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Abstract

Motivated by the ongoing study of dispersive shock waves in non integrable sys-
tems, we propose and analyze a set of wave parameters for periodic waves of a
large class of Hamiltonian partial di�erential systems | including the generalized
Korteweg{de Vries equations and the Euler{Korteweg systems | that are well-
behaved in both the small amplitude and large wavelength limits. We use this
parametrization to determine �ne asymptotic properties of the associated modu-
lation systems, including detailed descriptions of eigenmodes. As a consequence,
in the solitary wave limit we prove that modulational instability is decided by the
sign of the second derivative | with respect to speed, �xing the endstate | of the
Boussinesq moment of instability; and, in the harmonic limit, we identify an explicit
modulational instability index, of Benjamin{Feir type.
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1 Introduction
Motivated by the study of dispersive shock waves, we investigate some of the universal
properties of modulated equations, for a large class of Hamiltonian systems of partial
di�erential equations (PDE) that contains several models of mathematical physics and in
particular generalized versions of the Korteweg{de Vries (KdV) equation and dispersive
modi�cations of the Euler equations for compressible uids - among which we �nd the
uid formulation via Madelung’s transform of the nonlinear Schr�odinger (NLS) equations.
To place our results in context, we �rst recall what are modulation systems, dispersive
shock waves and their expected role in dispersive regularization. Large parts of this pre-
liminary discussion are exploratory and conjectural since we are still lacking a rigorous
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analysis of dispersive shock waves and vanishing dispersive limits at the level of gener-
ality considered here. Indeed the present analysis is precisely designed as a �rst step
towards a general mathematically rigorous theory, still to come, and some elements of the
preliminary discussion might be thought of as a roadmap for this ultimate goal.

Hamiltonian systems of Korteweg type
As in [BGNR13, BGNR14, BGMR16, BGMR20], we consider some abstract systems of
the form

(1) @tU = @x (B � H[U ]) :

where the unknownU takes values inRN with N ∈ {1; 2}, B is a symmetric and nonsin-
gular matrix so that B@x is a skew-symmetric di�erential operator, and� H[U ] denotes
the variational derivative at U of H = H(U ; U x ). We specialize to classes of systems
satisfying more precise conditions described in Assumption 1, su�ciently large to include
quasilinear versions of the Korteweg{de Vries equation and the abovementioned Euler{
Korteweg systems, hence also hydrodynamic formulations of the nonlinear Schr�odinger
equations. In the former and henceforth spatial derivatives are denoted either as@x or as
x .

Associated with the invariance ofH by time and spatial translations comes the fact
that smooth solutions of (1) also satisfy the local conservations laws

@t (H(U ; U x )) = @x
�
1
2
� H[U ] · B � H[U ] + ∇U x H(U ; U x ) · @x (B � H[U ])

�
(2)

@t (Q(U )) = @x (� Q[U ] · B � H[U ] + ∇U x H(U ; U x ) · @x (B � Q[U ]) −H(U ; U x ))(3)

for the Hamiltonian density H, generating the time evolution, and theimpulse Q, given
by Q(U ) := 1

2
U · B−1U , generating spatial translations. See Section 2 for details.

Modulated equations
Modulated equations are expected to govern the evolution of modulated periodic wave-
trains (also called weakly deformed soliton lattices by Dubrovin and Novikov [DN89,
DN93]). Starting from a system of PDEs, such as (1), admitting families of periodic
traveling waves, one may derive modulation equations through an averaging procedure,
which yields PDEs on large space-time scales for the local parameters of the waves. The
correspondingansatz, expected to approximate solutions to the original PDEs, looks like
one periodic wave train on small scales but have variable wave parameters on larger scales,
hence exhibit varying amplitude and wavelength on these large scales.

A robust way to obtain them is to consider a two-scale formal asymptotic expansion
combining slow arbitrary variables and single-phase fast oscillations,

U (x; t ) = U 0

�
" x; " t;

� (" )(" x; " t )
"

�
+ "U 1

�
" x; " t;

� (" )(" x; " x )
"

�
+ h.o.t ;(4)
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with 0 < " � 1,

� (" )(X; T ) = � 0(X; T ) + "� 1(X; T ) + h.o.t ;
U j (X; T;� ) one-periodic in� ; j = 0 ; 1; · · · ;

where X = "x and T = "t denote some rescaled spatial and time variables respectively.
A leading-order identi�cation shows that for all (X; T ),

U (� ) := U 0(X; T ; � k (X; T ))

must be the pro�le of a periodic, traveling wave solution to the original system, here (1),
of (spatial) period �( X; T ) = 1 =k(X; T ) and speedc(X; T ) = −! (X; T )=k(X; T ), with
k = @X � 0 and ! = @T � 0. This already leaves as a constraint@T k = @X ! , an equation
known as theconservation of waves equation.

The missing part of the time evolution is obtained from constraints for the resolution
of the next step of the identi�cation. Indeed this step yields an a�ne equation forU 1,
with

• linear part essentially1 given by the linearization aboutU of the original system, in
the frame moving with speedc, acting on functions of� with the same period asU ;

• source terms depending only onU 0, � 0 and � 1.

The possibility to solve this step is then equivalent to the orthogonality (for theL 2-scalar
product in the � -variable) of source terms to the kernel of the adjoint of the linear operator,
a constraint automatically satis�ed by the � 1-part of source terms. Now it turns out that
elements of the latter kernel are in correspondence with local conservations laws for the
original systems. In the present case the conservative nature of (1), (2), (3) is directly
linked to the presence in the kernel of the adjoint of the linearization of respectively
constant functions, � Q[U ] and � H[U ]. Orthogonality to those then yields time evolution
equations for the averages of the quantities involved in local conservation laws. Note
however that for traveling waves such asU , � H[U ] is already a linear combination of
� Q[U ] and constants so that the local conservation law for the averaged ofH does not
generate a new independent equation but anentropy for the modulated system.

The upshot of the detailed process (for which we refer to [NR13, BGNR14]) is the
modulated system

@T k − @X ! = 0(5a)
@T 〈U 〉 − @X (〈B � H[U ]〉) = 0(5b)

@T〈Q(U )〉 − @X
�
〈� Q[U ] ·B � H[U ] + ∇U x H(U ; U � ) · @�(B � Q[U ]) −H(U ; U � )〉

�
= 0(5c)

where brackets〈·〉 stand for mean values over the period �(X; T ). A few comments on
dimensions are worth stating (and we refer to [Rod13] for a more detailed discussion).

1Up to a rescaling from � to � , normalizing period to 1.

4



The original Hamiltonian system (1) countsN equations whereas (5a)-(5b)-(5c) involves
N + 2 equations. From the way the modulated system has been derived it should be
clear that this N + 2 breaks into 1 for the number of wavenumber variables2 and N + 1
for the dimension of the span of� F [U ], with F ranging along functionals that satisfy
a conservation law along the ow of (1),U being a periodic traveling wave. In the
identi�cation process, the number of independent averaged conservation laws,N +1 here,
arises as related to the dimension of the kernel of the adjoint of the linearization in a
moving frame, restricted to functions of the same period. This dimension must also be
the dimension of the kernel of the adjoint of the linearized operator itself, hence the
dimension of the family of periodic waves with �xed period and speed (associated with
the abovementioned wavenumber). Thus the formal argument also carries the fact that
the dimension of the modulated system (N + 2 here) di�ers from the dimension of the
family of periodic traveling waves (N + 3 here) by the number of wavenumbers (1 here),
hence agrees with the dimension of periodic wave pro�les identi�ed when coinciding up
to translation (again N + 2). The missing piece of information, about phase shifts, may
be recovered a posteriori3 by solving @T � 0 = ! , @X � 0 = k. As proved for instance in
[BGNR14, Appendix B], to a large extent, the present informal discussion on dimensions
may be turned into sound mathematical arguments.

As already pointed out in Whitham’s seminal work [Whi99] for KdV and NLS, it is
possible to use the variational structure of systems such as (1) to derive (5a)-(5b)-(5c) from
least action considerations, instead of the geometrical optics expansion (4). For recent
accounts of this variational derivation the reader is referred to [Kam00, Bri17]. As for the
class of systems considered here, the corresponding form in terms of an action integral
along periodic wave pro�les was explicited in [BGNR13] and subsequently crucially used
in [BGMR16, BGMR20].

A simple situation where one expects that the dynamics of (1) is well-described by a
slow modulationansatz similar to (4), hence obeys at leading-order a suitable version of
(5a)-(5b)-(5c) is in the large-time regime starting from a smooth and localized perturba-
tion of a single periodic traveling wave of (1), which should correspond to a nearly constant
solution to (5a)-(5b)-(5c). Yet, though it is arguably the simplest relevant regime, a rig-
orous validation of the foregoing scenario has been obtained for none of the equations
considered here. See however [BGNR14] for a spectral validation on the full class (1),
[Rod18] for a linear validation on KdV, and [JNRZ13, JNRZ14] for full validations but
on parabolic systems.

2The nonlinear Schr�odinger equations (in original formulations) form typically a case with a two-
dimensional group of symmetries. Their reduction to hydrodynamic form lowers the symmetry dimension
by 1 but adds a conservation law.

3This requires some extra study though. See for instance the dedicated analysis in [JNRZ13, JNRZ14,
Rod18].
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Small dispersion limit
Our present contribution is rather focused in regimes involving solutions to (5a)-(5b)-(5c)
covering the full range of possible amplitudes, and known asdispersive shock waves. These
are typically expected to play a key role in the regularization of shocks by weak dispersion.

This regime may be described by introducing a small wavenumber parameter" > 0
and moving to rescaled variables (X; T ) = ( " x; " t ). Looking �rst for a non oscillatory
slow expansion (instead of (4))

U (x; t ) = U 0 (" x; " t ) + "U 1 (" x; " t ) + h.o.t ;(6)

suggests thatU 0 should satisfy

(7) @T U 0 = @X (B∇U H(U 0; 0)) ;

a �rst-order system of conservation laws. To make the discussion more concrete, let us
temporarily focus on the KdV case, where (1) becomes in slow variables

@T v + @X ( 1
2
v2) + "2@3

X v = 0

and (7) reduces to the Hopf | or inviscid Burgers | equation

@T v + @X ( 1
2
v2) = 0 :

In the KdV case, for nonnegative initial data and as long as the Hopf equation does not
develop a shock, Lax and Levermore proved in [LL83] that as" → 0 the solutions to the
above scaled KdV equation starting with the same initial datum converge strongly inL 2

to the solution of the Hopf equation. They also proved that after the shock formation a
weak limit still exists but it does not solve the Hopf equation almost everywhere anymore.
Instead there coexist some zones where the weak limit ofv2 coincide with the square of
the limit of v and the latter solves the Hopf equation and other zones where this fails and
the weak limit of v does not satisfy an uncoupled scalar PDE but is the component〈v〉 of
a solution to the system of three equations given by (5a)-(5b)-(5c), specialized to KdV.

