quite cumbersome so that even small notational
gains are helpful. For this reason, we set

L[m] :=
1

m!
∂m
δ L0

ξ0 , U [m] :=
1

m!
∂m
δ Uξ0(0) , V+ :=

(
1

− iωj′(ξ0)

)
, V− :=

(
1

iωj(ξ0)

)
,

M+ := Mj′

+(ξ0) =
1

2

(
1 − 1

i ωj′ (ξ0)

−i ωj′(ξ0) 1

)
,

M− := Mj
−(ξ0) =

1

2

(
1 1

i ωj(ξ0)

i ωj(ξ0) 1

)
,

and, for m /∈ {j, j′},

Gm := (λ0 I − ΣL
0 (k0 (2πm+ ξ0)))

−1 .

With this in hands, a first expression of Γ is

Γ =
〈
J(U [3])j

′

3 V+, (L
[0])j0V

j
−
〉
+
〈
J(U [2])j

′

2 V+,
(
(L[0])j−1

0 (U [1])j−1 + (L[1])j−1

)
V−
〉
,

+
〈
J(U [1])j

′

1 V+,
(
(L[0])j−2

0 (U [2])j−2 + (L[1])j−1
−1 (U [1])j−1 + (L[2])j−2

)
V−
〉
,

+
〈
JV+,

(
(L[0])j−3

0 (U [3])j−3 + (L[1])j−2
−1 (U [2])j−2 + (L[2])j−1

−2 (U [1])j−1 + (L[3])j−3

)
V−
〉
.

with ⟨ · , · ⟩ denoting the canonical scalar product on C2 skew-linear in its first component.

The first stage is to obtain explicit expressions for (U [m])j−m and (U [m])j
′
m, m ∈ {1, 2, 3}.

Proposition 5.4. One has

(U [1])j−1 = Gj−1(L
[1])j−1M− , (U [2])j−2 = B−M− ,

(U [1])j
′

1 = Gj′+1(L
[1])j

′

1 M+ , (U [2])j
′

2 = B+M+ ,

with

B− := Gj−2(L
[2])j−2 +Gj−2(L

[1])j−1
−1 Gj−1(L

[1])j−1,

B+ := Gj′+2(L
[2])j

′

2 +Gj′+2(L
[1])j

′+1
1 Gj′+1(L

[1])j
′

1 ,

and (
U [3] − 1

6

[
∂3
δΠ

0
ξ0 ,Π

0
ξ0

])j
−3

= −1

3
M+C−Gj−1(L

[1])j−1M− − 2

3
M+(L

[1])j−2
−1 Gj−2B−M− ,(

U [3] − 1

6

[
∂3
δΠ

0
ξ0 ,Π

0
ξ0

])j′
+3

= −1

3
M−C+Gj′+1(L

[1])j
′

1 M+ − 2

3
M−(L

[1])j
′+2
1 Gj′+2B+M+ ,
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where

C− = (L[2])j−1
−2 Gj−1 + (L[1])j−2

−1 Gj−2(L
[1])j−1

−1 Gj−1 ,

C+ = (L[2])j
′+1
2 Gj′+1 + (L[1])j

′+2
1 Gj′+2(L

[1])j
′+1
1 Gj′+1 .

The proof of the proposition is postponed to Appendix C.2.

Now that we have a quite explicit formula for Γ, we need to track cancellations to reduce its
complexity. Our final result is as follows.

Proposition 5.5. The instability index Γ takes the form

Γ =
〈
JV+,NV−

〉
where

N := (L[3])j−3 + (L[1])j−2
−1 Gj−2(L

[2])j−2 + (L[2])j−1
−2 Gj−1(L

[1])j−1 + (L[1])j−2
−1 Gj−2(L

[1])j−1
−1 Gj−1(L

[1])j−1 .

The quite spectacular simplification hinges on properties inherited from Hamiltonian symmetry.
Let us recall that the Hamiltonian symmetry is precisely that J (Lδ

ξ)
∗ J−1 = −Lδ

ξ, and observe
that (Mm

p )∗ = (M∗)m+p
−p . This provides various relations whose statement is facilitated by the

introduction of the piece of notation

S[B] := J B∗ J−1

for any matrix B. Indeed, all operators we handle are obtained as functions of Lδ
ξ and from

Hamiltonian symmetry stem

S[(L[m])pq ] = −(L[m])p+q
−q , S[(∂m

δ Π0
ξ0)

p
q ] = −(∂m

δ Π0
ξ0)

p+q
−q ,

and

S[M±] = M± , S[Gm] = −Gm , S[B±] = C∓ .

