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Abstract. Substantially extending previous results of the authors for smooth solutions
in the viscous case, we develop linear damping estimates for periodic roll-wave solutions of
the inviscid Saint Venant equations and related systems of hyperbolic balance laws. Such
damping estimates, consisting of Hs energy estimates yielding exponential slaving of high-
derivative to low-derivative norms, have served as crucial ingredients in nonlinear stability
analyses of traveling waves in hyperbolic or partially parabolic systems, both in obtaining
high-freqency resolvent estimates and in closing a nonlinear iteration for which available
linearized stability estimates apparently lose regularity. Here, we establish for systems
of size n ≤ 6 a Lyapunov-type theorem stating that such energy estimates are available
whenever strict high-frequency spectral stability holds; for dimensions 7 and higher, there
may be in general a gap between high-frequency spectral stability and existence of the type
of energy estimate that we develop here. A key ingredient is a dimension-dependent linear
algebraic lemma reminiscent of Lyapunov’s Lemma for ODE that is to our knowledge new.
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1. Introduction

In the present contribution, we construct linear damping estimates for roll wave solutions
of the Saint Venant equations (SV) for inclined shallow-water flow, or, more generally,
discontinuous periodic traveling waves of a general system of hyperbolic balance laws

(1.1) ∂t(f0(W )) + ∂x(f(W )) = R(W ), W ∈ Rn.

Roll waves are potentially harmful periodic wave trains forming in canals or other channel
flow under situations of “hydrodynamic instability,” that is, when constant-height laminar
flow becomes unstable. Oscillating in amplitude, roll waves can have substantially larger
maximum fluid height than a corresponding laminar flow carrying the same flow, leading to
spillage or possible damage. This, along with their dramatic nature, has led to considerable
interest in their existence and stability, or “permanence” as persistent waves. See, e.g.,
[Jef25, Dre49, Bro69, Bro70] for further discussion.

Stability of smooth roll wave solutions of the “viscous” version of the Saint Venant
equations has been in principle completely resolved in [JZN11, JNRZ14, RZ16, BJN+17],
with, on one hand, the identification of spectral conditions under which one obtains both
nonlinear stability and a detailed description of asymptotic behavior, and on the other hand
the study of those spectral conditions by a combination of thorough numerical computations
to derive complete stability diagrams and rigorous near-onset asymptotic analyses in regimes
not accessible by numerics.

However, as noted in [BJN+17, JNR+19], there is considerable advantage to working
with the inviscid equations in understanding behavior. In particular, a useful power-law
description of stability obtained in [BJN+17] for the regime relevant to hydraulic engineer-
ing corresponds effectively to an inviscid limit, requiring intensive computational resources
to resolve in the viscous setting. By contrast, in the inviscid spectral stability analysis of
[JNR+19], the corresponding stability boundaries could be found with orders of magnitude
fewer computations; in particular, the low-frequency stability boundary was obtained ex-
plicitly, as the solution of a cubic equation in the model parameters. And, indeed, it is the
inviscid equations that appear to be the industry standard in hydraulic engineering.

These considerations motivate the study of linearized and nonlinear stability in the orig-
inal inviscid, quasilinear hyperbolic form (1.1), despite the technical difficulties, among
others, of discontinuity of the background wave, lack of parabolic smoothing and presence
of characteristic points in the equations. Such analyses have been carried out in the scalar
case in [DR20, DR22, GR25] (for which however periodic solutions are always unstable)
and for front-type solutions of some general systems including the Saint Venant equations
in [YZ20, FR23, FRYZ24, FRng]. As a bridge between the viscous and inviscid words we
point out that the asymtpotic stability result of [BR24] are uniform with respect to viscosity.

Here, generalizing analysis of [RZ16] in the viscous case, we develop for periodic solutions
of (SV) and related systems (1.1), under the assumption of strict high-frequency spectral
stability, a Lyapunov-type linear damping estimate yielding exponential slaving of higher-
to lower-derivative Sobolev norms.

Such estimates, in a nonlinear form, are a key ingredient in the study of nonlinear stability
in situations of delicate regularity, compensating in a nonlinear iteration scheme for apparent
derivative loss in linearized estimates used to obtain decay. See [Zum07, MZ05, RZ16]
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and [YZ20, FR23, FRng] for examples from hyperbolic-parabolic systems and quasilinear
hyperbolic systems. Here, we carry out the first, important step of identifying an underlying
structure/mechanism by which spectral properties may be translated into a corresponding
linear energy estimate. For systems of dimension n ≤ 6, these estimates are seen to be sharp
in the sense that they may be obtained whenever there holds the (necessary) condition of
high-frequency spectral stability. For systems of higher dimension n ≥ 7, we conjecture but
have not established definitely that there is a gap between the conditions for high-frequency
spectral stability and existence of a linear energy estimate of the type we construct here. For
the artificial complex analogs of these conditions, we prove on one hand that no gap exists
when n ≤ 4 whereas by explicit example we show that such a gap does exist in dimensions
n ≥ 5.

As analyzed in details in [FR23, Appendix A] we stress that if one were willing to derive a
full damping estimate, that is a damping of the whole solution, not only its high-frequency
part then a similar gap appears already for the stability of constant solutions when the
system contains n = 3 equations, thus essentially always. Hence in the wave-stability theory
the need to combine high-frequency damping estimates with more advanced functional-
analytic techniques.

Along the way, we encounter an interesting linear algebraic fact, Lemma 2.1 analogous to
those underlying the predecessors of our analysis by Lyapunov [Lia07] and Kreiss [Kre70],
but confined to spaces of dimensions three and lower for complex matrices and eight and
lower for real ones, that is the key observation needed for the extension to systems (1.1) of
size n > 2. This is in turn closely related to the algebraic geometry question “what is the
largest number of quadratic equations qj(x) = 0, x ∈ C2, with associated quadratic forms
Qj , for which it is guaranteed that either (i) the family qj(x) = 0 has a common nontrivial
solution, or (ii) there is a linear combination

∑
j cjQj that is positive definite?” The answer,

“two,” leads to the bounds of three (complex case) and five (real case) in Lemma 2.1, the
latter in turn leading to the bound n ≤ 6 for system (1.1).

The above observations lead to sharp high-frequency treatment of roll waves in systems
(1.1) of dimension 6 and lower, notably the Saint Venant equations (SV) and the (3 × 3
version of the) Richard-Gavrilyuk model (RG) recently introduced in [RG12] as a refinement
incorporating effects of turbulent vorticity. For systems in dimension six and higher, our
methods are not guaranteed to work whenever high-frequency stability holds, but, due to
the above-mentioned theoretical gap, only under the stronger condition for existence of an
energy estimate. In practice, however, our stronger condition may well be sufficient, as this
gap appears to occur rather infrequently among randomly chosen systems, and when it does
occur is not large; see Remark A.5.

1.1. Reader’s guide. The underlying principle for our analysis, originating in [Zum07,
MZ05] and greatly extended in [RZ16, FR23, FRng] and elsewhere, is that strict high-
frequency spectral estimates should be related to high-frequency damping, through resolvent
estimates obtained by the same (WKB-type or other) estimates. That is, high-frequency
damping is a restricted, high-frequency version of the type of energy estimates obtained by
Lyapunov [Lia07] for initial value problems in ODE and Kreiss [Kre70] for initial boundary
value problems in hyperbolic PDE. So, what we are really trying to demonstrate is a Kreiss
symmetrizer type estimate (or Lyapunov lemma, in case of ODE), showing that such an
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estimate may be obtained equally by energy methods. The advantage of the energy estimate
formulation, of course, is robustness under perturbation, in particular extension to the
nonlinear setting. In the particular case of damping, this gives a crucial control of regularity
as well.

In the present setting, there are some additional complications due to the presence of
shock discontinuities, but also some simplifications due to the restriction to high frequencies.
To aid the reader, we will try to isolate the main ideas and difficulties here in an informal
way, sweeping aside some of the technicalities in the analysis of Section 3.

Let us first describe the analytical setting. A roll wave by our definition consists of a
piecewise smooth periodic traveling wave, with smooth portions separated by shock discon-
tinuities. By considerations of well-posedness, these discontinuities must be of admissible
Lax type, with n+1 entering characteristics and n−1 exiting characteristics from the shock,
and Rankine-Hugoniot jump conditions solvable for exiting modes in terms of entering ones.

At the nonlinear level, there are additional complications due to movement of the shock,
with modulating phase shifts ψ(x, t) in x introduced to fix the shocks at their initial location;
this is discussed further in Section 3. However, at the linear level this may more or less be
ignored, as phase shifts may be eliminated from the jump conditions, then recovered later.
Thus, the reader will lose little by ignoring the discussion of phase shift in Section 3.

Sonic points. A more immediate complication is the appearance of “sonic” or “char-
acteristic” points, where the hyperbolic characteristic speed is equal to the speed of the
traveling wave. Assuming strict hyperbolicity of (1.1), as holds for the fluid-dynamical
examples we have in mind, hyperbolic characteristic speeds relative to the shock are real,
changing sign only at sonic points. But, characteristics entering the shock from the left are
the ones of positive relative speed, as are the characteristics exiting the shock on the right,
and by the Lax characteristic condition these are of different number. Thus, periodicity
implies passage through a sonic point/change of sign of at least one relative characteristic
speed, as x passes from the left to the right boundary of one smooth periodic cell.