Since the seminal [LL83] there has been a lot of attention devoted to weak dispersion
limits and their link to modulated equations (including some multi-phase versions), but
for the moment all mathematically complete analyses are restricted to the consideration
of completely integrable PDEs, such as KdV, the modi�ed Korteweg{de Vries equation,
the cubic Schr�odinger equations, the Benjamin-Ono equation and equations in their hier-
archies. We refer the interested reader to [Ven85b, Ven85a, Ven87, Ven90, Wri93, DVZ97,
JLM99, Gra02, Mil02, TVZ04, TVZ06, PT07, MX11, MX12, JM14, Jen15, MW16] for
original papers and to [EJLM03, EH16, Mil16] for a detailed account of progresses made
so far in this direction. Note however that, whatever the precise de�nition we use for
completely integrable PDEs, these correspond to speci�c nonlinearities and in fact few
models are completely integrable.

To unravel some of the reasons why the completely integrable case is signi�cantly
simpler to analyze | but still tremendously involved ! |, let us step back a little and
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draw some analogies with thevanishing viscosity limit. The natural parabolic counterpart
to the KdV equation above is the viscous Burgers equation

@T v + @X ( 1
2
v2) = " @2

X v :

In this case, by using the Hopf-Cole [Hop50, Col51] transform, precisely introduced for
this purpose, it is relatively easy to analyze the limit" → 0+ and check that solutions
to the Burgers equation converge to the weak solution of the Hopf equation given by the
Lax-Ole��nik formula.

The convergence towards a weak solution of the inviscid equation and the character-
ization of the vanishing viscosity limits by an entropy criterion has been extended even
beyond the scalar case [Ole57] to solutions to systems starting from initial data with small
total variation [BB05]. At the heart of these general treatments lies an understanding not
only of the limiting slow behavior encoded by the solution of the inviscid equation but also
of the fast part essentially supported near discontinuities of the inviscid solution. To give
a heuristic avor of the latter, let us focus again on the scalar case and zoom from (T; X )
to (T; ex) = ( T; (X −  (" )(T))="), with  0(·) describing the position of a discontinuity of
the limiting solution v0 and X living in a neighborhood of the latter discontinuity. Then
the identi�cation of powers of " suggests that the fast local structure, at timeT near the
discontinuity located at  0(T) should be described by a front of the Burgers equation (in
fast variables) traveling with velocity @T  0(T) (satisfying the Rankine-Hugoniot condi-
tion) and joining v0( 0(T)−; T) to v0( 0(T)+; T) (where ± denote limits from above or
from below). The existence of such viscous fronts plays a deep role in both the heuristic
and rigorous treatment of the vanishing viscosity limit. In particular, even the rigorous
masterpiece by Bianchini and Bressan [BB05] proceeds through such a local traveling-wave
decomposition of solutions.

In the dispersive case the possibility of this global-slow/local-fast scenario fails already
in general by the non existence of the required traveling fronts. Indeed, elementary consid-
erations show that whereas in the scalar di�usive case the set of pairs of values that may
be joined by a nondegenerate front is an open subset ofR2 and the selection of the speed
coincides with the one given by the Rankine-Hugoniot condition, in the scalar KdV-like
case4 this set is a submanifold of dimension 1. At this stage it should be clear that the
understanding of what are the possible fast structures replacing viscous fronts, also called
viscous shock waves, to join both sides of a shock should already provide a good grasp on
the weak dispersion limit.

The Gurevich{Pitaevskii problem
Leaving aside the possibility that the fast part of solutions could be given by well-localized
elementary blocks, steady in the frame moving with the speed of the shock they regularize
and interacting with the slow part only through their limiting values at in�nity, one is

4Note moreover that in the classical KdV case this set is empty since fronts require a potential with
at least two local maxima.
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naturally led to the consideration as elementary fast blocks of unsteady patterns as in
(4), mixing slow and fast scales but whose limits at±∞ are purely slow, that is, constant
with respect to the fast variable. Modulated periodic wave trains may reach these limiting
constant states in two ways

• by letting their amplitude go to zero, they reach a constant state by asymptoting a
harmonic periodic wavetrain oscillating about the reference constant;

• by letting their wavelength go to in�nity, they converge to a solitary wave connected
to the reference constant by its limiting trail.

From the foregoing considerations arises the question of determining when two given
constant states may be joined by a rarefaction wave of (5a)-(5b)-(5c) in the sense that
limiting values of the rarefaction wave are parameters corresponding to either harmonic or
solitary waves and the limiting values of the average part〈U 〉 �ts the prescribed constants.
The corresponding unsteady, oscillatory patterns, recovered through (4), are referred to
asdispersive shock waves. Note that the question di�ers from the investigation of classical
rarefaction waves of hyperbolic systems in at least two ways. On one hand, both harmonic
wavetrains with a prescribed limiting value and solitary waves with a prescribed endstate
form one-dimensional families (when identi�ed up to translation) and the knowledge of
through which harmonic train or solitary wave given constant states may be joined is an
important part of the unknown elements to determine. On the other hand the modulated
system (5a)-(5b)-(5c) is a priori not de�ned at the limiting values and yet the hope to
match dispersive shock waves with solutions to (7) heavily relies on the expectation that
in both limits | solitary or harmonic | (5b) uncouples from the rest of the system and
converges to (7).

It is worth stressing that even though one expects to obtain, afterwards, a multi-scale
pattern through (4) the foregoing problem is" -free. It is a dispersive analogous to the
determination of conditions under which two constants may be joined by a viscous front.
Note that in the viscous version of the problem such considerations are then included
in the de�nition of admissibility of weak solutions to (7), and expected to determine
reachability by vanishing viscosity limits. Notably, in the classical Riemann problem, one
considers how to solve (7) starting from an initial datum taking one value up to some point
then another value, by gluing constants, rarefaction waves, admissible shocks and contact
discontinuities. Solutions to the Riemann problems may then be used themselves as el-
ementary blocks to solve the general Cauchy problem for (7) (designed from vanishing
viscosity considerations). See for instance [Ser99, Bre00] for background on the classi-
cal Riemann problem. Likewise, in the zero dispersion limit, the Gurevich{Pitaevskii
problem consists in joining two given constants on two complementary half-lines with
constant sectors, rarefaction waves of (7) and rarefaction waves of (5a)-(5b)-(5c), the
junction between solutions to (7) and solutions to (5a)-(5b)-(5c) being understood in the
sense mentioned herein-above. This approach was introduced for KdV by Gurevich and
Pitaevskii in [GP73] and has been referred to as the Gurevich{Pitaevskii problem since
then, or sometimes the dispersive Riemann problem.
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It must be stressed that as for Riemann problems in the weak dissipation limit, the
Gurevich{Pitaevskii problems are expected to carry a wealth of information on the weak
dispersion regime. We already pointed out that a fully rigorous treatment of the weak
dispersion limit is for the moment restricted to some equations, associated with Lax pairs
including a scalar Schr�odinger operator and completely integrable through inverse scat-
tering transforms. Unfortunately the same is true for the associated Gurevich{Pitaevskii
problems. Indeed modulated systems of those particular systems inherit from the Lax
pair representation of the original system, a family of strong Riemann invariants, given
by edges of Lax spectral bands; see [DN74, DMN76, FFM80, DN83, FL86, Pav87] for
original papers pointing this connection. The latter observation was certainly the main
motivation for the introduction and the study of the classes of hyperbolic systems pos-
sessing a complete set of strong Riemann invariants, a class coined as rich by Serre [Ser00,
Chapter 12] and as semi-Hamiltonian by Tsarev [Tsa85, Tsa90, Tsa00]. Along a rarefac-
tion wave of a rich system all but one Riemann invariant are constants. Moreover in
both the solitary wave limit and the harmonic limit of PDEs associated with such Lax
pairs one of the Lax spectral gaps closes so that the Riemann invariant varying along a
rarefaction wave of such a rich modulated system connecting two harmonic/solitary limits
is actually merging in both limits with one of the steady Riemann invariants. This makes
the rarefaction wave problem considerably simpler to solve, at least as far as determining
which states may be connected and what are the trail and edge speeds of the pattern.

Given its particular importance for some classes of applications, there have been a few
attempts to propose solutions to the Gurevich{Pitaevskii not relying on strong Riemann
invariants. One of the most remarkable attempt is due to El and the reader is referred to
[EH16] for details on the method and to [El05, Hoe14] for two instances of application. The
elegant method of El provides answers consistent with rigorous analyses of integrable cases
and displays reasonably good agreement with numerical experiments. Yet unfortunately,
so far, it still lacks strong5 theoretical support. Elucidating the mathematical validity of
the approach of El may be considered as one of the key problems of the �eld.

To conclude the exploratory part of the paper, we point out that even from a formal
point of view there are at least two important features of the weak dispersion limit that
we have left aside and on which we comment now.

Remark 1. System (5a)-(5b)-(5c) is itself a | hopefully 6 hyperbolic | �rst-order system
so that it may be expected to develop shocks in �nite time and the expansion in (4) to
su�er from a �nite-time validity (in the slow variables) in the same way as the relevance
of (6) stops when the corresponding solution to (7) forms a shock. Yet the formal process
itself hints at an " -dispersive correction to (5a)-(5b)-(5c) | see for instance [Rod18] |,

5The method implicitly extrapolates rarefaction curves in the bulk k > 0, � > 0 from computations
purely carried out in limiting hyperplanes k = 0 and � = 0, a process that seems hard to justify
without assuming the modulation system under consideration to be rich/semi-Hamiltonian, whereas this
property is known to be satis�ed for almost no hyperbolic system besides modulation systems of integrable
equations.

6Since otherwise the modulation system is ill-posed, (some of) the underlying periodic waves are
unstable and the scenario in (4) fails instantly.
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so that the phenomena may be thought itself as a weak dispersion limit in the presence of
wave-breaking at the level of (single-phase) modulation equations, suggesting the presence
of oscillations at this level, and resulting in a two-phase oscillation pattern at the original
level. For KdV a compatible scenario (with arbitrary number of phases) was proposed in
[FFM80] within the terminology of integrability by inverse scattering ; it was subsequently
recast in terms of averaged modulation equations in [EKV01] and proved to hold in
[GT02, Gra04]. Note that the prediction includes a description of where 0-phase, 1-phase
and 2-phases patterns live in the space-time diagram.