The last piece of computation we need is

M± V± = V± .

With this in hands, we may prove Proposition 5.5.

Proof of Proposition 5.5. Let us split Γ as

Γ = Γ0 + Γ1 + Γ2,

where

Γ0 =
〈
JV+, (L

[3])j−3V−
〉
+
〈
J(U [2])j

′

2 V+, (L
[1])j−1V−

〉
+
〈
J(U [1])j

′

1 V+, (L
[2])j−2V−

〉
,

Γ1 =
〈
J(U [3])j

′

3 V+, (L
[0])jV−

〉
+
〈
JV+, (L

[0])j
′

0 (U
[3])j−3V−

〉
,

Γ2 =
〈
J(U [1])j

′

1 V+,
(
(L[0])j−2

0 (U [2])j−2 + (L[1])j−1
−1 (U [1])j−1

)
V−
〉

+
〈
J(U [2])j

′

2 V+, (L
[0])j−1

0 (U [1])j−1V−
〉

+
〈
JV+,

(
(L[1])j−2

−1 (U [2])j−2 + (L[2])j−1
−2 (U [1])j−1

)
V−
〉
.
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Our goal is to show that Γ0 =
〈
JV+,NV−

〉
and Γ2 = −Γ1. The first point is straightforward.

Note, for instance, that〈
J(U [1])j

′

1 V+, (L
[2])j−2V−

〉
=
〈
JV+, S[(U [1])j

′

1 ](L
[2])j−2V−

〉
=
〈
JV+,M+(L

[1])j−2
−1 Gj−2(L

[2])j−2V−
〉

=
〈
JS[M+]V+, (L

[1])j−2
−1 Gj−2(L

[2])j−2V−
〉

=
〈
JM+V+, (L

[1])j−2
−1 Gj−2(L

[2])j−2V−
〉

=
〈
JV+, (L

[1])j−2
−1 Gj−2(L

[2])j−2V−
〉
.

As an intermediate step towards Γ2 = −Γ1, we observe that

Γ1 = −λ0

〈
JV+,

(
C−Gj−1(L

[1])j−1 + (L[1])j−2
−1 Gj−2B−

)
V−

〉
since

(L[0])j0 V− = λ0 V− , (L[0])j
′

0 V+ = λ0 V+ ,

and

⟨J
([
∂3
δΠ

0
ξ0 ,Π

0
ξ0

])j′
3
V+, V−⟩ = ⟨JV+, S

[([
∂3
δΠ

0
ξ0 ,Π

0
ξ0

])j′
3

]
V−⟩

= −⟨JV+,
([
∂3
δΠ

0
ξ0 ,Π

0
ξ0

])j
−3

V−⟩ .

Furthermore,

Γ2 =
〈
JV+,

(
(L[1])j−2

−1

(
I +Gj−2(L

[0])j−2
0

)
B− + C−(Gj−1)

−1
(
I +Gj−1(L

[0])j−1
0

)
(U [1])j−1

)
V−
〉

= −Γ1 ,

since

I +Gj−2(L
[0])j−2

0 = λ0Gj−2 , I +Gj−1(L
[0])j−1

0 = λ0Gj−1 .

□

5.3. Proof of Proposition 5.1. Proposition 5.1 follows from the following lemma, whose computa-
tionally demanding proof is given in Appendix D.

Lemma 5.6. For a pressure given by P (ρ) = Tργ, T > 0, γ ≥ 1, one has

Γ
V→∞
= f(γ) +O(V −1) where f(γ) := − 1

6144
(65γ3 + 315γ2 + 115γ − 135) .

Let us show how to deduce the proposition from the lemma.

Proof of Proposition 5.1. Since f(1) < 0, f ′(1) < 0 and f ′′(1) < 0, f does not vanish on [1,∞). Let
us now fix T > 0 and γ ≥ 1, and achieve the proof.

The index Γ is analytic on (
√
P ′(1),+∞) and does not vanish near ∞. It remains to show that

Γ does not vanish near
√

P ′(1). This follows from the fact that Γ is non zero and is given as a
meromorphic function of

√
V 2 − P ′(1). □
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Appendix A. Proof of Lemma 3.1

Let us first observe by monotonicity that λj
−(ξ) = λj′

+(ξ) implies j′ < j, and we assume the
latter from now on. Setting τ = P ′(1)/V 2, z = j + ξ/2π and z′ = j′ + ξ/2π, equation λj

−(ξ) = λj′

+(ξ)
is equivalent to

z − z′ =
√
1− τ + τ z2 +

√
1− τ + τ (z′)2 .