The effect of a sonic point on the eigenvalue ODE λA0w + (Aw)′ = Ew is that the
principal part Aw′ becomes singular, making it a singular ODE problem. See for example
the discussions in [Nob06, JNR+19, DR22] in the scalar and Saint Venant setting, and
some initial consequences for the spectral problem. A definitive study on the effects of
characteristic points has been made in the scalar context in [DR22, GR25], showing also
the consequences for resolvent and energy estimates, and we make important use of those
ideas here.

Sonic vs. transverse modes. The main idea behind the WKB-type high-frequency
spectral analysis for roll waves carried out in [JNR+19] is to carry out a semiclassical
limit analysis first approximately, then exactly, diagonalizing the system into a collection
of scalar modes, linked by the boundary conditions at the shocks. The idea here is that
the first, approximate diagonalization can be performed in exactly the same way for the
linearized evolution equations, substituting for the second step a “Kawashima-type” energy
estimate eliminating off-diagonal terms. This last step is described in detail in Section 3;
see also related analyses of [MZ05, RZ16, YZ20]. However, again, the reader will lose little
by ignoring this technical step, and simply taking the equations to be diagonal from the
beginning.
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This leaves us with a collection of n scalar eigenmodes

(1.2) ∂tuj + αj∂xuj = γjuj

on each period [0, X), coupled by boundary conditions linking uj(X
±), n− 1 of which are

“transverse,” i.e., for which αj(x) has constant sign, and one distinguished mode for which
αj(x) has a simple zero at a unique sonic point xs ∈ [0, X]. For all of these, coefficients
depend periodically on x alone. These two types present complementary difficulties, and
are treated in rather different fashion. And, indeed, there is a mild incompatibility between
them, leading to some unfortunate complications in exposition.

Namely, for (noncharacteristic) transverse modes, ∂tu and ∂xu are equivalent in L2 norm
up to lower-derivative terms, and so we may use these interchangeably in deriving higher-
order estimates. Since t-derivatives pass through equations and boundary conditions, it is
evident that any estimate satisfied in L2 is satisfied also in Hs for arbitrary s ≥ 1; that is,
we have the usual situation that spectra is independent of the choice of norm.

For sonic modes on the other hand, as emphasized in [JNR+19, DR22], spectra depend
very much on the norm Hs; in particular, they are unstable in L2 but stable in H1; see
Remark 4.1 for further discussion on this point. Thus, we are forced to work in H1 for
their analysis, and this means estimating ∂xu, since ∂tu and ∂xu are no longer equivalent,
∂tu ∼ α∂xu degrading at the sonic point corresponding to vanishing of α. On the good
side, a closer inspection of the Lax characteristic conditions at the shocks reveals that
characteristics of the sonic mode must exit the periodic cell on either end, hence this mode
requires no boundary conditions. Put equivalently, boundary contributions may be expected
to be favorable, as indeed they turn out to be. See Section 3 for further details on this point.

As modes are coupled through the boundary conditions, we must work in common coor-
dinates, and so we analyze transverse modes, too, in the x-derivative coordinate ∂xu rather
than the more natural ∂tu. For these coordinates, the form of the principal part of both
the interior (differential) equations and the boundary conditions changes, according to the
rule

(1.3) u→ αu

imposed by ∂tu ∼ α∂xu, somewhat obscuring the simplicity of the underlying argument,
in particular the property that Hs and L2 stability go similarly for transverse modes. In
reading through Section 3, it may be helpful for the reader to keep in mind the rule of
thumb (1.3) in following the path of the analysis.

1.2. Plan of the paper. In Section 2, we present a Lyapunov-type linear algebraic lemma
needed for the n × n system case, n > 2. In Section 3, we carry out in detail the analysis
for the 2× 2 Saint Venant equations, for which both sonic and transverse modes are scalar,
and the issues discussed in Section 2 do not arise. In Section 4, we treat the general n× n
case in a streamlined fashion, omitting technical details in common with the 2 × 2 case in
order to focus on the new issues arising in transverse modes for the system case, and give
our main result in Section ??. Finally, in Section 5, we briefly discuss perspectives and
open problems. The appendices are devoted to additional discussion from Section 2.

Acknowledgement: Thanks to Hari Bercovici for a helpful discussion regarding the
linear algebraic lemma of Section 2, and to Zhao Yang and Aric Wheeler for providing initial
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supporting numerics. L.M.R. thanks Indiana University for its hospitality during two visits
funded partly by the mathematics department’s short-term research visitor program.

2. A linear algebraic lemma

We begin with a linear algebraic lemma that seems of interest in its own right. For a
general complex n×n matrix B, denote by ρ(B) its spectral radius, defined as the maximum
modulus of its eigenvalues, and ∥B∥ its ℓ2 operator norm, defined as max|x|=1 |Bx|. Evi-
dently, ρ(B) ≤ ∥B∥; a classical question of fundamental numerical and theoretical interest
is when these two quantities coincide. A classical result is that

inf
P invertible

∥P B P−1∥ = ρ(B) .

A variant arising in our analysis is whether a combination of scaling transformations
B 7→ SBS−1 with S = diag{s1, . . . , sn}, sj positive real, and multiplication B 7→ UB by
diagonal unitary matrix U = diag{u1, . . . , un}, yields equality, ρ(SUBS−1) = ∥SUBS−1∥,
or, more generally (noting that ∥S∥ might run off to infinity)

inf
S,U

(
∥SUBS−1∥ − ρ(SUBS−1)

)
= 0.

Here and elsewhere we always assume that matrices denoted with an S letter are diagonal
with positive diagonal entries whereas those denoted with a U are diagonal with diagonal
entries of modulus 1.

The following Lyapunov-type lemma answers this question in the affirmative for lower
dimensions n ≤ 3 but in the negative for higher dimensions n ≥ 4.

Lemma 2.1. (1) For any B ∈ Mn(C), any S, U ,

ρ(UB) = ρ(SUBS−1) ≤ ∥SUBS−1∥ = ∥SBS−1∥ .

In particular, for any B ∈ Mn(C),

inf
S,U

(
∥SUBS−1∥ − ρ(SUBS−1)

)
= inf

S
∥SBS−1∥ −max

U
ρ(UB) .

(2) When n ≤ 3 and B ∈ Mn(C) or when n ≤ 5 and1 B ∈ Mn(R),

inf
S,U

(
∥SUBS−1∥ − ρ(SUBS−1)

)
= 0 .

(3) For any n ≥ 4, there exists B ∈ Mn(C) such that

inf
S

∥SBS−1∥ > max
U

ρ(UB) .

We shall make important use of Lemma 2.1 in the treatment of hyperbolic systems in
Section 4: specifically, in showing that sharp spectral information for a certain initial-
boundary value problem (associated with some matrix B), encoded in a spectral radius
condition ρ(UB) < 1 for any U , may be realized by a Lyapunov-type energy estimate
requiring ∥SBS−1∥ < 1 for some S.

1Note that the spectrum is still the complex spectrum.
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In order not to delay too much the use of Lemma 2.1 we postpone to Appendix A the
treatment of complex counterexamples when n ≥ 4 and the proof of the absence of gap in
the real case n ≥ 5.

Proof. By invariance of spectra under similarity transformations, we have

ρ(UB) = ρ(SUBS−1).

for any S, U . Meanwhile, by invariance of norms under isometries and commutation of
diagonal matrices, we have

∥SUBS−1∥ = ∥USBS−1∥ = ∥SBS−1∥
for any S, U . This is sufficient to prove (1).

Simple case. We first prove the absence of gap when the infimum of S 7→ ∥SBS−1∥ is
reached at a S∗ such that the largest eigenvalue of (S∗BS

−1
∗ )∗S∗BS

−1
∗ is simple. Without

loss of generality we may assume that S∗ is the identity matrix, since otherwise we may
replace B with S∗BS

−1
∗ . Recall that for any S, ∥SBS−1∥ =

√
ρ((SBS−1)∗SBS−1).

In this case, by standard matrix perturbation theory, near identity the largest eigenvalue
of (SBS−1)∗SBS−1 = S−1B∗S2BS−1 depends smoothly on S and its sj-partial derivative
at identity is given by

r∗ (−EjB
∗B +B∗(2Ej)B −B∗BEj) r = 2(|(Br)j |2 − ∥B∥2|rj |2)

where r is a unitary eigenvector associated with the maximal eigenvalue of B∗B, Ej is the
diagonal matrix with only nonzero entry (Ej)jj = 1 and (Br)j and rj denote jth entries of
Br and r. Since by assumption the identity matrix is a critical point of S 7→ ∥SBS−1∥ we
deduce that for any such r

|(Br)j | = ∥B∥ |rj | for any j

which readily implies the existence of a unitary diagonal matrix U such that UBr = ∥B∥r,
giving ρ(UB) ≥ ∥B∥ and thus ρ(UB) = ∥B∥ = ∥UB∥, verifying (2) in this restricted case.

Density argument for full matrices. We next verify (2) when n ≤ 3 for complex ma-
trices that are “full” in the sense that they have no nonzero entries. To do so, we run a
continuity/density argument from the “simple” case proved before.

To prove continuity in B of the gap near a “full” matrix, we simply need to observe that
near such a matrix the infimum over S is actually a minimum over a fixed compact subset
of S. This stems from the fact that if Bjk ̸= 0 the j, k-entry (SBS−1jk = Bjk(sj/sk) goes
to infinity when sj/sk → ∞. This shows that near a “full” matrix the infimum is achieved
with ratios sj/sk varying in a fixed compact of (0,∞). Since SBS−1 only depends on those
ratios we may actually fix s1 ≡ 1 without loss of generality and thus restrict S to a compact
set as announced.