Remark 2. There has been considerable e�ort devoted to the description of what is seen on
a zoom in a neighborhood of a wave-breaking point. This results in a di�erent asymptotic
regime and a suitable scenario was �rst proposed by Dubrovin [Dub06] and then proved
for various integrable PDEs in [CG09, CG12, BT13].

Structure of general modulated systems
As far as the formal description of dispersive shocks by means of modulated equations
is concerned, multi-scale regions are connected to single-scale ones by either one of the
two asymptotic regimes corresponding to the small amplitude limit - when the amplitude
of the waves goes to zero - and the solitary wave limit - when the wavelength of the
waves goes to in�nity. The understanding of both these regimes is a crucial step towards
the actual construction of dispersive shocks. In particular, to analyze rarefaction waves
of modulated equations connecting such asymptotic regimes, one needs to elucidate the
hyperbolic nature of its eigen�elds in both distinguished limits. Indeed, as for the classical
Riemann problem, the resolution of the Gurevich{Pitaevskii problem crucially relies on the
hyperbolicity and the structure of the eigen�elds of modulated equations. This requires
a study not only of averaged quantities involved in the conservative formulation but also
of their derivatives, as appearing in the expanded, quasilinear form.

With this respect, note that unfortunately, the formulation of modulated equations in
terms of what is arguably the most natural set of wave parameters blows up in the solitary
wave limit. This issue has been partially resolved by El [El05] by replacing one of the
parameters with the so-calledconjugate wavenumber. However, this new parametrization
is in general limited to the large wavelength regime7.

One of our main contributions here is to provide a global set of parameters. For the
latter, we prove in great generality that

• it may serve as a parametrization of periodic wave pro�les (identi�ed up to spa-
tial translation) exactly when the original averaged quantities (k; 〈U 〉; 〈Q(U )〉) can,
that is, as proved in [BGNR14, Appendix B] and [BGMR16, Theorem 1], exactly

7To see this on a concrete example, consider the defocusing modi�ed KdV equation. In this case
potentials are coercive quartic polynomials, hence in general possess two wells. Except in the very excep-
tional case when the two wells have exactly the same depth, the conjugated wavenumber parametrization
necessarily breaks down before the small amplitude limit for one of the two families of periodic waves
associated with each potential well.
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when wave pro�les with �xed period form an (N + 1)-dimensional manifold (when
identi�ed up to spatial translation);

• in these variables the modulated system possesses an Hamiltonian formulation, with
Hamiltonian function the original averaged Hamiltonian energy (see Theorem 1);

• these variables may be extended to solitary-wave and harmonic limits in such a
way that the modulated system admits regular limits even in quasilinear form (see
Theorem 4).

The proposed system of coordinates already appeared for the Euler{Korteweg system
in mass Lagrangian coordinates in [GS95] (also see [BG13] for an account of Gavrilyuk{
Serre’s result with our notation), but its signi�cance remained unclear. As we show
hereafter, it turns out to apply to our more general framework, and to give new insight on
modulated systems. The point is to replace the conserved variable〈Q(U )〉 in Equations
(5a)-(5b)-(5c) by another one, denoted merely by� hereafter. This new variable tends to
zero when the amplitude of the wave tends to zero | as the amplitude squared, as we
shall see later on |, and has a �nite limit when k goes to zero, that is, in the solitary-wave
limit. Remarkably enough, this quantity can be de�ned as simply as

(8) � :=
1
k

(〈Q(U )〉 − Q(〈U 〉)) :

It turns out that, as far as smooth solutions are concerned, the modulation equations take
the alternative form

(9) @T

0

@
k
�
M

1

A = B@X (∇k;�; M H) ;

where

B :=

0

@
0 1
1 0

B

1

A

is symmetric and nonsingular and

M := 〈U 〉 ; H := 〈H[U ]〉 :

The Hamiltonian structure of System (9) provides a form of symmetry in the spirit of
Godunov’s theory of hyperbolic systems. Nevertheless, this form does not automatically
provide energy estimates nor imply hyperbolicity because, as our expansions show (see
Remark 14), the associated potential, natural symmetrizer is not de�nite in either one of
the limits.

System (9) has also an appealing symmetric form with respect to the distinguished
limits, k → 0 corresponding to the long wavelength limit and� → 0 to the small amplitude
limit. Yet another upshot of our analysis is a strong, somewhat surprising asymmetry
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as regards the asymptotic nature of the eigen�elds. In the solitary wave regime, the
hyperbolicity of the modulated equations is equivalent to its weak hyperbolicity and may
persist even at the limit in the presence of the solitary wave speed as a double root. We
see this striking property as a consequence of the strong separation of scales displayed in
asymptotic expansions of large wavelength pro�les (see Remark 17). By contrast, in the
harmonic wave regime, in general the hyperbolicity of modulated equations is lost at the
limit, the characteristic speed corresponding to the group velocity being non semi-simple
| associated with a Jordan block of height two. See Theorems 5 and 6.

We stress that many asymptotic properties of the modulation systems are much easier
to study once a limiting system has been identi�ed. This is precisely where we bene�t from
our new set of parameters. In particular, once Theorems 1 and 4 are known it is relatively
easy to derive the most basic properties of the modulation systems, both mentioned and
used in the preceding formal discussion of dispersive shocks. For instance Corollary 5
contains that at both limits the modulation system split into a block coinciding with the
original dispersionless system, System (7), and a 2× 2 block with double characteristic
given by either the solitary wave speed at the long wavelength limit or with the harmonic
linear group velocity at the small amplitude limit. Yet, even with good variables in hands,
some further properties require �ner details of higher-order expansions.

Our new set of parameters enables us to show how the eigen�elds of modulated equa-
tions degenerate in the small amplitude and the large wavelength limits (see Theorems 7
and 8) but it relies on a more involve analysis. The main upshots are that

• Near the harmonic limit, we derive explicit conditions determining modulational
instability (see Theorem 7 and Appendix A), those being known in some cases as
the Benjamin{Feir criteria.

• Near the soliton limit, we prove that modulational instability is determined by
exactly the same condition ruling stability of solitary waves and, as proved in
[BGMR20], co-periodic stability of nearby periodic waves, that is, it is decided
by the sign of the second derivative | with respect to speed, �xing the endstate |
of the Boussinesq moment of instability.

For the conclusions mentioned here it should be emphasized that it is relatively easy
to support wrong deceptive claims when arguing formally; see for instance Remarks 15
and A.i. Another somewhat surprising, but not unrelated (see Remark 17), discrepancy
between both limits is that the convergence of eigenvalues splitting from the double root
is exponentially fast in the solitary limit.

We insist on the fact that, surprising or not, the properties of the modulation systems
discussed in the present contribution areproved here for the �rst time for a class of
systems not restricted to integrable systems. Nevertheless, for the satisfaction of readers
interested in knowing which part of our conclusions could be intuited from sound formal
arguments, we have singled out in Section 4.2 conclusions that could be inferred from
the knowledge that both variables (k; �; M ) and averaged Hamiltonian H extend with
su�cient smoothness to both limits. We stress however that in the solitary wave limit
these extensions are highly nontrivial to prove.
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We conclude this introductory section with a few words on the nature of proofs con-
tained in the rest of the paper. The most elementary ones are purely algebraic manipu-
lations. For the other ones we rely on asymptotic expansions of the abbreviated action
integral of the pro�le ODE, and of its derivatives up to second order. These were derived
in detail in [BGMR20] and used there to deduce some consequences on the stability of pe-
riodic waves with respect to co-periodic perturbations. As we show in the present paper,
that asymptotic behavior gives insight on the modulated equations as well.

The essence of some of the results | providing, for a large class of Hamiltonian partial
di�erential equations, connections between various formulations and stability indices mix-
ing many di�erent coe�cients | and of their proofs | involving two kinds of asymptotic
expansions for anN + 2-dimensional matrix, mixing four di�erent orders in the soliton
regime, | leads to an unavoidable but sometimes overwhelming notational ination. To
counterbalance this and help the reader �nding his/her way in the notational maze, we
have included in Appendix C a symbolic index and gathered some of the explicit formulas
scattered through the text, specialized to the generalized Korteweg{de Vries equation.

We hope that this also provides su�cient support for the reader interested in derived
results and take-home messages but not in their lengthy proofs so as to jump through the
text from key result to key result and consult the table of symbols when needed. For such
a reader, here is a possible roadmap:

• Theorem 3, p. 35, proves that variables (k; �; M ) extend up to asymptotic bound-
aries without loss of dimension;

• Theorem 4, p. 38, proves that the averaged Hamiltonian H extends up to asymptotic
boundaries as aC2 function;

• Theorem 7, p. 49, provides expansions of eigenvalues and eigenvectors of the mod-
ulated system in the harmonic limit;

• Theorem 8, p. 51, provides expansions of eigenvalues and eigenvectors of the mod-
ulated system in the soliton limit ;

• Appendix A details explicit formula for the small-amplitude instability index in both
the scalar ((58), p. 55) and the system ((59), p. 62) cases.

The general setting and various formulations of modulated equations are presented
in Section 2. Asymptotic properties of the alternate parametrization are established in
Section 3. Limits of the modulated system are derived in Section 4. Eigen�elds are
studied in Section 5. Appendix A contains explicit modulational instability criteria for
the harmonic limit. Appendix B provides some insights on the splitting of double roots.
Appendix C is the symbolic index.
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Matrix notation. Along the text, in matrices, 0 may denote scalar, vector or matrix-
valued zeroes. Moreover empty entries denote zeroes and∗ entries denote values that are
irrelevant for the discussion and may vary from line to line.

2 Various formulations of modulated equations

2.1 General framework
As announced in the introduction, we consider abstract systems of the form

(10) @tU = @x (B � H[U ]) :

where the unknownU takes values inRN , B is a symmetric and nonsingular matrix, and
� H[U ] denotes the variational derivative atU of H = H(U ; U x ). For the sake of clarity,
here, we shall mostly stick to Assumption 1 below, all the more so when we are to apply
results from [BGMR20].