Since z ̸= z′, this implies √
1− τ + τ z2 −

√
1− τ + τ (z′)2 = τ (z + z′) .

Combining with the original form leaves

(τ − 1) z′ = −(τ + 1) z + 2
√

1− τ + τ z2 . (A.1)

By tracking manipulations carried out so far one can recover the original equation under the apparent
extra assumption that √

1− τ + τ z2 −
√
1− τ + τ (z′)2

z − z′
̸= 1 .

Yet it follows from τ < 1 that the left-hand side of the inequality has absolute value less than 1.
Thus we have obtained that λj

−(ξ) = λj′

+(ξ) is equivalent to (A.1), also written as
1

2
(1− τ) (z − z′) = −τ z +

√
1− τ + τ z2 .

The latter is equivalent to
1

2
(1− τ) (z − z′) + τ z ≥ 0 ,

1

4
(z − z′)2 − 1 = τ (z − 1

2(z − z′))2 .

This implies that, as claimed, j − j′ ≥ 2 is necessary. Fixing ℓ = z − z′ = j − j′ ≥ 2, one may solve
the equation for z

z = 1
2ℓ±

√
ℓ2 − 4

4 τ
and the sign constraint is automatically satisfied (since τ < 1).

Appendix B. A glimpse at slow modulation theory

In the present section, we connect the analysis of Theorem 4.1 with spectral validations of
formally derived modulation systems, also known as Whitham systems, and their small-amplitude
limit, as studied for large classes of Hamiltonian systems in [BGNR14, BGMR21, AR22].

Formal derivation. We first recall how to derive a modulation system from geometrical optics
arguments.

To begin with it is useful to gather conservation laws associated with (1.3). From the fact
that System (1.3) has a Hamiltonian structure whose Hamiltonian density commutes with spatial
translation one deduces that it implies a conservation law for the momentum density M,

M[E, u] := −u ∂xE ,

generating the group of spatial translations. Namely, applying the abstract computations from
[AR22, Appendix A], from (1.3) we derive for U = (E, u)

∂t(M[U ]) = ∂x (S[U ]) (B.1)
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with

S[U ] := ∇UxM[U ] · JδH[U ]−H[U ] +∇UxH[U ] · Ux .

We are now in position to derive a modulation system. To do so, we introduce a one-phase
slow/fastly-oscillatory ansatz

U (ϵ)(t, x) = U(ϵ)

(
ϵ t, ϵ x;

φ(ϵ)(ϵ t, ϵ x)

ϵ

)
(B.2)

with, for any (T,X), ζ 7→ U(ϵ)(T,X; ζ) periodic of period 1 and, as ϵ → 0,

U(ϵ)(T,X; ζ) = U0(T,X; ζ) + ϵ U1(T,X; ζ) + o(ϵ) ,

φ(ϵ)(T,X) = φ0(T,X) + ϵ φ1(T,X) + o(ϵ) .

Plugging (B.2) into (1.3) and identifying the leading-order terms yields

U0(T,X; ζ) = U (δ,V )(T,X)(ζ) , ∂Xφ(T,X) = k(δ,V )(T,X) , ∂Tφ(T,X) = −V (T,X) k(δ,V )(T,X) ,

for some slow (δ, V ). Note that this already implies

∂T (k
(δ,V )) = ∂X(−V k(δ,V )) . (B.3)

To complete it to form a system for the evolution of (δ, V ), one may insert (B.2) into (B.1), identify
the leading-order terms and average over one period of ζ so as to obtain

∂T

(
⟨M[U (δ,V )(·)] ⟩

)
= ∂X

(
⟨ S[U (δ,V )(·)] ⟩

)
. (B.4)

System (B.3)-(B.4) is the sought modulation system.

Spectral validation and small-amplitude limit. The proof of Theorem 4.1 contains the ingredi-
ents to obtain a spectral validation of (B.3)-(B.4). In particular it yields that if for some (δ, V ) the
linearization about (δ, V ) of (B.3)-(B.4) possesses a non real characteristic velocity then there exists
a positive ε0(δ, V ) such that for any 0 < |ξ| < ε0(δ, V )

σper(L
(δ,V )
ξ ) ∩B(0, ε0(δ, V )) ∩ {λ ; Re (λ) > 0 } ̸= ∅ .