To conclude the analysis of the “full” matrix case there remains to show that is dense
the set of matrices B such that the infimum of S 7→ ∥SBS−1∥ is reached at a S∗ such that
the largest eigenvalue of (S∗BS

−1
∗ )∗S∗BS

−1
∗ is simple. We do so by examining the orbits

under S 7→ SBS−1 of matrices B such that ρ(B)2 is a multiple eigenvalue of B∗B. The
space Mn(C) has real dimension 2n2. On the other hand, as we detail below, by singular-
value decomposition B = LDR∗, R, L unitary and D diagonal, real nonnegative, the set of
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matrices B for which B∗B has a m-uple largest eigenvalue in D has dimension (at most)
2n2+1−m2, hence the set of all scalings SBS−1 (taking without loss of generality S11 = 1)
of such a B has dimension (at most) n− 1 higher, or (at most) 2n2 + n−m2. When n ≥ 3
there holds 2n2 + n − m2 < 2n2 for any m ≥ 2. This implies that the set of “simple”
matrices treated before is dense when n ≥ 3 and thus proves the absence of gap for “full”
matrices when n ≥ 3.

Before moving on to the treatment of the nonfull case let us give more details on the
above dimensional count. The sets of unitary matrices R and L have dimensions n2 apiece,
accounting for 2n2 degrees of freedom. On the other hand, there is an overcount of (n−m)
for each eigenvalue outside the m-repeated block under consideration, as multiplication of
the jth columns of R and S by the same unitary complex number leaves the singular-value
decomposition unchanged. Meanwhile, multiplication on the right by the same unitary
m × m matrix of the n × m block of columns associated with the repeated eigenvalue
also leaves the singular-value decomposition unchanged, corresponding to an overcount of
m2. Subtracting these values from the count, and adding the (n − m) + 1 parameters
corresponding to the entries of D, and the n − 1 parameters corresponding to different
scalings S (again, setting the upper left entry to 1 without loss of generality), we obtain
finally (at most) 2n2 − (n−m)−m2 + (n−m+ 1) + (n− 1) = 2n2 + n−m2 as claimed.

General case. In the case that some entries of B vanish, the argument is a bit more
complicated and we argue by induction2 on dimension n, noting that the lemma holds
trivially for dimension n = 1.

Pick B ∈ Mn(C). Let us form a directed graph with nodes indexed by integers 1 ≤ j ≤ n
and a connection from i to j if Bij ̸= 0. Note that when i is connected to j the infimum
over S may be restricted to S with sj/si bounded from above. For any nodes (i, j) in the
same closed loop of this graph, all ratios sj/si must vary in a compact of (0,∞). Thus we
identify all nodes lying in a closed loop to reduce to a single node. Note that the argument
on ratios still applied to the new graph. Repeating this process, we arrive finally at an
irreducible configuration, each connected component of which consists of trees.

Note that if the process ends with a single node this means that for the infimum in S for
B and all the nearby matrices all the ratios must lie in a compact of (0,∞). From this the
argument of the full case may be repeated and we conclude again to the absence of gap.

If the process ends with more than one connected component this means that up to
reordering indices the matrix B is block-diagonal with at least two blocks. In this case one
is thus effectively reduced to lower dimension and concludes from the induction hypothesis.

There remains to deal with the case when the process ends with a single tree that is not
reduced to a single node. Pick a node in the final tree. Let B̃ denote the matrix obtained
from B by zeroing out any Bjk with either j ending in the chosen node and k not ending

in this node or the reverse. Note that B̃ is effectively block diagonal and thus verifies the
no-gap conclusion. Let Sε denote the diagonal matrix with jth entry 1 if j lies in the chosen
node, ε if j lies above the chosen node in the final tree, ε−1 if j lies below the chosen node
in the final tree. Note that SεBS

−1
ε converges to B̃ when ε → 0, the unbounded ratios of

2Up to n = 3.
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Sε falling only against zero entries of B. This implies that

inf
S

∥SB̃S−1∥ ≥ inf
S

∥SB̃S−1∥ , max
U

ρ(UB̃) = max
U

ρ(U B) .

Thus from the absence of gap for B̃ stems the absence of gap for B.

As announced the rest of the proof is provided in Appendix A. □

Remark 2.2. The proof of Lemma 2.1 affords at the same time a strategy for finding a
minimal S when B is full, or more generally when B is irreducible in the sense that the
graph reduction of the final step ends into a single node. Near such a matrix, infS ∥SBS−1∥
is continuous in B whereas for matrices as in the simple-case step critical points of S 7→
∥SBS−1∥ are global minimizers. Thus for n ≤ 3 a gradient search on S 7→ ∥SBS−1∥ should
for generic B converge toward the unique critical point and global minimizer. By contrast,
the energy landscape of U 7→ ρ(UB) is rather complicated, possessing in general multiple
critical points, including saddlepoints and local maxima along with a global maximum; see
Appendix B.

3. The Saint Venant equations

We illustrate first our damping construction for the simplest case of the 2×2 Saint Venant
model treated in [JNR+19]. For such a low-dimensional system the linear algebraic part is
trivial because it effectively involves a 1× 1 matrix.

3.1. Spectral analysis. Let us first recall the derivation of high-frequency spectral asymp-
totics carried out in [JNR+19].

Starting with the 2× 2 Saint-Venant model

(3.1) ∂t(f0(W )) + ∂x(f(W ) = R(W ), W = (h, U)T ,

linearizing in co-moving coordinates x̃ = x − ct about a periodic traveling wave profile
W̄ moving at speed c with period X, and changing unknown to a “good unknown” (see
Remark 3.1 below), we obtain eigenvalue equations

(3.2) (Aw)′ = (−λA0 + E)w, A = d f(W̄ )− cA0, A0 = d f0(W̄ ),

augmented with jump conditions

(3.3) yj (λ [f0(W̄ )] + [R(W̄ )]) = [Aw]jX ,

at the shocks, where yj is (the Laplace transform of) an unknown shift in shock location
to be determined in the course of solving (3.3). We restrict to periodic waves with a single
shock by period and translate to force shocks to be at jX, j ∈ Z.

Here, d f(W̄ ) and d f0(W̄ ) are exactly as for isentropic polytropic gas dynamics with
γ = 2. In particular, the eigenvalues of A−1

0 A consist of acoustic modes α1, α2 that are
distinct for all choices ofW , satisfying α1 < U−c < α2. See [JNR

+19, Section 4] for further
details.

Performing a “frozen-coefficients” diagonalization procedure as in [JNR+19, Section 6],
we obtain

(3.4)

(
α1 0
0 α2

)
u′ = −

(
λ+ γ1 β1
β2 λ+ γ2

)
u,
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with βj , γj real. Here, w = Tu, where T−1A−1
0 AT is diagonal. We refer to [JNR+19,

Section 6] for explicit expressions3. By the Lax 2-shock condition we have

(3.5) α1(X) < 0 < α2(X) and α1(0) < α2(0) < 0 .

Next, we perform a further diagonalization u = T̃ z, with T̃ = Id + O(λ−1) eliminating
to O(λ−1) the off-diagonal entries βj , obtaining

(3.6)

(
α1 0
0 α2

)
z′ = −

(
λ+ γ1 0

0 λ+ γ2

)
z +O(λ−1)z .

As observed in [JNR+19, Appendix A], the “sonic mode” associated with the characteristic
α2 that changes sign at a x = xs, blows up as x → xs from both sides. This mode is
therefore not in H1

loc, and is not included in the periodic Evans-Lopatinsky determinant
for the problem, which tests whether solutions of the interior eigenvalue ODE above satisfy
the boundary conditions corresponding to the linearized Rankine-Hugoniot condition at the
inviscid shock in w coordinates, up to a Floquet shift ei ξX , ξ ∈ R: namely, the function

(3.7) D(λ, ξ) := det
(
(Awλ)(X)− ei ξX(Awλ)(0) λ[f0(W̄ )] + [R(W̄ )]

)
,

where wλ is the unique (up to normalization) analytic solution of the interior eigenvalue
ODE.

The Evans-Lopatinsky determinant is related to a suitably defined spectrum with (w, (yj))

measured in H1(R̃)× ℓ2(Z) where

R̃ :=
⋃
j∈Z

(jX, (j + 1)X) ,

through the use of a Floquet-Bloch transform that reduces the whole line problem to periodic
problems parametrized by a Floquet exponent ξ. For a detailed description/derivation, see
again [JNR+19, Section 4].

For large |λ|, then, the Evans-Lopatinsky determinant is given asymptotically by4

(3.8) D(λ, ξ) ∼ det
(
e
−

∫X
0

λ+γ1
α1 (AT1)(X)− ei ξX(AT1)(0) λ [f0(W̄ )]

)
,

where T1(x) is the first column of T (x), i.e., the specific eigenvector of (A−1
0 A)(x) associated

with eigenvalue α1 that is used in the coordinatization of w by u1, u2. In particular when
ℜ(λ) itself is large

D(λ, ξ) ∼ λ e
−

∫X
0

λ
α1 det

(
(AT1)(X) [f0(W̄ )]

)
,

and one recovers that local well-posedness near Lax shock requires the Lopatinsky condition

det
(
(AT1)(X) [f0(W̄ )]

)
̸= 0 .