Assumption 1. There are smooth functions f , � and � with � and � taking only positive
values, and a nonzero real number b such that

• either N = 1 , U = v, H = `e(v; vx ), and B = b,

• or N = 2 , U = ( v; u)T,

H =
1
2

� (v) u2 + `e(v; vx ) ; B =
�

0 b
b 0

�
;

with

`e(v; vx ) =
1
2

� (v) v2
x + f (v)

in both cases.

By de�nition we have

• in the caseN = 1, � H[U ] = � `e[v] := @v `e(v; vx ) − @x (@vx `e(v; vx )),

• in the caseN = 2,

� H[U ] =
�

1
2
� ′(v) u2 + � `e[v]

� (v) u

�
:
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The impulse

Q(U ) :=
1
2

U · B−1U ;

generatesx-translations in that

@xU = @x (B � Q[U ]) :

From the invariance ofH(U ; U x ) with respect to x-translations, that reads in di�erenti-
ated form

@x (H(U ; U x )) = � H[U ] · @xU + @x (U x · ∇U x H(U ; U x )) ;

stems the local conservation law

(11) @tQ(U ) = @x (U · � H[U ] + LH[U ]) ;

along smooth solutions of (10), where

LH[U ] := U x · ∇U x H(U ; U x ) −H(U ; U x ) = vx @vx `e(v; vx ) −H(U ; U x ) :

The modulated system (5a)-(5b)-(5c) is also written as

@T k − @X ! = 0 ;(12)

@T 〈U 〉 − @X 〈B � H[U ]〉 = 0 ;(13)

@T 〈Q(U )〉 − @X 〈U · � H[U ] + LH[U ]〉 = 0 ;(14)

where� 7→ U (X; T ; � ) is the pro�le of a periodic, traveling wave solution to (10) of (spatial)
period �( X; T ) = 1 =k(X; T ) and speedc(X; T ) = −! (X; T )=k(X; T ), and brackets 〈·〉
stand for mean values over the period �(X; T ). Again we refer to [BGNR14] for a formal
derivation of the system from a geometrical optics expansion.

As proved in [BGNR14, Appendix B] and [BGMR16, Theorem 1], the fact that Sys-
tem (5a)-(5b)-(5c) is a closed system, of evolution type, for initial data under consider-
ation, is equivalent to the fact that, for each �xed period, periodic wave pro�les under
consideration form a non-degenerate manifold of dimensionN + 1 when identi�ed up to
translation. In this case wave pro�les may be smoothly parametrized by (k; 〈U 〉; 〈Q(U )〉).
As mentioned in the introduction, from the point of view of modulation theory, the range
of validity of the latter parametrization is optimal. Yet these coordinates come with at
least three serious drawbacks:

• they are not very explicit so that within this set of coordinates the modulation
system is hard to manipulate;

• they are degenerate in the solitary-wave limit, losing two dimensions instead of one
dimension;

• they do not provide a clear variational form for the modulation system.
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We �rst recall how the �rst and third issues may be �xed by choosing a parametrization
involving constants of integration of the wave pro�le ODEs.

Remark 3. Concerning the third point, let us make explicit that we focus mostly on
variational structures of Hamiltonian type | or more precisely on Poisson structures. It
is equally common to study Lagrangian formalisms. For the reader willing to work out
Lagrangian counterparts we note that the starting point is that (1) is the Euler{Lagrange
equation for the Lagrangian density

L[ ] :=
1
2

 x · B−1 t −H[ x ]

with U =  x . Incidentally we stress that

Q( x ) = ∇ t
L[ ] ·  x

so that 〈Q(U )〉 may be identi�ed with the wave action, a quantity that plays a prominent
role in the classical theory of wave motion ; see [Hay70] and [Whi99, Section 11.7]. To go
a bit further we point out the traveling-wave form

 : (t; x ) 7→  (k x + ! t )

with U = k ′(k ·), which yields the following formula for the averaged Lagrangian on
wave pro�les

Lav = ! 〈Q(U )〉 − 〈H(U ; kU x )〉 :

In particular when a choice of wave parameters including (!; k ) is done, say (!; k; A ) for
someA , by using the pro�le equation one may readily check that

@! L
av = 〈Q(U )〉 ; @kL

av = −k � ; ∇A L
av = 0 ;

where � denotes the abbreviated action integral introduced below.

2.2 Modulated equations in terms of constants of integration
For a traveling waveU = U (x − ct) of speedc to be solution to (10), there must exist a
� ∈ RN such that

(15) � (H + cQ)[U ] + � = 0 ;

which can be viewed as theEuler–Lagrange equation � L[U ] = 0 associated with the
Lagrangian

L = L(U ; U x ; c; � ) := H(U ; U x ) + cQ(U ) + � · U :

Exactly as (3) was derived from (1) and the invariance by translation ofH(U ; U x ), it
stems from the translational invariance ofL(U ; U x ) that solutions to (15) are such that
for some� ∈ R

(16) LL[U ] = � ;
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where
LL[U ] := U x · ∇U x L(U ; U x ) − L(U ; U x ) :

This more concrete point of view introduces as wave parameters their speedc and
the integration constants � ∈ RN and � ∈ R. As discussed with more details in
[BGNR13, BGMR16] | see in particular the proof of [BGMR16, Theorem 1] |, once
these parameters are �xed, non-constant periodic wave pro�les form a discrete set and
the corresponding pro�les perturb smoothly with respect to parameters. Henceforth we
will often omit to specify that one of the branches of periodic waves have been chosen.
By doing so, we obtain (a discrete number of) natural parametrizations of wave pro�les.

As already pointed out in [BGNR13, BGMR16, BGMR20], many key properties of
periodic traveling waves are more neatly stated in terms of the wave-speed and constants
of integration by introducing the abbreviated action integral

(17) �( �; c; � ) :=
Z Ξ

0

(H[U ] + cQ(U ) + � · U + � ) d� ;

whose de�nition involves a periodic pro�le U of fundamental period � corresponding
to parameter values (�; c; � ). The action provides a nice closed form of the modulated
equations in (12)-(13)-(14) and it encodes the duality between constants of integration
and averaged quantities. Indeed, let us recall from [BGNR13] the following.

Proposition 1. Under assumption 1, consider 
 an open subset of RN +2 and

(�; c; � ) ∈ 
 7→ (U ; �) ∈ L∞(R) × (0; +∞)

a smooth mapping8 such that for each value of the parameters (�; c; � ), the function U =
(v; u) is a smooth, non-constant periodic solution to (15)-(16), and � is the fundamental
period of U .

Then the function � defined in (17) is also smooth on 
 , and such that

(18) @� � = � ; @c� =
RΞ

0
Q(U ) dx ; ∇� � =

RΞ

0
U dx :

Corollary 1. In the framework of Proposition 1,

1. the system in (12)-(13)-(14) equivalently reads, as far as smooth solutions are con-
cerned,

(19) (@T + c @X ) (∇�;c; � �) = @� �

0

@
0 1
1 0

−B

1

A @X

0

@
�
c
�

1

A ;

2. the mapping

(�; c; � ) ∈ 
 7→
�
k = 1=� ; 〈U 〉 = 1

Ξ

RΞ

0
U dx; 〈Q(U )〉 = 1

Ξ

RΞ

0
Q(U ) dx

�

is a local diffeomorphism if and only if

det
�
∇2

�;c; � �( �; c; � )
�
6= 0 ; ∀(�; c; � ) ∈ 
 :

8That is, we choose one branch of waves.
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Remark 4. The simple, closed form in (19) of modulated equations is well-known for the
KdV equation. It is for instance pointed out by Kamchatnov [Kam00, eq. (3.135)], who
says that ‘despite the simple appearance of these equations, they are not very useful in
practice’.

Exactly as pointed out in the introduction for System (9), the symmetric form of
(19) does not readily imply that this system is hyperbolic. This would be the case if the
matrix ∇2

�;c; � � were de�nite, which is not the case in general. As was shown in [BGMR20,
Corollaries 1 and 2], in non-degenerate cases,∇2

�;c; � � has a negative signature | or Morse
index | equal to N for small amplitude waves and equal either toN or to N +1 for those
of large wavelength. In addition, as follows from [BGMR16], forN = 1 a de�nite Hessian
matrix ∇2

�;c; � � is incompatible with the spectral stability of the underlying periodic wave.
An important drawback of the formulation of modulated equations in the variables

(�; c; � ) is that all the quantities appearing in the time derivatives in (19) blow up in the
solitary wave limit. Indeed, @� � = � = 1 =k goes to in�nity when k goes to zero, as well
as∇� � = � 〈U 〉 and @c� = � 〈Q(U )〉.

2.3 An important averaged variable
We claim that, despite their complicated and implicit form, Equations in (12)-(13)-(14)
admit an equivalent form in a system of coordinates that is rather well suited for the
study of dispersive shocks, in that it allows to take both the small amplitude limit and
the solitary wave limit (k → 0), in a most symmetric manner. We achieve this goal by
replacing the conserved variable〈Q(U )〉 with another one, which we merely denote by� ,
and that is given by

� :=
1
k

(〈Q(U )〉 − Q(〈U 〉)) =
1
k
〈Q(U − 〈U 〉)〉 :

As already pointed out above and proved below, this new variable tends to zero when
the amplitude of U tends to zero and has a �nite limit whenk goes to zero, that is when
U eventually becomes a solitary wave pro�le. Indeed, �rst we observe that� goes indeed
to zero when the amplitude ofU goes to zero, becausek goes to the nonzeroharmonic
wavenumber and〈Q(U )〉 and Q(〈U 〉) both go to the value ofQ at the constant limiting
state of the small amplitude wave. As to the limit whenk goes to zero, we see that

� =
Z Ξ=2

−Ξ=2
(Q(U (� )) −Q(〈U 〉)) d �

=
Z Ξ=2

−Ξ=2
(Q(U (� )) −Q(〈U 〉) −∇U Q(〈U 〉) · (U (� ) − 〈U 〉)) d �

→
Z +∞

−∞
(Q(U s(� )) −Q(U s) −∇U Q(U s) · (U s(� ) − U s)) d �

when � goes to in�nity, where U s denotes the limiting, solitary wave pro�le, homoclinic
to U s, the limit of 〈U 〉. The asymptotic behavior of� in these limits is proved in more
details in Subsection 3.2.
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Another remarkable property of � is that, at least for our main models of interest,
scalar equations (N = 1) and Euler{Korteweg systems, one may determine the sign of�
in terms of parameters governing the traveling pro�les.

Proposition 2. Under Assumption 1,

• if N = 1 then � has the sign of b;

• if N = 2 and � = Id, then � has the sign of b� 2;

• if N = 2 and � ≡ 1, then � has the sign of −c.