Moreover the proof of Theorem 4.1 also contains the elements to elucidate the foregoing criterion
in the small-amplitude limit. The conclusion is that when kV2 < 0 this side-band instability does
happen when δ is sufficiently small, whereas when kV2 > 0 this side-band instability cannot happen
when δ is sufficiently small.

We point out that the small-amplitude analysis is simpler here than in [BGMR21, AR22] because
we are actually analyzing the splitting of a double eigenvalue in a modulation system of two equations
whereas for equations of Korteweg-de Vries type this double eigenvalue is burried in a modulation
system of three equations, and for equations of Schrödinger or Euler-Korteweg type it is hidden in a
modulation system of four equations.

Let us also observe that here, unlike what happens for systems considered in [BGMR21, AR22],
there is no limiting solitary wave and thus no large-period regime to analyze.
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Appendix C. Expansions of extension operators

C.1. Proof of Proposition 4.2. Proposition 4.2 is a constant-coefficient periodic computation,
thus it is convenient to introduce Fourier series to prove it. Since there is little risk of confusion,
we use for Fourier series the same notation as for Fourier transforms, F(g) = ĝ being defined for
functions of L1(R/Z) by

(Fg)(j) = ĝj := ⟨ei2πj·, g⟩ =
∫ 1

0
e−i2πjxg(x) dx , j ∈ Z .

Our goal is to prove for Uξ := U0(ξ),

F
(
Uξg
)
(j) = ĝj , j ̸= ±1,

F
(
Uξg
)
(±1) = ĝj ∓ α diag(1,−1)ĝ±1 +

1

2

(
α2ĝ±1 + β diag(1,−1)ĝ±1

)
ξ2 +O(ξ3) ∥g∥L2 ,

(C.1)

where α, β are given by (4.10). The starting point is that from the Cauchy problem defining Uξ

stems

Uξ = I + ξ [Π′
0,Π0] +

1

2
ξ2
(
[Π′

0,Π0]
2 + [Π′′

0,Π0]
)
+O(ξ3) , (C.2)

where Πξ := Π0
ξ .

Note that for any ξ, Πξ is a projector with range spanned by φ−1
+ (ξ, ·) and φ1

−(ξ, ·) (with
notation from (3.5)), that are trigonometric monomials respectively in e−i 2π· and ei 2π·. Therefore
for any ξ,

F(Πξg)(j) = 0 , if j /∈ {−1, 1} ,
Πξg = 0 , if F(Πξg)(1) = 0 and F(Πξg)(−1) = 0 .

Combined with (C.2), this yields the first half of (C.1).

For the remaining part, we use Cauchy Residue theorem to obtain

F(Πξg)(±1) =
1

λ∓1
± − λ∓1

∓

(
λ∓1
± − ΣL

0 (i k
(0)(± 2π + ξ))

)†
ĝ±1,

where, for any square matrix A, A† denotes the transpose of the cofactor matrix of A so that if A is
invertible A−1 = A†/ det(A). To derive the former, we have used

F(L0
ξg)(j) = ΣL

0 (i k
(0)(2π j + ξ)) ĝj ,

det(λ I − ΣL
0 (i k

(0)(2π j + ξ))) = (λ− λj
+(ξ)) (λ− λj

−(ξ)) .

As a result,

F(Πξf)(±1) = M±1
∓ (ξ)f̂(±1) (C.3)

where, for any (j, ξ),

Mj
±(ξ) :=

1

2

(
1 ∓ 1

i ωj(ξ)

∓i ωj(ξ) 1

)
. (C.4)
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Then, differentiating (C.3) and taking into account that ω−1(ξ) = ω1(−ξ), one receives

F(Πξf)(±1) =
i

2

(
0 ∓ 1

ω±1(±ξ)

±ω±1(±ξ) 0

)
f̂(±1)

F(Π′
ξf)(±1) =

i

2

(
0 ± ω′

±1(ξ)

(ω±1(ξ))2

±ω′
±1(ξ) 0

)
f̂(±1) =

i

2

(
0

ω′
1(±ξ)

(ω1(±ξ))2

ω′
1(±ξ) 0

)
f̂(±1)

F(Π′′
ξf)(±1) =

i

2

(
0 ±ω′′

±1(ξ)ω±1(ξ)−2(ω′
±1(ξ))

2

(ω±1(ξ))3

±ω′′
±1(ξ) 0

)
f̂(±1)

=
i

2

(
0 ±ω′′

1 (±ξ)ω1(±ξ)−2(ω′
1(±ξ))2

(ω1(±ξ))3

±ω′′
1(±ξ) 0

)
f̂(±1) .