What we seek to identify is the condition ensuring that for ℜλ ≥ −η, η > 0 fixed
sufficiently small and |λ| large, D(λ, ξ) does not vanish for any ξ ∈ R. Directly evaluating

3Our present notation differ though.
4We use here ∼ in a rather informal way.
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the principal part of (3.8), we obtain

(3.9) D(λ, ξ) ∼ λ
(
e− i ξX e

−
∫X
0

λ+γ1
α1 C − 1

)
,

where

(3.10) C =
det
(
(AT1)(X) [f0(W̄ )]

)
det
(
(AT1)(0) [f0(W̄ )]

) .
The occurrence of a high-frequency spectral gap is thus equivalent to

(3.11) I := e
−

∫X
0

γ1
α1 C < 1.

The quantity I is referred to in [JNR+19] as the “high-frequency stability index”. For
later reference, we give an alternative characterization of C. It follows from the Lopatinsky
condition that there exists a unique (a, b) such that

a (AT1)(X) + b [f0(W̄ )] = (AT1)(0)

and from the Cramer formula that a = C−1 .

3.2. Linear damping estimate. Even for smooth periodic waves the best notion of sta-
bility one may expect, coined as space-modulated stability in [JNRZ14], is encoded by the
control of (v, ∂xψ, ∂tψ) such that

(3.12) v =W (x− ψ(x, t), t)− W̄ (x) ,

with v, ψ designed to capture respectively shape and position deformations. We refer
to [Rod13, Rod15] for further discussion on the latter. For discontinuous waves, when
measuring proximity in piecewise smooth topologies one must already introduce a similar
treatment in local-well-posedness results; see for instance [Maj83, Nob09].

Inserting (3.12) in (3.1) in co-moving coordinates and considering (v, ψ) as unknown
small functions gives the linearized equations

(3.13) A0∂tv + ∂x(Av)− Ev = −∂tψA0 W̄
′ − ∂xψAW̄

′ + Fquad, on R̃
with A0, A, E as in (3.2), together with partially linearized jump conditions

(3.14) ∂tψ [f0(W̄ )]− [Av] = Gquad , on XZ ,
with Fquad and Gquad replacing terms that are at least quadratic.

Remark 3.1. Besides the dropping of forcing terms and the Laplace transform in time,
there is another difference between variables v of the present subsection and w of the preced-
ing subsection. Roughly speaking w(x, t) = v(x, t) + ψ(x, t)W̄ ′(x), yj(t) = ψ(t, jX). From
(3.13)

∂tψA0 W̄
′ + ∂xψAW̄

′ = A0∂t(ψ W̄
′) + (A(ψ W̄ ′))x − E (ψ W̄ ′)

we see that w satisfies a fully linearized interior equation with no linear forcing terms. The
“good unknown” w is used crucially in proofs of nonlinear and linear asymptotic stability of
spectrally stable periodic waves to isolate the phase ψ in a manner yielding optimal linear
bounds on the residual v. See for instance [JNRZ13, JNRZ14, Rod18]. In related nonlinear
schemes, time decay and improvement in nonlinearity is obtained in (w,ψ) whereas the v
variable is used to close in regularity without losing or gaining in nonlinearity or decay,
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through high-frequency damping estimates. The point is that some of the terms in Fquad

and Gquad contain too many derivatives to be considered as forcing terms in the energy
estimate but may instead be thought as introducing small variations in coefficients of the
linear part and treated perturbatively as such. For the sake of simplicity we shall simply
obtain bounds on v in terms of

F := −∂tψA0 W̄
′ − ∂xψAW̄

′ + Fquad , G := Gquad ,

omitting both the facts that F contains a linear contribution and that (Fquad, Gquad) are
replacing terms with too many derivatives. We refer to [YZ20, FR23, FRng] for complete
treatments for discontinuous fronts with a single discontinuity.

Our goal is to establish the following linear damping estimate, converting high-frequency
spectral information into a Lyapunov-type energy estimate.

Proposition 3.2. Assume high-frequency spectral stability (3.11). For some θ > 0 and C,
if v solves (3.13)-(3.14) (for some shifts) on a time interval [0, T0] with v(0, ·) = v0 then for
all 0 ≤ t ≤ T0

∥v(·, t)∥2
H1(R̃) ≤ C e−θt ∥v0∥2H1(R̃)

(3.15)

+ C

∫ t

0
e−θ(t−τ)

(
∥F (·, τ)∥2

H1(R̃) + ∥(G, ∂tG)(·, t)∥2ℓ2(Z) + ∥v(·, τ)∥2
L2(R̃)

)
d τ.

Remark 3.3. In related nonlinear analyses it is actually important to note that the linear
slaving of the H1-norm to the L2-norm may be improved into linear slaving of Hs to L2

for any s sufficiently large since its nonlinear counterpart must be carried out with s such
that Hs is embedded in W 1,∞. Again we refer to [YZ20, FR23, FRng] for the necessary
adaptations. A less usual phenomenon appears here: because of the presence of a charac-
teristic point there is a lower bound on the indices s for which a linear slaving of Hs to L2

is possible. The same regularity threshold appears for the spectral problem. For (3.1) this
Hs-threshold is s > 1/2.

Proof. In spirit we follow the “gauge” approach of [RZ16]; however the concrete way of
finding an appropriate gauge is rather different here. In [RZ16], we looked for smooth
periodic weights and obtained those by solving scalar linear differential equations with
periodic coefficients of zero integral so as to enforce spatial periodicity. Here, periodicity
is imposed by force, since the problem is discontinuous, consisting of cells connected by
boundary conditions only. Integral constraints on the gauge arise in this case rather through
interaction between boundary conditions on either end of the cell. In terms of technical
specifics, we use in noncharacteristic modes the “Goodman” weights of [MZ05, YZ20, FRng],
and in the characteristic, or “sonic” mode, we use a key technique originating from [DR22,
GR25] to treat the sonic mode by H1 energy estimate. These two types of diagonal weights
are combined with a “Kawashima” type estimate as in [MZ05, YZ20, FR23, FRng] removing
cross-terms corresponding to matrix entries βj ; this gives a different way of removing “lower-
order” terms βj , translating into energy estimates the symbolic calculations of the high-
frequency spectral analysis above.
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Making the same “frozen-coefficients” coordinatization as in (3.4) converts (3.13) to

(3.16) ∂tu+

(
α1 0
0 α2

)
∂xu = −

(
γ1 β1
β2 γ2

)
u+ T−1A−1

0 F ,

u = (u1, u2)
T , with the single boundary condition

(3.17) u1(jX
+, t) = a0u1(jX

−, t) + b0u2(jX
−, t) + c0u2(jX

+, t) + d0G(j, t)

obtained from (3.14) by invoking Lopatinsky condition. We note, crucially, that a0 is
identical to C−1, with C defined in (3.10). By using ∂tuj = αj∂xuj + ℓ.o.t. (where here and
henceforth ℓ.o.t. denotes lower order terms), together with the time-derivative of (3.17), we
obtain the differentiated boundary conditions

(3.18) α1∂xu1(jX
+) = a0α1∂xu1(jX

−) + b0α2∂xu2(jX
−) + c0α2∂xu2(jX

+) + ℓ.o.t. .

This is to be combined with

∂t∂xu+

(
α1 0
0 α2

)
∂x(∂xu) = −

(
γ1 + α′

1 β1
β2 γ2 + α′

2

)
∂xu+ ℓ.o.t. ,

For k = 1, 2, we introduce periodic scalar weights Ωk = eωk on R̃ with ωk to be deter-
mined. Then we compute

1

2

d

d t
⟨Ωk∂xuk, ∂xuk⟩L2 + ⟨Ωkδk∂xuk, ∂xuk⟩L2

+
1

2

∑
j∈Z

(
(αkΩk(∂xuk)

2)(jX−)− (αkΩk(∂xuk)
2)((j − 1)X+)

)
= −⟨Ωk∂xuk, βk∂xuk′⟩L2 + ℓ.o.t.

with k′ denoting the index complementary to k and

(3.19) δk :=
1

2
α′
k + γk −

1

2
αkω

′
k .

In order to have damping, we need in the final computation that both interior and
boundary terms exhibit good signs. Negativity of diagonal interior terms corresponds to
positivity of dissipation coefficients. We arrange this in different ways for the sonic mode
k = 2 and the transverse mode k = 1.

Sonic mode. For the sonic mode, we observe that at the sonic point xs for which α2(xs) =
0, we have α′

2(xs) > 0, so that δ2(xs) > 0, a consequence of the Lax conditions α2(0) <
0 < α2(X) and the fact that there is only a single sonic point/change in sign of α2 on
[0, X]. Indeed, positivity of α′

2(xs) is a necessary condition for our scheme to work. We also
observe that

1

2
α′
2(xs) + γ2(xs) > 0 .

This positivity is the reason why we could set the spectral problem at the H1 level compat-
ible with stability; the presence of a characteristic point making the nature of the spectrum
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extremely sensitive to regularity. The positivity of α′
2(xs) is however sufficient to guarantee

that this occurs in Hs for s sufficiently large, the stopping criterion being(
k − 1

2

)
α′
2(xs) + γ2(xs) > 0 .

Again we refer to [JNR+19, Appendix A] and [DR22] for details.
Accordingly, drawing inspiration from [DR22, GR25], we choose ω2 so as to enforce

δ2 ≡
1

2
α′
2(xs) + γ2(xs) > 0,

by the well-defined quadrature formula

ω′
2 =

α2 − α′
2(xs)

α2
+ 2

γ2 − γ2(xs)

α2

or, for x ∈ ((j − 1)X, jX),

(3.20) Ω2,(C0)(x) := C0 exp

(∫ x

(j−1)X

(
α′
2(y)− α′

2(xs)

α2(y)
+ 2

γ2(y)− γ2(xs)

α2(y)

)
d y

)
.