Proof. All signs are ultimately deduced from the Cauchy{Schwarz inequality: whenF and
G are linearly independent,〈F G〉2 < 〈F 2〉 〈G2〉. The simplest case is for scalar equations,
for which Q(v) = v2=(2b), so that

2b � = 〈v2〉 × 〈1〉 − 〈v〉2 > 0

sincev is not constant.
If N = 2 then Q(v; u) = v u=b. Yet, when � ≡ 1, it follows from (15) that u + ( cv)=b

is constant so that

〈Q(v; u)〉 − Q(〈v〉; 〈u〉) = − c
b2

(〈v2〉 × 〈1〉 − 〈v〉2)

is of the same sign as−c. Indeed from the relation betweenu and v it follows that v is
not constant sinceU is not constant. Likewise when� = Id, u + � 2=v is constant and

〈Q(v; u)〉 − Q(〈v〉; 〈u〉) =
� 2

b

�
〈v〉

�
1
v

�
− 〈1〉2

�

is of the sign of� 2=bsince, asv is non-constant,√v and 1=√v are independent.

Remark 5. The case whenN = 2 and � = Id includes Eulerian formulations of the Euler{
Korteweg systems, whereas the case whenN = 2 and � ≡ 1 encompasses mass Lagrangian
formulations of such systems. Each element of the latter class is conjugated to an element
of the former and vice versa. As pointed out in [BG13], correspondences respect traveling
wave types, and, as proved in [BGNR14], they also respect details of (the nonzero part of)
the spectrum of linearizations about periodic waves. Obviously the foregoing proposition
is consistent with corresponding conjugacies. Indeed, denoting with subscriptsE and L
quantities corresponding to each formulation, it follows from [BGNR14] thatbE = −1,
bL = 1, ( � 2)E = cL =bL and

� E

kE
=

� L

kL
:
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2.4 Alternative form of modulated equations
Returning to our general framework, we claim that variables (k; �; M := 〈U 〉) may be
used exactly when (k; M ; 〈Q(U )〉) may be used and that using the former yields an alter-
nate formulation of the modulated equations (19) that still has a nice symmetric-looking
structure, and is now well-suited for both the small amplitude limit (� → 0) and the
solitary wave limit (k → 0).

To begin with, note that the vector (k; �; M ) is deduced from (k; M ; 〈Q(U )〉) through
the map (k; M ; P ) 7→ (k; (P −Q(M ))=k;M ), which is obviously a (local) di�eomorphism
so that parametrizations are indeed equivalent. In particular, Corollary 1 provides a
characterization of when parametrization by (k; �; M ) is possible.

Now we provide counterparts to Proposition 1 and Corollary 1 for variables (k; �; M ).
Here, the role of � in (19) is to some extent played by the averaged Hamiltonian

H := 〈H[U ]〉 :

Remark 6. Remarkably the action integral � and the averaged Hamiltonian H are closely
related. It follows indeed from the de�nition of � in (17) and the expression of its
derivatives in (18) that

� = � H + c @c� + � · ∇� � + � @� � :

Would � be strictly convex, we would recognize

(20) − � H = c @c� + � · ∇� � + � @� � − �

as being theconjugate function of �.

Theorem 1. In the framework of Proposition 1, assume that the action � defined in (17)
has a nonsingular Hessian at all points in 
 . Then the mapping (�; c; � ) 7→ (k; �; M )
defined by

k =
1
�

; � =
1
k

(〈Q(U )〉 − Q(〈U 〉)) ; M = 〈U 〉 ;

is a local diffeomorphism. Moreover

1. as a function of (k; �; M ) the averaged Hamiltonian

H := 〈H[U ]〉

is such that,

(21) @kH = � − �c ; @� H = −kc ; ∇M H = 〈� H[U ]〉 ;

2. the modulated equations in (12)-(13)-(14) — or equivalently (19) — have a closed
form in the variables (k; �; M ), which reads

(22) @T

0

@
k
�
M

1

A =

0

@
0 1
1 0

B

1

A @X (∇k;�; M H) :
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Proof. We have already established the �rst assertion. However, for later use let us point
out more precisely that the relations in (18) | linked to the fact that � is indeed an
abbreviated action integral | imply that

k =
1

@� �
; M =

∇� �
@� �

; � = @c� − (@� �) Q
�
∇� �
@� �

�
;(23)

@� � =
1
k

; ∇� � =
M
k

; @c� = � +
1
k
Q (M ) :(24)

In order to compute the partial derivatives of H in the variables (k; �; M ), it is expe-
dient to use (20). Indeed, in this way, by combining classical cancellation of derivatives
of conjugate functions with relations (24), we derive

@kH =
H
k

+ c
Q(M )

k
+ � · M

k
+

�
k

= � − �c ;

@� H = −c k ;
∇M H = −c∇Q(M ) − � = 〈� H[U ]〉 ;

where the last relation is obtained by averaging (15).
It follows at once that equations (12)-(13), which are also the �rst and last lines of

(19), are equally written as

@T k − @x (@� H) = 0 ;(25)
@T M − @X (B ∇M H) = 0 :(26)

So the only remaining task is to manipulate (19) to obtain an equation for� . By using
(23), (19) and the symmetry ofB , one derives

(@T + c@X )� = ( @T + c@X )
�

@c� − Q (∇� �)
@� �

�

= @� � @X � + ∇� � @X � +
Q (∇� �)

@� �
@X c

= @X � − �@X c

thus

(27) @T � = @X (@kH) :

Remark 7. The ‘symmetric’ form of (22) readily implies that H is a mathematicalentropy
for this system. Indeed, along smooth solutions of (22) we have

@T H = @X

�
(@kH)(@� H) +

1
2

(∇M H) · B∇M H
�
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by the symmetry of B . For the sake of consistency, we now check that this conservation
law for H coincides with the averaging of (2) | the original conservation law forH |
along wave pro�les. On one hand from (15), (16) and (20) stems

〈∇U x
H[U ] · @x (B � H[U ])〉 = −c〈∇U x

H[U ] · @xU 〉
= −c (� + c〈Q(U )〉 + � · M + H)
= −c k � :

On the other hand from (15) and the symmetry ofB follows

〈1
2

� H[U ] · B � H[U ]〉 =
1
2
〈� H[U ]〉 · B 〈� H[U ]〉 + c2〈Q(U − M )〉

=
1
2
〈� H[U ]〉 · B 〈� H[U ]〉 + c2 (〈Q(U )〉 − Q(M ))

=
1
2
〈� H[U ]〉 · B 〈� H[U ]〉 + c2 k � :

Combining the foregoing with (21) proves the claim.

Remark 8. The conservation law (14) itself also admits a nice formulation in terms of H.
It equivalently reads

@T 〈Q(U )〉 = @X H∗ ;
where

H∗ := k@kH + �@� H + M · ∇M H − H ;
(H∗ would be theconjugate function of H if this function were strictly convex). Indeed it
already follows from previous computations that

〈LH[U ]〉 = k� − H :

Moreover from (15) and the symmetry ofB we deduce

〈U · � H[U ]〉 = M · 〈� H[U ]〉 − 2c〈Q(U − M )〉
= M · 〈� H[U ]〉 − 2c k �

so that the claim follows from (21).

The quasilinear form of (22) reads

(28) @T

0

@
k
�
M

1

A = B∇2
k;�; M H @X

0

@
k
�
M

1

A ;

where

B :=

0

@
0 1
1 0

B

1

A ;

so that (22) is hyperbolic at points in the state space where the matrixB∇2
k;�; M H is

diagonalizable with real eigenvalues. A �rst, natural approach to check hyperbolicity is
to try and use the symmetry of the matrices∇2

k;�; M H and B.
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Corollary 2. In the framework of Theorem 1, if H is a strictly convex function of (k; �; M ),
then the modulated system (22) is hyperbolic.

Proof. This follows from the fact that the Hessian∇2
k;�; M H of H is a symmetrizer for

(22) whenever∇2
k;�; M H is positive de�nite. Indeed, as soon as∇2

k;�; M H is nonsingular the
quasilinear form (28) of (22) is equivalent to

∇2
k;�; M H @T

0

@
k
�
M

1

A = ∇2
k;�; M HB∇2

k;�; M H @X

0

@
k
�
M

1

A :

Since the matrix∇2
k;�; M HB∇2

k;�; M H is symmetric, if in addition ∇2
k;�; M H is positive de�-

nite then (22) is necessarily hyperbolic by a standard observation in the theory of hyper-
bolic systems (see for instance [Ser99, Theorem 3.1.6]).

However, our numerical experiments tend to show that∇2
k;�; M H is hardly ever de�nite

positive [Mie17]. Moreover, as made explicit in Remark 14, our analysis proves that
∇2

k;�; M H is not de�nite positive in either one of the small amplitude limit and the large
wavelength limit. Indeed, the upper diagonal block in the limits of∇2

k;�; M H found in
Theorems 5 and 6 has signature (1; 1), and therefore∇2

k;�; M H cannot be de�nite.

The main purpose of subsequent sections is to draw rigorous conclusions on the mod-
ulated system in quasilinear form (28), in the small amplitude and soliton limits, when
either � → 0 or k → 0. Required expansions are derived from expansions of∇2

�;c; � �
obtained in [BGMR20]. Thus, before going to the most technical part of the present
paper, we need to point out the explicit connection between the Hessian of the averaged
Hamiltonian H as as function of (k; �; M ) and the Hessian of the abbreviated action � as
a function of parameters (�; c; � ).

Proposition 3. In the framework of Theorem 1,

(29) ∇2
k;�; M H = − 1

k
AT (∇2

�;c; � �) −1 A − cB−1 ;

with

A = A(k; M ) :=

0

BB@

− 1
k 0 0

−Q(M )
k k ∇U Q(M )T

−M
k 0 I N

1

CCA :

Proof. Along the proof we �nd it convenient to use �rst and second di�erentials, denoted
with d and d2, rather than gradients and Hessians. We proceed by di�erentiating at points
(k; �; M ) (left implicit) in an arbitrary direction ( _k; _�; _M ) (made explicit). In the present
proof all functions are implicitly considered as functions of (k; �; M ).