Since for any numbers α1, β1, α2, β2,[(
0 α1

β1 0

)
,

(
0 α2

β2 0

)]
= (α1β2 − α2β1) diag(1,−1) ,

one deduces that

F([Π′
0,Π0]f)(±1) = ∓α diag(1,−1)f̂(±1) ,

F([Π′′
0,Π0]f)(±1) = β diag(1,−1)f̂(±1) ,

from which the proof follows.

C.2. Proof of Proposition 5.4. For the sake of concision let us set Πδ := Πδ
ξ0

and Rλ := (λ I−L0
ξ0
).

Then expanding from the Cauchy problem defining Uδ
ξ0

,

U [1] = [Π′
0,Π0] , U [2] =

1

2

([
Π′′

0,Π0

]
+ [Π′

0,Π0

]2)
,

and

U [3] =
1

6

([
Π′′′

0 ,Π0

]
+
[
Π′′

0,Π
′
0

]
+
[
Π′

0,Π0

][
Π′′

0,Π0

]
+ 2
[
Π′′

0,Π0

][
Π′

0,Π0

]
+
[
Π′

0,Π0

]3)
=

1

6

[
Π′′′

0 ,Π0

]
+

1

3

[
Π′

0,Π0

]
U [2] +

1

6

([
Π′′

0,Π
′
0

]
+ 2
[
Π′′

0,Π0

][
Π′

0,Π0

]
+
[
Π′

0,Π0

]3)
.

As in Appendix C.1, we then observe that

Π0(e
2iπm (·)X) =


e2iπm(·)M−X , if m = j ,

e2iπm(·)M+X , if m = j′ ,

0 , otherwhise.

To compute expansions of the projector, we rely on

∂δ
(
λI − Lδ

ξ0

)−1∣∣
δ=0

= Rλ L[1]Rλ ,

∂2
δ

(
λI − Lδ

ξ0

)−1∣∣
δ=0

= 2

(
RλL[1]RλL[1]Rλ +RλL[2]Rλ

)
,

∂3
δ

(
λI − Lδ

ξ0

)−1∣∣
δ=0

= 6

(
RλL[1]RλL[1]RλL[1]Rλ +RλL[2]RλL[1]Rλ +RλL[1]RλL[2]Rλ +RλL[3]Rλ

)
.
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From the Cauchy residue theorem, we deduce

(Π′
0)

j′

1 = Gj′+1(L
[1])j

′

1 M+ , (Π′
0)

j
−1 = Gj−1(L

[1])j−1M− ,

(Π′
0)

j′+1
−1 = M+(L

[1])j
′+1
−1 Gj′+1 , (Π′

0)
j−1
1 = M−(L

[1])j−1
1 Gj−1 .

Inserting this in the above formula for U [1] proves the claim on (U [1])j−1 and (U [1])j
′

1 .

Likewise, applying again the Cauchy residue theorem, we deduce
1

2
(Π′′

0)
j′

2 = B+M+ ,
1

2
(Π′′

0)
j
−2 = B−M− ,

1

2
(Π′′

0)
j′+2
−2 = M+C− ,

1

2
(Π′′

0)
j−2
2 = M−C+ .

Inserting this in the above formula for U [2] proves the claim on (U [2])j−2 and (U [2])j
′

2 .

To complete the proof of the proposition, we compute([
Π′′

0,Π
′
0

])j

−3

= 2M+C−Gj−1(L
[1])j−1M− − 2M+(L

[1])j−2
−1 Gj−2B−M− ,([

Π′′
0,Π

′
0

])j′

3

= 2M−C+Gj′+1(L
[1])j

′

1 M+ − 2M−(L
[1])j

′+2
1 Gj′+2B+M+ .

and ([
Π′′

0,Π0

][
Π′

0,Π0

])j

−3

= −2M+C−Gj−1(L
[1])j−1M− ,([

Π′′
0,Π0

][
Π′

0,Π0

])j′

3

= −2M−C+Gj′+1(L
[1])j1M+ .

Combining these concludes the proof.