Boundary terms for the sonic mode k = 1 are individually of good sign. Choosing the
constant C0 > 0 in (3.20) sufficiently large, we may make these favorable boundary terms
as large as we please, hence any other boundary terms involving the k = 2 mode may be
absorbed, hence can be neglected in our further computations and shall be considered as
ℓ.o.t. below.

Transverse mode. For the transverse mode k = 1, we have, on the other hand α1 > 0 for
all x ∈ [0, X]. Setting

δ1,(ε) ≡ ε > 0,

therefore, for arbitrary ε > 0, we obtain a well-defined quadrature

(3.21) ω′
1,(ε) =

α′
1 + 2γ1 − ε

α1
,

in which we can take ε > 0 as close to zero as needed in the analysis. Here, it is critical to
have the precise form of ω1,(ε), as it links “good” boundary terms at one (outgoing) end to
“bad” (incoming) terms at the other. For later use, we record this as, for x ∈ ((j−1)X, jX),

(3.22) Ω1,(ε)(x) := α1(x) e
∫ x
(j−1)X

2γ1(y)−ε
α1(y)

d y
.

With this choice of Ω1, recalling from (3.18) that α1∂xu1(jX
+) = a0α1∂xu1(jX

−)+ℓ.o.t.,
one deduces that the boundary terms for the transverse k = 1 are

1

2

∑
j∈Z

η1,(ε) (Ω1,(ε)α1(∂xu1)
2)(jX−) + ℓ.o.t.

with

η1,(ε) := 1− a20
(α−1

1 Ω1,(ε))(0
+)

(α−1
1 Ω1,(ε))(X−)

= 1− a20 e
−

∫X
0

2γ1(y)+ε
α1(y)

d y
,

which is dissipative so long as η1,(ε) > 0. At the limit ε → 0, η1,(0) > 0 is equivalent to the
high-frequency spectral stability condition (3.11) found in Subsection 3.1. Positivity then
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persists for sufficiently small ε > 0. This is the key observation linking energy estimates to
WKB-type expansion.

Cross-terms. At this point we have accounted for all except the cross-term contribu-
tion. The algebraic computation is essentially identical to the T̃ -elimination step of Sub-
section 3.1. As there the point is that commutators of a general matrix with diag(α1, α2)
may generate any off-diagonal matrix. This is used to pick a skew-symmetric compensator
K to insert in

d

d t
⟨∂xu,Ku⟩L2 = ⟨∂xu,K∂tu⟩L2 − ⟨∂tu,K∂xu⟩L2 + ℓ.o.t.

= ⟨∂xu, [K,diag(α1, α2)] ∂xu⟩L2 + ℓ.o.t.

so that any cross-term may be discarded.

The proof is then concluded by estimating the time evolution of

(3.23) E(u) := 1

2
⟨D∂xu, ∂xu⟩+ ⟨∂xu,Ku⟩L2 +

1

2
C ′
0∥u∥2L2

with D = diag(Ω1,Ω2) and choices made in the following order:

(1) one first picks Ω1 = Ω1,(ε) with ε > 0 sufficiently small to enforce η1,(ε) > 0 by
benefiting from (3.11);

(2) then one sets Ω2 = Ω2,(C0) with C0 sufficiently large to guarantee positivity except
for cross terms;

(3) then one designs K to kill remaining cross-terms;
(4) finally one takes C ′

0 sufficiently large to enforce that E(u) is equivalent to ∥v∥2
H1(R̃)

.

□

3.3. Towards nonlinear stability. Unlike [RZ16] that came to complete and improve the
high-frequency part of a full nonlinear stability scheme of proof, we warn the reader that
this is not the case for the present contribution. Even for the Saint-Venant system, the
question is largely open.

A key difficulty already pointed out in [JNR+19] is that near periodic traveling waves
there is an infinite-dimensional family of traveling waves. Despite the resolution of a similar
but distinct degeneracy in [GR25], the resolution of the latter by a suitable phase isolation
remains unclear.

In this direction we stress that for linearized space-modulated asymptotic stability esti-
mates to be suitably combined with an adequate nonlinear version of Proposition 3.2 so as
to close a nonlinear stability iteration, one must enforce that the isolated phase is indeed
low-frequency so that terms linear in the phase that were grouped in the forcing term h in
the analysis above are indeed manageable.

We leave this issue for future investigation.

4. General systems

Recent refinements of the Saint Venant equations proposed by Richards-Gavrilyuks [RG12]
are of larger system size, involving additional variables modeling bottom- and shock-layer
vorticities. As described further in [RG12, RYZ23, RYZng, RYZss], these include both the
full 4× 4 system (RG4) and and an invariant 3× 3 subsystem (RG3) with bottom vorticity
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held constant, containing in particular the class of roll wave solutions. This motivates the
extension of the analysis of Section 3 to discontinuous periodic traveling waves of general
n× n systems

(4.1) ∂t(f0(W )) + ∂x(f(W )) = R(W ).

Again, for our purposes we may set the wave speed to zero and consider a periodic stationary
wave W̄ .

We make the assumptions, satisfied for both (SV) and (RG3), that

(i) System (4.1) is strictly hyperbolic in the sense that eigenvalues of (d f−1
0 d f)(W ) for

W near the range of W̄ are real and simple;

(ii) The profile W̄ of period X is smooth on R̃ = ∪j∈Z((j − 1)X, jX), with admissible
Lax-type shock discontinuities at points jX, in the sense that (n+1) characteristics
enter and (n−1) leave the shocks from either side and Majda’s Lopatinsky condition;

(iii) On (0, X) a single eigenvalue of ((d f0)
−1 d f)(W̄ ) changes sign and it does so at a

single point xs in in a simple way.

Some form of (ii) is required to guarantee local well-posedness whereas some form of (iii) is
required to discard high-frequency instabilities due to characteristic points. The former, in
the present 1-D case, is precisely the condition that the Rankine-Hugoniot conditions, after
eliminating the shock-location unknown, yield a rank (n−1) boundary condition expressing
outgoing modes in terms of incoming modes. Assumption (i) is made for simplicity and it
is probably the main one to relax from an applicative point of view.

Remark 4.1. A wealth of intuition on characteritic points may be gained from the toy local
spectral problem

d(s) (· − xs)u
′ = −(λ+ γ(s))u+ F on a neighborhood of xs

whose kth derivative yields

d(s) (· − xs) (u
(k))′ = −(λ+ γ(s) + k d(s))u

(k) + F (k) .

As in [DR22, Section 2.2] one may check that for any ℓ, δ
(ℓ)
xs solves the formally dual

eigenvalue equation when λ = −(γ(s) + ℓ d(s)) so that −(γ(s) + ℓ d(s)) belongs to the Hk-

spectrum whenever k > ℓ+ 1
2 . This implies that when d(s) < 0, for any η ∈ R there exists k0

such that for any k ≥ k0, the H
k-spectrum meets the half-plane ℜ(λ) ≥ η. At the nonlinear

level in the case d(s) < 0, one may prove as in [DR22, Section 2.2] the formation of new
shocks in finite-time even for small smooth perturbations.

Focusing now on the case d(s) > 0, when modes are outgoing and no boundary condition

is required, one may check as in [JNR+19, Appendix A] by direct computation that unique
solvability in Hk is equivalent to

ℜ(λ) + γ(s)

d(s)
>

1

2
− k

and λ ̸= −(γ(s) + ℓ d(s)) for any integer ℓ such that ℓ < k − 1/2.

Those insights are translated as in [JNR+19, DR22] to the genuine coupled and varying-
coefficient case with essentially no change in the high-frequency regime.
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4.1. Spectral analysis. The eigenvalue system has the same structure as for the Saint-
Venant system

(Aw)′ = (−λA0 + E)w, A = d f(W̄ )− cA0, A0 = d f0(W̄ ),

augmented with jump conditions

yj (λ [f0(W̄ )] + [R(W̄ )]) = [Aw]jX ,

with (yj)j to be determined jointly with w.
We may perform a first diagonalization w = T−1u, to derive

αu′ = −(λId + γ + β)u

with α and γ diagonal and β off-diagonal. For some 0 ≤ m ≤ n − 1, one may order
coordinates to enforce

α = diag(α1, · · · , αn) ,

with

α1 > · · · > αm > 0 , αm+1 < · · · < αn−1 < 0 ,

αn−1 < αn < αm , αn(0) < 0 < αn(X) .

Accordingly we set

α+ = diag(α1, · · · , αm) , α− = diag(αm+1, · · · , αn−1) , α(s) = αn ,

γ+ = diag(γ1, · · · , γm) , γ− = diag(γm+1, · · · , γn−1) , γ(s) = γn ,

u+ = diag(u1, · · · , um) , u− = diag(um+1, · · · , un−1) , u(s) = γn .

Picking k such that

(4.2) k >
1

2
−
γ(s)(xs)

α(s)(xs)
,

one then derives as in [JNR+19] a consistent Hk-spectral theory with spectrum in an open
half plane containing R+ + iR coinciding with λ such that

D(λ, ξ) :=

det
(
(Aw1,λ)(X)− ei ξX(Aw1,λ)(0) · · · (Awn−1,λ)(X)− ei ξX(Awn−1,λ)(0) λ[f0(W̄ )] + [R(W̄ )]

)
vanishes for some Floquet exponent ξ ∈ R, where (w1,λ, · · · , wn−1,λ) forms a basis of the
set of analytic solutions to the interior eigenvalue ODE.