The starting point is the di�erentiation of (20), already used in the proof of Theorem 1,

dH( _k; _�; _M ) =
_k
k

H − k

0

@
�
c
�

1

A · d(∇�;c; � �)( _k; _�; _M )
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that we di�erentiate once more to derive

d2H(( _k; _�; _M ); ( _k; _�; _M ))(30)

= −k d

0

@
�
c
�

1

A ( _k; _�; _M ) · ∇2
�;c; � � d

0

@
�
c
�

1

A ( _k; _�; _M )

− 1
k

0

@
�
c
�

1

A · d
h
k2d(∇�;c; � �)( _k; _�; _M )

i
( _k; _�; _M ) :

Now di�erentiating (24) yields

d(∇�;c; � �)( _k; _�; _M ) =
1
k
A

0

@
_k
_�
_M

1

A

which also implies

(31) d

0

@
�
c
�

1

A ( _k; _�; _M ) =
1
k

(∇2
�;c; � �) −1A

0

@
_k
_�
_M

1

A :

In turn

d(kA)( _k; _�; _M ) =

0

BB@

0 0 0

−∇U Q(M ) · _M 2k _k _k∇U Q(M )T + k∇U Q( _M )
T

− _M 0 _k I N

1

CCA

so that

(32) d
h
k2d(∇�;c; � �)( _k; _�; _M )

i
( _k; _�; _M ) =

0

@
0

2k _k _� + 2k Q( _M )
0

1

A :

Inserting (31) and (32) in (30) achieves the proof by identi�cation of relevant symmetric
matrices with corresponding quadratic forms since

2_k _� + 2 Q( _M ) =

0

@
_k
_�
_M

1

A · B−1

0

@
_k
_�
_M

1

A :

Remark 9. Relation (29) leaves the possibility for∇2
k;�; M H to be de�nite without ∇2

�;c; � �
being so, and vice and versa. This could be of importance since any of those yields
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hyperbolicity of the modulated system and it was shown in [BGMR16] that the negative
signature of∇2

�;c; � � must be equal to N modulo an even number for the underlying wave
to be spectrally stable. Yet as already mentioned, in practice, this is hardly ever the
case; see [Mie17] for numerous numerical experiments, and [BGMR20] and Remark 14 for
the analysis of signatures in either one of the extreme regimes, small amplitude or large
wavelength.

As seen on the quasilinear form (28), the characteristic matrix of System (22) reads

(33) W := −B∇2
k;�; M H :

We refer to W in the sequel as the Whitham matrix of (22). It can be rewritten using
Equation (29) as

W =
1
k
BAT (∇2

�;c; � �) −1 A + c I N +2 :

Remark 10. For comparison, the characteristic matrix of System (19) in variables (�; c; � )
is

1
k

(∇2
�;c; � �) −1 S + c I N +2

with

(34) S :=

0

@
0 −1
−1 0

B

1

A :

As follows from (31), (∇2
�;c; � �) −1 A provides a change of basis between characteristic

matrices. This may be checked directly thanks to the identity

S = ABAT :

3 Asymptotic expansions of parameters

3.1 Expansions of action derivatives
Our study of extreme regimes hinges on asymptotic expansions of the action and its
derivatives, obtained in [BGMR20] and that we partially recall here.

To conveniently write some of the coe�cients of the expansions, we �rst make more
explicit the pro�le equations (15)-(16). As in [BGMR20] we introduce the potential
W(v; c; � ) de�ned in the caseN = 1 by

W(v; c; � ) := − f (v) − 1
2

c
b

v2 − � v ;

and in the caseN = 2 by

W(v; c; � ) := − f (v) − 1
2

� (v) g(v; c; � 2)2 − c
b

v g(v; c; � 2) − � 1 v − � 2 g(v; c; � 2)
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with
g(v; c; � ) := − 1

� (v)

� c
b

v + �
�

:

The point is that (15)-(16) is equivalently written

� (v) vxx + 1
2
� ′(v) v2

x + W ′(v; c; � ) = 0 ; 1
2
� (v) v2

x + W(v; c; � ) = � ;

completed, in the caseN = 2, with

u = g(v; c; � 2) :

We only consider non-degenerate limits. The nature of the non-degeneracy is made
precise in the following set-up.

Assumption 2. Harmonic limit Fix (�
0
; c0; � 0) ∈ 
 such that there exists v0 > 0 such that

�
0

= W(v0; c0; � 0) ; @vW(v0; c0; � 0) = 0 ; @2
vW(v0; c0; � 0) > 0 :

Then there exists � a connected open neighborhood of (c0; � 0) and smooth functions v0 :
� → (0;∞) and � 0 : � → R such that (v0; � 0)(c0; � 0) = ( v0; �

0
) and for any (c; � ) ∈ �

� 0(c; � ) = W(v0(c; � ); c; � ) ; @vW(v0(c; � ); c; � ) = 0 ; @2
vW(v0(c; � ); c; � ) > 0 :

Moreover one may ensure9 that for some r 0 > 0


 r 0
0 :=

[

(c;� )∈Λ

(� 0(c; � ); � 0(c; � ) + r 0) × {(c; � )} ⊂ 


and there exist v2 and v3 smooth maps defined on 
 r 0
0 such that for any � = ( �; c; � ) ∈ 
 r 0

0 ,

0 < v 2(� ) < v 0(c; � ) < v 3(� ) ; � = W(v2(� ); c; � ) = W(v3(� ); c; � ) ;
@vW(v2(� ); c; � ) 6= 0 ; @vW(v3(� ); c; � ) 6= 0 ;
∀v ∈ (v2(� ); v3(� )) ; � 6= W(v; c; � ) :

Soliton limit Fix (�
s
; cs; � s) ∈ 
 such that there exists vs and vs such that10

0 < v s < v s ; �
s

= W(vs; cs; � s) = W(vs; cs; � s) ;

@vW(vs; cs; � s) = 0 ; @2
vW(vs; cs; � s) < 0 ;

@vW(vs; cs; � s) 6= 0 ; and ∀v ∈ (vs; vs) ; �
s
6= W(v; cs; � s) :

9Up to choosing the correct branch of parametrization and extending 
 if necessary. Implicitly v is
chosen consistently.

10The choice that @vW(vs; cs; � s) = 0 and @vW(vs; cs; � s) 6= 0 instead of @vW(vs; cs; � s) 6= 0 and
@vW(vs; cs; � s) = 0 is arbitrary and purely made for the sake of clarity and de�niteness. There is no loss
of generality since one may go from one case to the other by rewriting the equations forv in terms of −v.
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Then there exists � a connected open neighborhood of (cs; � s) and smooth functions vs :
� → (0;∞), vs : � → (0;∞) and � s : � → R such that (vs; vs; � 0)(cs; � s) = ( vs; vs; �

s
)

and for any (c; � ) ∈ �

0 < v s(c; � ) < v s(c; � ) ; � s(c; � ) = W(vs(c; � ); c; � ) = W(vs(c; � ); c; � ) ;
@vW(vs(c; � ); c; � ) = 0 ; @2

vW(vs(c; � ); c; � ) < 0 ;
@vW(vs(c; � ); c; � ) 6= 0 ; and ∀v ∈ (vs(c; � ); vs(c; � )) ; � s(c; � ) 6= W(v; c; � ) :

Moreover one may ensure that for some r 0 > 0


 r 0
s :=

[

(c;� )∈Λ

(� s(c; � ) − r 0; � s(c; � )) × {(c; � )} ⊂ 


and there exist v1, v2 and v3 three smooth maps defined on 
 r 0
s such that for any � =

(�; c; � ) ∈ 
 r 0
s ,

0 < v 1(� ) < v s(c; � ) < v 2(� ) < v 3(� ) < v s(c; � ) ;
� = W(v1(� ); c; � ) = W(v2(� ); c; � ) = W(v3(� ); c; � ) ;

@vW(v1(� ); c; � ) 6= 0 ; @vW(v2(� ); c; � ) 6= 0 ; @vW(v3(� ); c; � ) 6= 0 ;
∀v ∈ (v1(� ); v2(� )) ∪ (v2(� ); v3(� )) ; � 6= W(v; c; � ) :

For all (c∗; � ∗) ∈ �, we consider

either � 0∗ := ( c∗; � ∗; � 0(c∗; � ∗)) ; or � s∗ := ( c∗; � ∗; � s(c∗; � ∗)) ;

which both belong to 
, and the corresponding harmonic limit (�
Ω

r 0
0→ � 0∗) and soliton

limit ( � Ω
r 0
s→ � s∗ ). Actually it is more convenient and su�cient to fix (c∗; � ∗) ∈ � and

consider either� → � 0(c∗; � ∗)+ or � → � s(c∗; � ∗)−, provided one ensures local uniformity
with respect to (c∗; � ∗) ∈ �. By acting in this way, in [BGMR20] we derived asymptotic
expansions in terms of two small parameters going to zero:

� := ( v3 − v2)=2

in the harmonic limit and
%:=

v2 − v1
v3 − v2

in the soliton limit. These expansions are recalled below after a few preliminaries.
First, for the sake of concision, in the caseN = 2 we introduce notation q(v; c; � ) :=

Q(v; g(v; c; � )), still with g(v; c; � ) = −((c=b) v + � )=� (v). Note that in the sequelg and q
are evaluated at� = � 2, the second component of� . For convenience we adopt a similar
convention in the caseN = 1 with merely q(v) := Q(v). In the statement that follows,
we omit to write the dependence | if any | of these functions on the parameters (c; � )
in order to shorten formulas a little bit and stress symmetry between casesN = 1 and
N = 2. We also make use of the symmetric matrixS de�ned in (34).