Appendix D. Proof of Lemma 5.6

To prove Lemma 5.6, our first task is to make the formula from Proposition 5.5 even more
explicit. To do so, we set

κ0 := 2πk0 , s := j +
ξ0
2π

− 3

2
= j′ +

ξ0
2π

− 3

2
,

and note that, inserting (2.1)-(2.2)-(2.3)-(2.4) in the definition of Lδ
ξ directly gives

(L[0])j−m
0 =

(
iκ0V (32 −m+ s) −1

1 + F ′′(1)κ20 (
3
2 −m+ s)2 iκ0V (32 −m+ s)

)
,

(L[1])j−m
−1 = −1

2

(
iκ0V (32 −m+ s) 1

−F ′′′(1)κ20(
3
2 −m+ s)(12 −m+ s) iκ0V (12 −m+ s)

)
,

(L[2])j−m
−2 =

1

2

(
iκ0σ0(

3
2 −m+ s) h′(1)

3h(1)

−κ20σ1(
3
2 −m+ s)(−1

2 −m+ s) iκ0σ0(−1
2 −m+ s)

)
,

(L[3])j−3 = −1

2

(
iκ0σ3(

3
2 + s) σ2

−κ20σ4(
3
2 + s)(−3

2 + s) iκ0σ3(−3
2 + s)

)
,
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where

σ0 := V

(
1

2
+

h′(1)

3h(1)

)
, σ1 :=

F (3)(1)h′(1)

3h(1)
− F (4)(1)

4
, σ2 :=

3

16

((
h′(1)

h(1)

)2

− 1

4

h′′(1)

h(1)

)
,

and

σ3 := V

(
σ2 +

1

4
+

h′(1)

3h(1)

)
, σ4 := F (3)(1)σ2 −

F (4)(1)h′(1)

6h(1)
+

F (5)(1)

24
.

Setting

χm := λ0 − iκ0 V

(
m+

ξ0
2π

)
= iκ0V (j −m)− iωj(ξ0) ,

dm :=
1

(λ0 − λm
+ (ξ0))(λ0 − λm

− (ξ0))
=

1

χ2
m + ω2

m(ξ0)
,

we also have

Gm =

(
0 0

1 0

)
+ dm

(
1

−χm

)(
χm −1

)
.

Next, using the foregoing computations, we make more explicit different parts of N , beginning
with

(L[1])j−2
−1 Gj−2(L

[2])j−2

= −1

4

(
1

iκ0V (−3
2 + s)

)(
iκ0σ0(

3
2 + s) h′(1)

3h(1)

)
− dj−2

4

(
iκ0V (−1

2 + s)− χj−2

−α1(−3
2 + s)

)(
α2(

3
2 + s) −α3

)
with

α1 := iκ0V χj−2 + F ′′′(1)κ20

(
−1

2
+ s

)
,

α2 := iκ0σ0χj−2 + κ20σ1

(
−1

2
+ s

)
,

α3 := − h′(1)

3h(1)
χj−2 + iκ0σ0

(
−1

2
+ s

)
.

Likewise

(L[2])j−1
−2 Gj−1(L

[1])j−1

= −1

4

(
h′(1)
3h(1)

iκ0σ0(−3
2 + s)

)(
iκ0V (32 + s) 1

)
− dj−1

4

(
α4

−α5(−3
2 + s)

)(
α6(

3
2 + s) χj−1 − iκ0V (12 + s)

)
with

α4 := iκ0σ0

(
1

2
+ s

)
− χj−1

h′(1)

3h(1)
,

α5 := κ20σ1

(
1

2
+ s

)
+ iκ0σ0χj−1 ,

α6 := iκ0V χj−1 + F ′′′(1)κ20

(
1

2
+ s

)
.
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At last,

(L[1])j−2
−1 Gj−2(L

[1])j−1
−1 Gj−1(L

[1])j−1

= −1

8

(
1

iκ0V (−3
2 + s)

)(
iκ0V (32 + s) 1

)
− dj−1

8

(
iκ0V

(
1

2
+ s

)
− χj−1

)(
1

iκ0V (−3
2 + s)

)(
α6(

3
2 + s) χj−1 − iκ0V (12 + s)

)
− dj−2

8

(
χj−2 − iκ0V

(
−1

2
+ s

))(
iκ0V (−1

2 + s)− χj−2

−α1(−3
2 + s)

)(
iκ0V (32 + s) 1

)
− dj−1 dj−2

8

(
α1

(
1

2
+ s

)
− χj−1

(
χj−2 − iκ0V

(
−1

2
+ s

)))
×
(
iκ0V (−1

2 + s)− χj−2

−α1(−3
2 + s)

)(
α6(

3
2 + s) χj−1 − iκ0V (12 + s)

)
.