By performing a further approximate diagonalization step v = (Id + O(λ−1))u, one
may replace β with an O(λ−1)-term and check that a suitable choice of (w1,λ, · · · , wn−1,λ)
enforces that for λ large, D(λ, ξ) is given at leading order by

det
(
e
−

∫X
0

λ+γ1
α1 (AT1)(X)− ei ξX(AT1)(0) · · · e−

∫X
0

λ+γn−1
αn−1 (ATn−1)(X)− ei ξX(ATn−1)(0) λ [f0(W̄ )]

)
where Tj(x) is the jth column of T (x). In particular when ℜ(λ) is large, D(λ, ξ) is given
at leading order by a nonvanishing factor times

∆0 := det
(
(AT1)(0) · · · (ATm)(0) (ATm+1)(X) · · · (ATn−1)(X) [f0(W̄ )]

)
.
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The non vanishing of the foregoing determinant is precisely the Lopatinsky condition.
Therefore there exist a C ∈ Mn−1(R) and ℓ ∈ Mn−1,1(R) such that(

(AT1)(0) · · · (ATm)(0) (ATm+1)(X) · · · (ATn−1)(X) [f0(W̄ )]
)(C

ℓ

)
=
(
(AT1)(X) · · · (ATm)(X) (ATm+1)(0) · · · (ATn−1)(0)

)
.

Inserting this in the above yields after elementary matrix reduction to the fact that for λ
large, D(λ, ξ) is given at leading order by

λ∆0 det(− e−
∫X
0 (λ+γ−)α−1

− ) em i ξX det(Bλ,ξ − Id)

where

Bλ,ξ := diag(e− i ξX e−λ
∫X
0 α−1

+ , ei ξX eλ
∫X
0 α−1

− )B

and

B := diag(e−
∫X
0 γ+α−1

+ , e
∫X
0 γ−α−1

− )C .

Since Bλ,ξ only provides a leading-order description, we need some margin in the de-
scription of a high-frequency gap in terms of Bλ,ξ. Whereas Bλ,ξ converges to zero in the
large ℜ(λ) limit providing some form of compactness in values, the large ℑ(λ) limit is more
complicated. The following lemma elucidates this point in “generic” situations.

Lemma 4.2. Under the “generic” assumption that

(4.3)

(
1,

∫ X

0
α−1
1 , · · · ,

∫ X

0
α−1
n−1

)
are rationally independent

then the following conditions are equivalent

(1) There exist η > 0, M > 0 and c > 0 such that for any λ such that |λ| ≥ M ,
ℜ(λ) ≥ −η and for any ξ ∈ R, |det(Bλ,ξ − Id)| ≥ c.

(2) For any a ∈ R+,

max
U diagonal, unitary

ρ(U Ba,0) < 1 .

Proof. Kronecker’s theorem implies that from (4.3) stems that for any a and M , Ba+i ζ,ξ

for (ξ, ζ) ∈ R2, |ζ| ≥ M is a dense subset of the set of all U Ba,0. This implies the lemma
jointly when combined with the observation that 1 /∈ σ(U Ba,0) for any U is the same as
ρ(U Ba,0) < 1 for any U . □

Remark 4.3. We note that in any case the second condition of Lemma 4.2 implies the
first. Absent (4.3), however, the reverse may fail, even in the simpler-looking unidirectional
case that m = 0 or m = n − 1. When the first condition fails to imply the second it is far
from implying any form of high-frequency damping estimate.

Note that in their nonlinear form (not provided here) high-frequency damping estimates
must hold for all nearby systems. Hence they are expected to require a generic form of
high-frequency spectral gap.
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We retain from the high-frequency gap condition only the a = 0 condition that

(4.4) max
U

ρ(UB) < 1 .

4.2. Linear damping estimate. Our goal is now to prove a linear damping estimate
under the condition

(4.5) inf
S

∥SBS−1∥ < 1 ,

where again S runs over diagonal, positive matrices. We recall that in any case (4.5)
implies (4.4) and that we have proved that, when n− 1 ≤ 5 i.e. n ≤ 6, they are equivalent.
Obviously our interest for the general linear algebraic equivalent arose the other way around
and condition (4.5) appears naturally in the design of a high-frequency damping estimate.

We introduce

(4.6) A0∂tv + ∂x(Av)− Ev = F, on R̃

with A0, A, E as in (3.2), together with partially linearized jump conditions

(4.7)
d y

d t
[f0(W̄ )]− [Av] = G , on XZ ,

where F and G are given and y is an unkown on XZ.

Proposition 4.4. Assume the structural assumptions and (4.5), which holds under the
high-frequency spectral stability condition (4.4) when n ≥ 6. Let k ∈ N be such that (4.2)
holds. For some θ > 0 and C, if v solves (4.6)-(4.7) (for some shift y) on a time interval
[0, T0] with v(0, ·) = v0 then for all 0 ≤ t ≤ T0

∥v(·, t)∥2
Hk(R̃) ≤ C e−θt ∥v0∥2Hk(R̃)

+ C

∫ t

0
e−θ(t−τ)

(
∥F (·, τ)∥2

Hk(R̃) + ∥(G, · · · , ∂kt G)(·, t)∥2ℓ2(Z) + ∥v(·, τ)∥2
L2(R̃)

)
d τ.

Proof. To begin with we replace v with u = T−1v. Let us first observe that for any j(
u+(jX

+)
−u−(jX−)

)
= C

(
u+(jX

−)
−u−(jX+)

)
+ ℓ.o.t.

so that by first taking time derivatives and then using the interior equations(
(αk

+∂
k
xu+)(jX

+)
−(αk

−∂
k
xu−)(jX

−)

)
= C

(
(αk

+∂
k
xu+)(jX

−)
−(αk

−∂
k
xu−)(jX

+)

)
+ ℓ.o.t. .

This is to be combined with

∂t(∂
k
xu) + α∂x(∂

k
xu) = −(γ + k α′ + β) ∂kxu+ ℓ.o.t. .

In the above we have already started to consider as lower order terms the contributions
of the characteristic modes to the boundary terms. Indeed the sonic part may be treated
as in the Saint-Venant case by introducing in the quadratic formula

⟨Ω(s),(C0)∂
k
xu(s), ∂

k
xu(s)⟩L2
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with, for x ∈ ((j − 1)X, jX),

Ω(s),(C0)(x) := C0 exp

(∫ x

(j−1)X

(
(2k − 1)

α′
(s)(y)− α′

(s)(xs)

α(s)(y)
+ 2

γ(s)(y)− γ(s)(xs)

α(s)(y)

)
d y

)
where C0 is to be taken sufficiently large. Likewise in the end interior cross terms may be
discarded as in the Saint-Venant case by adding to the quadratic functional

⟨∂kxu,K∂k−1
x u⟩L2 + c0∥u∥2L2

for a well-chosen Kawashima compensator K and a sufficiently large c0.
We may thus focus on transverse modes and do as if β ≡ 0. The question is whether

one may create an ε-interior dissipation while deriving dissipative boundary conditions.
As in the Saint-Venant case it is sufficient to check that one may obtain strict boundary
dissipativity in the 0-interior dissipation case. Thus for 1 ≤ ℓ ≤ n − 1, we introduce for
x ∈ ((j − 1)X, jX),

Ωℓ,(0),σℓ
(x) := σℓ |αℓ|2k−1(x) e

∫ x
(j−1)X

2γℓ(y)

αℓ(y)
d y
,

to be inserted in
⟨Ωℓ,(0),σℓ

∂kxuℓ, ∂
k
xuℓ⟩L2

and we note that its main contribution to boundary terms is

1

2

∑
j∈Z

(
(αℓΩℓ,(0),σℓ

(∂kxuℓ)
2)(jX−)− (αℓΩℓ,(0),σℓ

(∂kxuℓ)
2)((j − 1)X+)

)
=

1

2
sign(αℓ)

∑
j∈Z

(
σℓ e

2
∫X
0

γℓ
αℓ ((αℓ∂x)

kuℓ)
2(jX−)− σℓ((αℓ∂x)

kuℓ)
2(jX+)

)
(where we recall that αℓ has constant sign). This suggest to search for σℓ under the form

diag(σ1, · · · , σn−1) = S2 diag(e−2
∫X
0 γ+α−1

+ , Id) .

with S diagonal and positive. Then summing over 1 ≤ ℓ ≤ n − 1 and using boundary
equations leave as main boundary contribution

1

2

∑
j∈Z

〈(
(αk

+∂
k
xu+)(jX

−)
−(αk

−∂
k
xu−)(jX

+)

)
,
(
S2 −BTS2B

)( (αk
+∂

k
xu+)(jX

−)
−(αk

−∂
k
xu−)(jX

+)

)〉

=
1

2

∑
j∈Z

(∥∥∥∥S ( (αk
+∂

k
xu+)(jX

−)
−(αk

−∂
k
xu−)(jX

+)

)∥∥∥∥2 − ∥∥∥∥SBS−1 S

(
(αk

+∂
k
xu+)(jX

−)
−(αk

−∂
k
xu−)(jX

+)

)∥∥∥∥2
)

so that it is sufficient to choose S such that ∥SBS−1∥ < 1. □

5. Discussion and open problems

As noted at the beginning of Section 4, the models (RG3) and (RG4) introduced by
Richard and Gavrilyuk [RG12] as refinements of (SV) are 3×3 and 4×4 models (1.1), both
satisfying the dimensional requirement n ≤ 6. The system (RG3) is strictly hyperbolic with
characteristics u − c, u ± cs − c, where c and cs are respectively wave and sound speeds.
Thus, spectrally stable roll waves of (RG3) indeed fall (generically) under the purview
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of Proposition 4.4. The full model (RG4) is however nonstrictly hyperbolic, possessing
an additional characteristic mode with speed u − c, hence does not fall directly under the
present linearized analysis; however, we suspect it could be treated similarly with additional
effort. More generally we expect extension of our analysis to non strictly hyperbolic systems
to be both within our reach and of practical relevance.