Now we introduce a set of vectors that are crucially involved in the above-mentioned
asymptotic expansions, and provide associated key cancellations proved in [BGMR20,
Lemma 1].
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Proposition 4 ([BGMR20]). For both indices i = 0 and i = s we introduce the following
vectors of RN +2: for N = 2

V i :=

0

BB@

1
q(vi )

vi
g(vi )

1

CCA ; W i :=

0

BB@

0
@vq(vi )

1
@vg(vi )

1

CCA ; Z i :=

0

BB@

0
@2

v q(vi )
0

@2
v g(vi )

1

CCA ;(35)

T i :=
1

p
� (vi )

0

BB@

0
vi
b
0
1

1

CCA ; E :=

0

BB@

1
0
0
0

1

CCA = S−1 F ; F :=

0

BB@

0
−1
0
0

1

CCA ;

and for N = 1

V i :=

0

@
1

q(vi )
vi

1

A ; W i :=

0

@
0

@vq(vi )
1

1

A ; Z i :=

0

@
0

@2
v q(vi )

0

1

A ;(36)

T i :=

0

@
0
0
0

1

A ; E :=

0

@
1
0
0

1

A = S−1 F ; F :=

0

@
0
−1
0

1

A :

These vectors are such that

(37)

8
>>><

>>>:

V i · S−1 V i = 0 ; V i · S−1 W i = 0 ; V i · S−1 T i = 0 ;

V i · S−1 Z i = −W i · S−1 W i ; T i · S−1 T i = 0 ; T i · S−1 Z i = 0 ;

E · V i = 1 ; E · W i = 0 ; E · Z i = 0 ; E · T i = 0 :

At last, we introduce the Boussinesq moment of instability involved in solitary wave
limits. We stress that it is both convenient and classical to parameterize solitary wave
pro�les U s not by (c; � ) but by ( c;U s) with U s the corresponding endstate. The associated
� is then recovered through

� = � s(c;U s) := −∇U (H + cQ)(U s; 0)

and � s is simply obtained as

� s = −(H + cQ)(U s; 0) + ∇U (H + cQ)(U s; 0) · U s :

The Boussinesq moment of instability is then de�ned as

M(c;U s) =
Z +∞

−∞
(H[U s] + cQ(U s) + � s · U s + � s) d�

=
Z +∞

−∞

�
(H + cQ)[U s] − (H + cQ)(U s; 0) −∇U (H + cQ)(U s; 0) · (U s − U s)

�
d� :
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Note that, since � (H + cQ)[U s] + � s = 0, we do have

@cM(c;U s) =
Z +∞

−∞

�
Q(U s) −Q(U s) −∇U Q(U s) · (U s − U s)

�
d�

The following statement gathers elements from [BGMR20, Theorems 4 and 5] and
their proofs.

Theorem 2 ([BGMR20]). Under Assumptions 1-2 we have the following asymptotics for
the action derivatives.
Harmonic limit There exist real numbers a0, b0 and a positive number c0 — depending
smoothly on the parameters (c; � ) — such that when � goes to zero

(38)
4c0
� 0

∇�;c; � � = 4 c0 V 0 + ( a0 V 0 + b0 W 0 + c0 Z0) � 2 + O(� 4)

(39)
1

� 0

∇2
�;c; � � = a0 V 0 ⊗ V 0 + b0 (V 0 ⊗ W 0 + W 0 ⊗ V 0) − T 0 ⊗ T 0

+ 2 c0 W 0 ⊗ W 0 + c0 (V 0 ⊗ Z0 + Z0 ⊗ V 0) + O(� 2)

where � 0 denotes the harmonic period at v0, that is, � 0 =
p

� (v0)=@2vW(v0; c; � )) .
Soliton limit There exist real numbers as, bs, positive numbers cs, hs, a vector X s and a
symmetric matrix Os — depending smoothly on the parameters (c; � ) — such that

(40)
�
� s

∇�;c; � � = −V s ln %− X s +
%
2

V s −
1

2hs
(as V s + bs W s + cs Zs) %2 ln %+ O

�
%2

�

(41)
�
� s

∇2
�;c; � � = hs

1 + %
%2

V s ⊗ V s + ( as V s ⊗ V s + bs (V s ⊗ W s + W s ⊗ V s)) ln %

+ ( T s ⊗ T s + 2cs W s ⊗ W s + cs (Zs ⊗ V s + V s ⊗ Zs)) ln %

+ Os + O
�
%ln %

�

when %goes to zero, where � s denotes the harmonic period at vs of waves associated with
the opposite ‘capillarity’ coefficient, that is, � s :=

p
−� (vs)=@2vW(vs; c; � )) . In addition,

we have11

(42)
� s

�
(S−1V s) · X s = @cM(c; U s) ;

� s

�
(S−1V s) ·Os S−1V s = @2

cM(c; U s) ;

where U s = vs in the case N = 1 and U s = ( vs; g(vs)) in the case N = 2 .
11This comes from the proof of Theorem 5 in [BGMR20], the statement of which lacked the prefactor

Ξs
� in the relation between @2

cM and the %0-term in the expansion of ∇2
�;c; � �. We have corrected this

omission in (42).
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In the latter theorem and elsewhere in the present paper, for any two vectorsV and
W in Rd, thought of as column vectors,V ⊗ W stands for the rank-one, square matrix
of sized

V ⊗ W = V W T

whatever d.
Observing that the matrices involved in the expansions of∇2

�;c; � � in both the har-
monic and the soliton limit have similar structures, we �nd useful to have at hand the
following set of algebraic properties, which are either simple reformulations of relations in
Proposition 4 or explicit computations from the de�nition of A.

Corollary 3. • CaseN = 1 With

(43) Pi := S−1
�

F i V i W i
�

;

we have

Di := Pi
T SPi = B−1 =

0

@
0 1 0
1 0 0
0 0 b−1

1

A ;

Pi
T A =

0

BBBBBB@

−1=k 0 0

Q(vi − 〈v〉)=k −k (vi − 〈v〉)=b

(vi − 〈v〉)=(bk) 0 1=b

1

CCCCCCA
;

(Pi
T A)−1 =

0

BBBB@

−k 0 0

Q(vi − 〈v〉)=k −1=k (vi − 〈v〉)=k

vi − 〈v〉 0 b

1

CCCCA
;

and, for any real numbers (a; b; c;m)

Pi
T(aV i ⊗ V i + b(V i ⊗ W i + W i ⊗ V i ) + mW i ⊗ W i + c(V i ⊗ Z i + Z i ⊗ V i ))Pi

=

0

@
a −c b−1 b b−1

−c b−1 0 0
bb−1 0 mb−2

1

A :

• CaseN = 2 With

(44) Pi := S−1
�

F i V i T i W i
�

;
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(45)

8
>>>>><

>>>>>:

� i := T i · S−1W i =
1

b
p

� (v)
;

wi := W i · S−1W i =
2gv(vi )

b
;

� i := Z i · S−1W i =
gvv(vi )

b
;

and

(46) A i :=
�

0 1=
p

� (vi )
1 gv(vi )

�
=

�
0 b � i
1 b

2
wi

�
;

we have

Di := Pi
T SPi =

0

BB@

0 1 0 0
1 0 0 0
0 0 0 � i
0 0 � i wi

1

CCA ;

Pi
T A =

0

BBBBBB@

−1=k 0 0

Q(U i − M )=k −k (U i − M )T B−1

A i B−1(U i − M )=k 0 A i B−1

1

CCCCCCA
;

(Pi
T A)−1 =

0

BBBBBB@

−k 0 0

Q(U i − M )=k −1=k (U i − M )T A −1
i =k

U i − M 0 B A −1
i

1

CCCCCCA
;

and, for any real numbers (a; b; c;m; n)

Pi
T(aV i ⊗ V i + b(V i ⊗ W i + W i ⊗ V i ) + mW i ⊗ W i + c(V i ⊗ Z i + Z i ⊗ V i ) + nT i ⊗ T i )Pi

=

0

BB@

a −cwi b � i bwi + c � i
−cwi 0 0 0
b � i 0 m � 2

i m � i wi
bwi + c � i 0 m � i wi mw2

i + n � 2
i

1

CCA :

For later reference, let us point out here that in any case

(47) Di := Pi
T SPi :

To unify casesN = 1 and N = 2, it is also useful to extend toN = 1 de�nitions in (45)
and to setA i =

�
1
�

when N = 1.
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3.2 Expansions of modulated variables
By (18) we have � = @� � so that we readily obtain expansions for the period � by
projecting (38) and (40) onto their �rst component | which amounts to taking the inner
product with E. This gives

� = � 0

�
1 +

a0
4c0

� 2 + O(� 4)
�

; � → 0 ;

� =
� s

�

�
− ln %− E · X s +

%
2

− as

2hs
%2 ln %+ O

�
%2

� �
; %→ 0 ;

from which we can of course infer expansions for the local wavenumberk = 1=�

k = k0

�
1 − a0

4c0
� 2 + O(� 4)

�
; � → 0 ;

k =
�
� s

�
− 1

ln %
+

E · X s

(ln %)2
− %

2(ln %)2
− (E · X s)2

(ln %)3
+

(E · X s) %
(ln %)3

+ O
� %2

ln %
� �

; %→ 0 ;

wherek0 = 1=� 0.
Thanks to (18) again, the projections of (38) and (40) onto their intermediate and

last components together with the expansions ofk yield expansions for the mean values
〈Q(U )〉 and 〈U 〉. To carry this out, it is convenient to introduce theN × (N + 2) matrix

I :=

0

@ 0 0 I N

1

A

of the projection onto last components, and to observe that taking the projection on the
second component of vectors inRN +2 amounts to taking the inner product with −F . We
also recall that U 0 := I V 0 and U s := I V s.

Regarding the expansions of the mean valueM = 〈U 〉 we get from (38) that

M =
� 0

�

�
U 0 + 1

4c0
(a0 U 0 + b0 IW 0 + c0 IZ 0) � 2 + O(� 4)

�

=
�

1 − a0
4c0

� 2 + O(� 4)
� �

U 0 + 1
4c0

(a0 U 0 + b0 IW 0 + c0 IZ 0) � 2 + O(� 4)
�

= U 0 + Y 0 � 2 + O(� 4) ;

when � goes to zero, with

(48) Y 0 :=
1

4c0
(b0 IW 0 + c0 IZ 0);
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and from (40) that

M =
� s

� �

�
−U s ln %− IX s +

%
2

U s − 1
2hs

(as U s + bs IW s + cs IZ s) %2 ln %+ O
�
%2

� �

=
�
− 1

ln %
+

E · X s

(ln %)2
− %

2(ln %)2
− (E · X s)2

(ln %)3
+

(E · X s) %
(ln %)3

+ O
� %2

ln %
� �

×
�
−U s ln %− IX s +

%
2

U s − 1
2hs

(as U s + bs IW s + cs IZ s) %2 ln %+ O
�
%2

� �

= U s +
Y s

ln %
− E · X s

(ln %)2
Y s +

(E · X s)2

(ln %)3
IX s +

%
2(ln %)2

Y s − (E · X s) %
(ln %)3

(IX s + 1
2
(E · X s) U s) + O

�
%2

�
;

when %goes to zero, with

(49) Y s := IX s − (E · X s) U s:

Now that we have necessary pieces of notation, we gather in the following the behaviors
found here above for (k; 〈U 〉) with the expansions proved below for� .