Inserting the foregoing in Proposition 5.5 yields

Γ =
(
−iωj′(ξ0) 1

)
N
(

1
iωj(ξ0)

)
= R1 +R2 +R3 +R4

with

R1 =
1

2

(
κ0σ3

(
s
(
ωj − ωj′

)
− 3

2

(
ωj′ + ωj

))
− σ2 ωjωj′ + κ20σ4

(
s2 − 9

4

))
+

1

4

(
−ωj′ + κ0V

(
−3

2
+ s

))(
κ0σ0

(
3

2
+ s

)
+ ωj

h′(1)

3h(1)

)
+

1

4

(
−ωj′

h′(1)

3h(1)
+ κ0σ0

(
−3

2
+ s

))(
κ0V

(
3

2
+ s

)
+ ωj

)
+

1

8

(
−ωj′ + κ0V

(
−3

2
+ s

))(
κ0V

(
3

2
+ s

)
+ ωj

)
,

R2 =
dj−2

8

(
−ωj′

(
iκ0V

(
−1

2
+ s

)
− χj−2

)
+ iα1

(
−3

2
+ s

))
×
[
−2

(
iα2

(
3

2
+ s

)
+ ωjα3

)
+

(
χj−2 − iκ0V

(
−1

2
+ s

))(
κ0V

(
3

2
+ s

)
+ ωj

)]
,

R3 =
dj−1

8

(
−iα6

(
3

2
+ s

)
+ ωj

(
χj−1 − iκ0V

(
1

2
+ s

)))
×
[
2

(
−ωj′α4 + iα5

(
−3

2
+ s

))
+

(
iκ0V

(
1

2
+ s

)
− χj−1

) (
−ωj′ + κ0V

(
−3

2
+ s

))]
,

and

R4 :=
dj−1 dj−2

8

(
α1

(
1

2
+ s

)
− χj−1

(
χj−2 − iκ0V

(
−1

2
+ s

)))
×
(
iωj′

(
iκ0V

(
−1

2
+ s

)
− χj−2

)
+ α1

(
−3

2
+ s

))
×
(
α6

(
3

2
+ s

)
+ iωj

(
χj−1 − iκ0V

(
1

2
+ s

)))
,

where we omit to specify that ωj and ωj′ are evaluated at ξ0.
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Finally we specialize the discussion to power laws so as to expand in V −1 in the limit V → ∞.
Actually we find it more convenient to carry out the expansion in s−1 where s is related to V by

s =

√
5

2

V√
P ′(1)

=

√
5

2

V√
γ T

.

To begin with, we compute

F ′′(ρ) = T γ ργ−2 , h(ρ;V ) =
V 2

ρ3
− T γ ργ−2 ,

and

ωj =

√
1 + γ T κ20

(
3

2
+ s

)2

, ωj′ =

√
1 + γ T κ20

(
−3

2
+ s

)2

.

Therefore

κ0 =
1√
h(1)

=
1

V

1√
1− 5

4 s
−2

so that

κ0 V = 1 +
5

8
s−2 +O(s−4) , γ T κ20 s

2 =
5

4

(
1 +

5

4
s−2

)
+O(s−4) ,

and

ωj =
3

2

√
1 +

5

3
s−1 +

35

18
s−2 +

25

12
s−3 +O(s−4)

=
3

2

(
1 +

1

2

(
5

3
s−1 +

35

18
s−2 +

25

12
s−3

)
− 1

8

(
5

3
s−1 +

35

18
s−2

)2

+
1

16

(
5

3
s−1

)3

+O(s−4)

)

=
3

2
+

5

4
s−1 +

15

16
s−2 +

25

32
s−3 +O(s−4) .

Thus

ωj′ =
3

2
− 5

4
s−1 +

15

16
s−2 − 25

32
s−3 +O(s−4) ,

and

χj−1 = i (κ0 V − ωj) = −i

(
1

2
+

5

4
s−1 +

5

16
s−2 +

25

32
s−3

)
+O(s−4) ,

χj−2 = i (2κ0 V − ωj) = −i

(
−1

2
+

5

4
s−1 − 5

16
s−2 +

25

32
s−3

)
+O(s−4) ,

dj−1 =
1

χ2
j−1 + ω2

j−1

=
1

χ2
j−1 + 1 + γTκ20

(
1
2 + s

)2 =
1

2
+O(s−4) ,

dj−2 =
1

χ2
j−2 + ω2

j−2

=
1

χ2
j−2 + 1 + γTκ20

(
−1

2 + s
)2 =

1

2
+O(s−4) ,

iκ0V

(
1

2
+ s

)
− χj−1 = i

(
s+ 1 +

15

8
s−1 +

5

8
s−2

)
+O(s−3) ,

iκ0V

(
−1

2
+ s

)
− χj−2 = i

(
s− 1 +

15

8
s−1 − 5

8
s−2

)
+O(s−3) ,
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α6 = iκ0V χj−1 + (γ − 2)Tγκ20