An ultimate goal is of course a full nonlinear stability result for roll waves of (SV), (RG3),
or (RG4), completing the spectral analysis of [JNR+19, RYZss] by establishing that spectral
stability implies nonlinear stability. As observed in [JNR+19, RYZss], this is problematic
for (SV) and (RG4) due to infinite-dimensional manifolds of nearby stationary solutions,
a degenerate situation that apparently requires special handling. For (RG3) on the other
hand, there is no such degeneracy, and the spectral picture appears much like that of the
viscous case already treated in [JZN11, JNRZ14]. The investigation of this problem would
be a most interesting direction for future investigation.

A more systematic treatment of high-frequency damping estimates would also be wel-
come. For our present class of systems the basic open problem is whether in cases where
there does exist a gap between high-frequency stability and existence of the energy esti-
mates developed here one might be able to obtain high-frequency damping estimates by
some other techniques. We also mention as an interesting direction the development of a
general theory for viscous periodic waves, beyond the Saint-Venant analysis of [RZ16].

An interesting open problem on the linear algebraic side is to find an example of gap
for the real-valued case in dimension n = 6. It would also be of interest, but maybe out
of reach, to derive some statistical description of the gap for some ensemble of random
matrices so as to elucidate the observations of Remark A.5.

Appendix A. Counterexample in M4(C), and extension to M5(R)

In this appendix, we complete the main remaining parts of the proof of Lemma 2.1 by
providing a complex counterexample for dimension n = 4, and the sharpened bound n ≤ 5
for the real case.

A.1. Extension to M5(R). We begin with the real extension. The overall strategy is the
same as in the complex case. The parts checking continuity of the gap in the irreducible case
and reducing to the irreducible case are identical. We need to modify the density argument
and extend the analysis of the “simple” case to some low-multiplicity multiple cases.

Density argument for full matrices. We investigate when is dense the set of matrices B
such that the infimum of S 7→ ∥SBS−1∥ is reached at a S∗ such that the largest eigenvalue
of (S∗BS

−1
∗ )∗S∗BS

−1
∗ has multiplicity at most m0. We do so by examining the orbits under

S 7→ SBS−1 of matrices B such that ρ(B)2 is a multiple eigenvalue of B∗B with multiplicity
m > m0.

The space Mn(R) has real dimension n2. On the other hand, as we detail below, by
singular-value decomposition B = LDR∗, R, L orthogonal matrices and D diagonal, real
nonnegative, the set of real matrices B for which B∗B has a m-uple largest eigenvalue
in D has dimension (at most) n2 + 1 −m(m + 1)/2, hence the set of all scalings SBS−1

(taking without loss of generality S11 = 1) of such a B has dimension (at most) n −
1 higher, or (at most) n2 + n − m(m + 1). Indeed the sets of orthogonal matrices R
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and L have dimensions n(n − 1)/2 apiece, accounting for n(n − 1) degrees of freedom.
Meanwhile, multiplication on the right by the same orthogonal m×m matrix of the n×m
block of columns associated with the repeated eigenvalue also leaves the singular-value
decomposition unchanged, corresponding to an overcount of m(m − 1)/2. Subtracting
these values from the count, and adding the (n − m) + 1 parameters corresponding to
the entries of D, and the n − 1 parameters corresponding to different scalings S (again,
setting the upper left entry to 1 without loss of generality), we obtain finally (at most)
n(n− 1)−m(m− 1)/2 + (n−m+ 1) + (n− 1) = n2 + n−m(m+ 1)/2 as claimed.

We prove below the absence of gap for full real matrices such that the infimum of S 7→
∥SBS−1∥ is reached at a S∗ such that the largest eigenvalue of (S∗BS

−1
∗ )∗S∗BS

−1
∗ has

multiplicity less than 2. The present density argument extends it to dimensions n such that
n < m(m+ 1)/2 when m ≥ 3, thus to n ≥ 5 as announced.

Double eigenvalue case. Before discussing the multiplicity two specifically, we first to
extend the discussion of the simple case to the multiple case.

To understand how S 7→ ∥SBS−1∥ behaves near the identity matrix, we introduce the
following quadratic forms: we denote Qj , j = 1, · · · , n, the restriction to ker(B∗B−∥B∥2Id)
of quadratic forms on Cn associated with matrices

2(B∗EjB − ∥B∥2Ej) , j = 1, · · · , n .

Note that
∑n

j=1Qj is identically zero. We recall that one may always the reduce the problem

to the case when the infimum of S 7→ ∥SBS−1∥ is taken at S = Id.
It follows from the regularity of spectrum of self-adjoint matrices depending on a one-

dimensional parameter that if ker(B∗B−∥B∥2Id is of dimension m then for any S one may
parameterize the m top eigenvalues of (Id + δS)−1B∗ (Id + δS)2B (Id + δS)−1 in such a
way that they depend smoothly on δ and then their derivative at δ = 0 are the eigenvalues
of
∑n

j=1 sj Qj . This immediately implies the following lemma.

Lemma A.1. If S 7→ ∥SBS−1∥ admits a local minimum at the identity matrix then no real
linear combination of the Qj is definite.

The treatment of the m = 1 case already contains the ingredients proving the following
lemma.

Lemma A.2. The Qj possess a (possibly complex) nonzero common root if and only if
there exists U diagonal and complex such that

ρ(U B) = ∥B∥ .

Note that the set of real quadratic forms on a space of dimension 2 is of dimension 3 so
that 2 is the maximal number of independent real quadratic forms on a space of dimension
2 with no real linear combination that is definite. Therefore, to conclude the analysis of
the m = 2 case, that implies the n ≤ 5 real case of Lemma 2.1, we only need to prove the
following lemma.

Lemma A.3. Two quadratic forms on C2 either possess a real linear combination that is
definite or a nonzero common complex root.
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Proof. Let q1 and q2 be two quadratic forms such that there is no real linear combination
of q1 and q2 that is strictly definite. Eliminating the trivial case where both forms are
zero, changing coordinates and rescaling if necessary, one may assume that q1 and q2 are
associated with

(A.1)

(
1 0
0 −a2

)
,

(
b c
c̄ d

)
,

with a, b, c real and d complex. The condition that σq1 + q2 be indefinite for any σ ∈ R, by
Sylvester’s criterion, is then that for any σ ∈ R

det

(
σ + b c
c̄ −a2σ + d

)
≤ 0,

or, equivalently −a2σ2 + (d− ba2)σ + bd− |c|2 ≤ 0. This is equivalent to

(A.2) (d+ ba2)2 ≤ 4a2|c|2 .
On the other hand, the nonzero roots of q1 are, evidently the nonzero multiples of a

(A.3)

(
a
γ

)
, |γ| = 1.

Substituting (A.3) into q2, we obtain a common root if and only if ba2 + 2ℜ(caγ) + d = 0,
or −2ℜ(caγ) = d+ ba2, which is solvable jointly with |γ| = 1 precisely if 2|ca| ≥ |d+ ba2|,
or (A.2). □

Corollary A.4. Given any collection of real quadratic forms qk, k = 1, · · · , n on C2,
either there is a nontrivial real linear combination that is strictly definite, or else there is a
nontrivial complex common root.

Proof. As noted above, the dimension of the space of real quadratic forms acting on dimen-
sionm ism(m+1)/2, thus in the casem = 2, dimension 3. Therefore, if there are more than
two independent forms, then some linear combination gives the identity, a positive definite
matrix. On the other hand, if there are just two independent forms, no linear combination
of which is strictly definite, then by Lemma A.3 they have a nontrivial common root. But
in this case, all other quadratic forms, being linear combinations of these first two, share
the same root. □

This completes the proof of Lemma 2.1 in the positive direction for the real-valued case.

A.2. Counterexample in M4(C). Quadratic forms. In Lemma A.3 we did not make the
restriction to real quadratic forms. However we did use the real character in Corollary A.4
to reduce the m = 2 case to the consideration of two quadratic forms. Indeed the set of
complex quadratic forms on a space of dimension 2 is of dimension 4, leaving open the
possibility that there could be three quadratic forms on C2 with no definite real linear
combination and no nonzero common complex root.

This is indeed the case, as can be seen by the explicit counterexample of quadratic forms
q1, q2 and q3 associated with matrices(

1 0
0 −1

)
,

(
0 1
1 0

)
,

(
0 i
i 0

)
.
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For the determinant of the matrix associated with
∑

k ckqk is

det

(
c1 c2 + i c3

c2 − i c3 −c1

)
= −(c21 + c22 + c23) < 0,

whence every real combination is indefinite. Yet, direct computation shows that the unique
common root of q1, q2, and q3 is zero since the equations to satisfy for x = (x1, x2) are
|x1| = |x2|, ℜ(x̄1x2) = 0, ℑ(x̄1x2) = 0.