(
1

2
+ s

)
=

1

2
+

5

4
(γ − 1) s−1 +

5

8
(γ − 1)s−2 +

25

16
(γ − 1)s−3 +O(s−4) ,

α1 = iκ0V χj−2 + (γ − 2)Tγκ20

(
−1

2
+ s

)
= −1

2
+

5

4
(γ − 1) s−1 − 5

8
(γ − 1)s−2 +

25

16
(γ − 1)s−3 +O(s−4) .

Likewise

h′(1)

h(1)
= −3V 2 + γT (γ − 2)

V 2 − γT
= −3− 5

4

γ + 1

s2 − 5
4

= −3− 5

4
(γ + 1) s−2 +O(s−4) ,

h′′(1)

h(1)
=

12V 2 − γT (γ − 2)(γ − 3)

V 2 − γT
= 12− 5

4

(γ + 1)(γ − 6)

s2 − 5
4

= 12− 5

4
(γ + 1)(γ − 6) s−2 +O(s−4) .

Therefore

κ0 σ0 = κ0V

(
1

2
+

h′(1)

3h(1)

)
= −1

2
− 5

48
(4γ + 7)s−2 +O(s−4) ,

κ20 σ1 = κ20

(
F (3)(1)h′(1)

3h(1)
− F (4)(1)

4

)
= − 5

16
(γ − 2)(γ + 1)s−2 +O(s−4) ,

σ2 =
3

16

((
h′(1)

h(1)

)2

− 1

4

h′′(1)

h(1)

)
=

9

8
+

15

256
(γ + 1)(γ + 18)s−2 +O(s−4) ,

κ0 σ3 = κ0V

(
σ2 +

1

4
+

h′(1)

3h(1)

)
=

3

8
+

15

64

(
1 + (γ + 1)

(
1

4
γ +

49

18

))
s−2 +O(s−4) ,

κ20 σ4 = κ20

(
F (3)(1)σ2 −

F (4)(1)h′(1)

6h(1)
+

F (5)(1)

24

)
=

5

96
(γ − 2)(γ2 + 5γ + 3) s−2 +O(s−4) .

Thus

α4 = iκ0σ0

(
1

2
+ s

)
− χj−1

h′(1)

3h(1)
= −i

(
1

2
s+

3

4
+

5

48
(4γ + 19) s−1

)
+O(s−2) ,

α3 = − h′(1)

3h(1)
χj−2 + iκ0σ0

(
−1

2
+ s

)
= −i

(
1

2
s− 3

4
+

5

48
(4γ + 19) s−1

)
+O(s−2) ,

and

α5 = κ20σ1

(
1

2
+ s

)
+ iκ0σ0χj−1 = −1

4
− 5

16
γ(γ − 1) s−1 − 5

96
(3γ2 + γ + 4) s−2 +O(s−3) ,

α2 = iκ0σ0χj−2 + κ20σ1

(
−1

2
+ s

)
=

1

4
− 5

16
γ(γ − 1) s−1 +

5

96
(3γ2 + γ + 4) s−2 +O(s−3) .
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Then we compute that

R1 = −1

8
s2 +

1

64

(
5

3
γ3 + 5γ2 − 25γ − 103

3

)
+O(s−1) ,

R2 +R3 =
1

32

(
(5γ + 1)s2 − 25

8
γ3 +

5

2
γ2 +

475

24
γ +

115

6

)
+O(s−1) ,

R4 =
1

32

(
−(5γ − 3)s2 +

125

64
γ3 − 425

64
γ2 − 505

64
γ − 83

64

)
+O(s−1) .

This yields Lemma 5.6.
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[HLS06] M. Hǎrǎguş, E. Lombardi, and A. Scheel. Spectral stability of wave trains in the Kawahara equation. J.
Math. Fluid Mech., 8(4):482–509, 2006.
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