This shows that a complex analogous of Corollary A.4, leaving open the possible open
the possibility to design a gap example for elements of M4(C), as announced in Lemma 2.1.

We now design such an example by elaborating on the above quadratic forms. Consider
the matrix B := LR∗ ∈ M4(C), with R and L elements of M4,2 having each orthonormal
columns (R1, R2) and (L1, L2), explicitly given by

(A.4) R =
1

2


1 0
1 1
1 i
1 − i−1

 , L =
1

2


0 1
1 −1
1 − i

− i +1 1

 .

By design, ∥B∥ = 1, B∗B have eigenvalues 1 and 0, both with multiplicity 2, and the
columns of R may be used as a basis of ker(B∗B − ∥B∥2Id). When doing so, the quadratic
forms Qj , j = 1, · · · , 4, appearing in the first variation of S 7→ ∥SBS−1∥ at S = Id, may be
identified with their matrices given as(

2
(
Lj,kLj,ℓ −Rj,kRj,ℓ

) )
k,ℓ=1,2

and computed to be

(A.5) Q1 = −1

4

(
1 0
0 −1

)
, Q2 = −1

4

(
0 2
2 0

)
, Q3 = −1

4

(
0 2 i
2 i 0

)
.

and Q4 = −(Q1 +Q2 +Q3).
We already know that for any S, δ 7→ ∥(Id + δS)B(Id + δS)−1∥ admits a local minimum

at δ = 0 and by Lemma A.2 that

max
U

ρ(UB) < ∥B∥ .

Global minimization. There only remains to prove that S 7→ ∥SBS−1∥ admits a unique
global minimizer at S = Id. To confirm this, we introduce

RS := S−1R , LS := SL ,

so that BS := SBS−1 = LSR
∗
S . Note that any eigenvector of B∗

SBS belongs to the range
of RS that RS is one-to-one and that

R∗
SB

∗
SBSRS = (R∗

SRS) (L
∗
SLS) (R

∗
SRS) .

Therefore we only need to prove that for any S the largest eigenvalue of (L∗
SLS)(R

∗
SRS)

has value at least 1. We recall that we already know that all the eigenvalues are real and
nonnegative (since they coincide with those of B∗

SBS) thus it is sufficient to prove that the
trace equals at least 2.
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Taking without loss of generality S = diag(s1, s2, s3, s4), with s4 = 1, we find after a brief
calculation that

R∗
SRS =

(∑4
j=1 s

−2
j Rj,k Rj,ℓ

)
k,ℓ

=
1

4

(
s−2
1 + s−2

2 + s−2
3 + 1 s−2

2 − i s−2
3 + i−1

s−2
2 + i s−2

3 − i−1 s−2
2 + s−2

3 + 2

)
L∗
SLS =

(∑4
j=1 s

2
j Rj,k Rj,ℓ

)
k,ℓ

=
1

4

(
s22 + s23 + 2 −s22 + i s23 + 1− i

−s22 − i s23 + 1 + i s21 + s22 + s23 + 1

)
giving

Tr((L∗
SLS)(R

∗
SRS)) = ((L∗

SLS)

(
1
0

)
)∗(R∗

SRS)

(
1
0

)
+ ((L∗

SLS)

(
0
1

)
)∗(R∗

SRS)

(
0
1

)
=

1

16

(
(s−2

1 + s−2
2 + s−2

3 + 1)(s22 + s23 + 2) + (s21 + s22 + s23 + 1)(s−2
1 + s−2

2 + s−2
3 + 1)

− 2(s22 − 1)(s−2
2 − 1)− 2(s23 − 1)(s−2

3 − 1)
)
.

We conclude that indeed Tr((L∗
SLS)(R

∗
SRS)) ≥ 2 by using repeatedly that for any x > 0,

(x− 1)(x−1 − 1) ≤ 0 and x+ x−1 ≥ 2.
This verifies global minimality, completing the final step of the proof of Lemma 2.1. Note

that our proof gives no information on the size of the gap but our numerics show a gap of
approximately 10%.

Remark A.5. Though the above example demonstrates that a nonzero gap can theoret-
ically exist between high-frequency stability and the condition for existence of our energy
estimates, numerical experiments choosing matrices at random suggest that this occurrence
is not so frequent, even up to dimension C7; indeed, we were not able to find by numerical
optimization starting from a random initialization existence of matrices with nonzero gap.
This suggests that even though strictly stable multiple eigenvalue configurations occur on
an open set, the size of this set, and of the resulting gap, may be relatively small, so in
practice not an issue. However we must say that we expect gaps to be more frequent when
the dimension increases whereas in this direction the optimization problems become harder
to solve numerically and our numerics are less conclusive.

A.3. Towards a counterexample in M6(R). Though we did not obtain a complete
example of a gap in M6(R), we do provide some elements in this direction.

First we point out that there are 5 five real quadratic forms on C3 with no definite real
linear combination and no nonzero common complex root. This may be seen by considering
the forms associated with1 0 0

0 −1 0
0 0 0

,
0 1 0
1 0 0
0 0 0

,
0 0 1
0 0 0
1 0 0

,
0 0 0
0 0 1
0 1 0

,
0 0 0
0 1 0
0 0 −1

.
Note that 5 is indeed the maximal number of independent quadratic forms with no real
definite real linear combination since the whole space of real quadratic forms has dimension
m(m+ 1)/2 = 6 when m = 3.
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We have looked for B := LR∗ ∈ M6(R), with R and L elements of M6,3 having each
orthonormal columns under the form

R =


x1 y1 0

ρ2 cos(θ2) ρ2 sin(θ2) 0
x3 y3 z3

ρ4 cos(θ4) ρ4 sin(θ4) z4
ρ5 cos(θ5) cos(φ5) ρ5 sin(θ5) cos(φ5) ρ5 sin(φ5)

 ,

L =


y1 x1 0

ρ2 cos(θ
′
2) ρ2 sin(θ

′
2) 0

−x3 y3 z3
ρ4 cos(θ

′
4) ρ4 sin(θ

′
4) z4

ρ5 cos(θ
′
5) cos(φ

′
5) ρ5 sin(θ

′
5) cos(φ

′
5) ρ5 sin(φ

′
5)

 ,

with x21 ̸= y21, ρ2 ̸= 0, x3 z3 ̸= 0, ρ4 z4 sin(θ4) ̸= ρ4 z4 sin(θ
′
4), ρ5 sin(φ5)

2 ̸= ρ5 sin(φ
′
5)

2. The
shape and the conditions ensure that the generated quadratic forms share the same span
as the above explicit quadratic forms hence share the same properties.

Note that the shapes of R and Y do not ensure orthonormality per se but we have solved
numerically for parameters to guarantee orthogonality. We did obtain numerical solutions,
corresponding to a B approximately given by

0.14753503 0.19982136 0.00339269 0.51926021 0.00847797 0.21926921
0.08321061 0.13296559 0.15631294 −0.1954354 −0.04654104 −0.21988828
−0.37549381 −0.02645794 0.01837161 −0.39654006 0.43179675 0.49911196
−0.3001269 −0.27661858 −0.57464677 0.35421452 −0.00469564 0.39153639
0.32691344 −0.09925285 0.51568898 0.35643262 0.22186063 0.25403942

 .

Our gap numerical tests for this matrix are however non conclusive.

Appendix B. Energy landscape for ρ(UB)

Most of the discussion on the gap linear algebra problem is about the infS ∥SBS−1∥
problem and the density of cases when a critical point of S 7→ ∥SBS−1∥ is also a global
minimizer.

It seems interesting to discuss also the energy landscape for the complementary problem
maxU ρ(UB). The situation is dramatically different. There are always plenty of local min-
imizers that are not global minimizers. Obviously this complicates numerical optimization.
Roughly speaking this is consistent with the intuition that the S-problem inherits some
properties from the convexity of maps s 7→ s−1 and s 7→ s, whereas the U -problem has a
multiply periodic structure inherited from periodicity of θ 7→ ei θ.

To support this claim, we first provide a trivial example. The construction

B = LR∗ , R =

(
1
−1

)
, L =

(
1
1

)
,

gives a simple 2×2 example of a matrix for which U = Id is a local minimum of U 7→ ρ(UB)
since

ρ(diag(1, ei θ)B) = |1− e− i θ | =
√

2(1− cos(θ)) .
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Now we illustrate that starting from dimensional 3 it is easy to produce examples of local
maximum that are not global. Pick B̃ ∈ Mn−1(C) such that

ρ(B̃) < max
U

ρ(UB̃) .

Then for any r ∈ (ρ(B̃),maxU ρ(UB̃))

Br :=

(
r 01,n−1

0n−1,1 B̃

)
is such that U 7→ ρ(UBr) admits a local maximum with value r at U = Id but a larger

global maximal value, equal to maxU ρ(UB̃).

References

[BJN+17] B. Barker, M. A. Johnson, P. Noble, L. M. Rodrigues, and K. Zumbrun. Stability of viscous St.
Venant roll waves: from onset to infinite Froude number limit. J. Nonlinear Sci., 27(1):285–342,
2017.

[BR24] P. Blochas and L. M. Rodrigues. Uniform asymptotic stability for convection-reaction-diffusion
equations in the inviscid limit towards Riemann shocks. Ann. Inst. H. Poincaré C Anal. Non
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