Corollary 4. Under Assumptions 1-2 and with notation from Theorem 2, (48) and (49)
we have
Harmonic limit

(50)

0

@
k
�
M

1

A =

0

@
k0

0
U 0

1

A +
� 2

4c0

0

@
−k0a0

1
k0

W 0 · S−1 W 0

4c0 Y 0

1

A + O(� 4)

when � goes to zero.
Soliton limit

(51)

0

@
k
�
M

1

A =

0

@
0

@cM(c; U s)
U s

1

A +
1

ln %

0

@
− �

Ξs
Ξs
� Q(Y s)

Y s

1

A + O
� 1

(ln %)2
�

when %goes to zero.

Remark 11. One can always look at the soliton limit as being the limit whenk goes to
zero and Corollary 4 in particular contains in this regime

� = @cM(c; U s) + O(k) ; 〈U 〉 = U s + O(k) :

Likewise, assuming that

(52) w0 := W 0 · S−1 W 0

is nonzero, we can equivalently look at the harmonic limit as the limit� goes to zero and
then

k = k0 + O(� ) ; 〈U 〉 = U 0 + O(� ) :
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Remark 12. As already observed in [BGMR20], we can check in practical cases that
w0 = W 0 · S−1 W 0 6= 0. Indeed, W 0 · S−1W 0 = 1=b in the caseN = 1 and in the case
N = 2, W 0 · S−1W 0 = 2@vg(v0)=b is nonzero both when� is constant | which is the
case for the Euler{Korteweg system in mass Lagrangian coordinates | andc 6= 0 and
when � is linear in v | which is the case for the Euler{Korteweg system in Eulerian
coordinates | and � 2 6= 0. We stress that the latter conditions are exactly the same
conditions encountered in Proposition 2 where the sign of� was investigated. In particular
as pointed out in Remark 5 both conditions are conjugated by the passage between mass
Lagrangian and Eulerian formulations.

Proof. The only thing left is to expand our variable� . In order to do so, by using (18)
we can conveniently write it as

� = −F · ∇�;c; � � − I∇�;c; � �
2E · ∇�;c; � �

· B−1I∇�;c; � � :

From (38) and Proposition 37 we obtain

�
� 0

= Q(U 0) +
1

4c0
(a0 Q(U 0) − b0 F · W 0 − c0 F · Z0) � 2 + O(� 4)

− 1
1 + a0

4c0
� 2 + O(� 4)

Q(U 0 +
1

4c0
(a0 U 0 + b0 IW 0 + c0 IZ 0) � 2 + O(� 4))

= Q(U 0) +
1

4c0
(a0 Q(U 0) − b0 F · W 0 − c0 F · Z0) � 2 + O(� 4)

− 1
1 + a0

4c0
� 2 + O(� 4)

�
Q(U 0) + U 0 · B−1 1

4c0
(a0 U 0 + b0 IW 0 + c0 IZ 0) � 2 + O(� 4)

�

in which there are some simpli�cations because by (37)

F · W 0 + U 0 B−1 I W 0 = V 0 · S−1W 0 + Q(U 0) E · W 0 = 0 ;
F · Z0 + U 0 B−1 I Z 0 = V 0 · S−1Z0 + Q(U 0) E · Z0 = −W 0 · S−1 W 0 :

So we eventually �nd that

� =
W 0 · S−1 W 0

4c0 k0

� 2 + O(� 4) :

Likewise, from (40) and Proposition 37 we get
�
� s

� = −Q(U s) ln %+ F · X s + O
�
%
�

+
ln %
2

U s + IX s
ln% + O

� %
ln%

�

1 + E ·X s
ln% + O

� %
ln%

� · B−1

�
U s +

IX s

ln %
+ O

� %
ln %

� �
;

which eventually simpli�es into

�
� s

� = F · X s + U s · B−1IX s − Q(U s) (E · X s) +
Q(Y s)

ln %
+ O

� 1
(ln %)2

�
;
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or equivalently, sinceF · X s + U s · B−1IX s − Q(U s) (E · X s) = ( S−1V s) · X s,

� = @cM(c; U s) +
� sQ(Y s)

� ln %
+ O

� 1
(ln %)2

�

thanks to (42).

3.3 Extending the parametrization
We can even go further and show that (k; �; M ) are ’good’ variables up to the limitsk = 0
and � = 0.

Theorem 3. Under Assumptions 1-2 and with notation from Theorem 2 we have
Harmonic limit The continuous extension of

(� 2; c; � ) 7→ (k; �; M )

or equivalently of
(� − � 0(c; � ); c; � ) 7→ (k; �; M )

to {0} × � defines a C1 map in a connected open neighborhood (in R+ × � ) of {0} × � ,
which, provided that12 w0 does not vanish on � , is also a C1-diffeomorphism.
Soliton limit The continuous extension of the map

(− 1
ln%; c; � ) 7→ (k; �; M )

or equivalently of the map

(− 1
ln(� s (c;� )−� ) ; c; � ) 7→ (k; �; M )

to {0}×� defines a C1 map in a connected open neighborhood (in R+×� ) of {0}×� , which,
provided that, for any (c; � ) ∈ � , @2

cM(c; U s(c; � )) 6= 0 , is also a C1-diffeomorphism.

Proof. Expansions (50) and (51) show that the maps under consideration possess contin-
uous extensions. To prove that these extensions areC1, we only need to prove that their
Jacobian maps also extend continuously to �× {0}. After that, by the Inverse Function
Theorem, the proof will be achieved provided we also derive from extra assumptions that
at any point of � × {0} the limit of the Jacobian map is nonsingular. In both limits our
starting point is (31), that yields

(53) ∇�;c; �

0

@
k
�
M

1

A = k (∇2
�;c; � �) ( AT)−1 ;

with A as in Proposition 3.
12See Remark 12.
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In the harmonic limit we set � := � 2 and observe that the chain rule yields follows from

= k

0

@
0 0

∇�;c; � � 1 0
0 I N

1

A
−1

(∇2
�;c; � �) ( AT)−1 :

Sincek has a nonzero limitk0, it is trivial to check that both k and A admit invertible
limits when � → 0. To deal with the factor involving ∇�;c; � � we extract from [BGMR20,
Proposition 4], expressed in our current notation,

∇�;c; � � = 4c0V 0 + O(� 2)

that implies readily that 0

@
0 0

∇�;c; � � 1 0
0 I N

1

A

possesses an invertible limit. At last, the fact that∇2
�;c; � � possesses a limit when� → 0

is a direct consequence of (39). The invertibility of the corresponding limit whenw0

(de�ned in (52)) is nonzero follows from straightforward computations based on the limit
of P0

T(∇2
�;c; � �) P0 obtained from Corollary 3.

More delicate is the soliton limit, in which all matrices involved in (53) blow up. To
begin with we set� := −1= ln %and extract from [BGMR20, Proposition 5]

∇�;c; � � = − hs

(%ln %)2
((1 + 3

2
%)V s + O(%2)) ;

To make the most of computations already carried out in Corollary 3, we use the factor-
ization
(54)

∇�;c; �

0

@
k
�
M

1

A = k

0

@Ps
T

0

@
0 0

∇�;c; � � 1 0
0 I N

1

A

1

A
−1

Ps
T(∇2

�;c; � �) Ps ((Ps
TA)−1)T :

stemming from the chain rule. To do so, �rst we observe that

(55) Ps
T

0

@
0 0

∇�;c; � � 1 0
0 I N

1

A =

0

@
1

(%ln%)2 0

0 I N +1

1

A

0

@
−hs + O(%) 0

O
�

1
(ln%)2

�
Ks

1

A

with

Ks =
�

0 I N +1

�
Ps

T

0

@
0

I N +1

1

A
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easily seen to be invertible so that the last matrix in (55) possesses an invertible limit
when %→ 0. Now we stress that
(56)

Ps
T A =

0

BBBBBB@

1=k 0 0

0 k 0

0 0 I N

1

CCCCCCA

0

BBBBBB@

−1 0 0

Q(U s − M )=k2 −1 (U s − M )T B−1=k

A s B−1(U s − M )=k 0 A s B−1

1

CCCCCCA

and that it follows from (51) that the last matrix in (56) possesses an invertible limit
when %→ 0.

Combining (54)-(55)-(56) with (51) reduces the issue to the inspection of the matrix

(57) L :=
1

ln(%)

0

@
(%ln %)2 0

0 I N +1

1

A Ps
T(∇2

�;c; � �) Ps

0

BBBBBB@

1
ln(%) 0 0

0 ln(%) 0

0 0 I N

1

CCCCCCA
:

It follows from Theorem 2 and Corollary 3 that, whenN = 2

�
� s

L =

0

BB@

hs 0 0 0
0 (S−1V s) ·Os S−1V s 0 0
0 (S−1T s) ·Os S−1V s 2cs � 2

s 2cs � s ws
0 (S−1W s) ·Os S−1V s 2cs � s ws 2cs w2

s + � 2
s

1

CCA + O
�

1
(ln %)

�

while whenN = 1

�
� s

L =

0

@
hs 0 0
0 (S−1V s) ·Os S−1V s 0
0 (S−1W s) ·Os S−1V s 2cs b−2

1

A + O
�

1
(ln %)

�
:

This implies that L possesses a limit when%→ 0 and that this limit is invertible provided
that ( S−1V s) ·Os S−1V s 6= 0, and �nishes the proof.

4 Asymptotics of the modulation system

4.1 Extending the averaged Hamiltonian
Our goal is now to show that the averaged Hamiltonian H extends as aC2 function of
(k; �; M ) both to the zero-amplitude regime� = 0 and to the zero-wavenumber regime
k = 0.
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Under natural assumptions required by Theorem 1, it is quite elementary, by using the
de�nition of H and relations (21), to check that H does extend as aC1 map both to � = 0
and to k = 0. This is already su�cient to take the relevant limits of the conservative form
(22) of the modulated system. Yet to ensure that hyperbolic properties of the limiting
system do transfer to the original ones in relevant regimes one needs to be able to take
limits in the quasilinear form (28) hence to prove theC2 extension property we discuss
now.

To state the following theorem in a precise way, let us denote, in the harmonic limit,
as � 0 the image of � by ( c; � ) 7→ (k0; 0; U 0) and, in the soliton limit, as � s the image of
� by ( c; � ) 7→ (0; @cM(c; U s); U s).

Theorem 4. Under Assumptions 1-2 and with notation from Theorem 2 we have
Harmonic limit Provided that w0 does not vanish on � ,
the averaged Hamiltonian H extends as a C2 function of (k; �; M ) to a connected open
neighborhood (in13 R× (sign(w0) R+) × R) of � 0.
Soliton limit Provided that, for any (c; � ) ∈ � , @2

cM(c; U s(c; � )) 6= 0 ,
the averaged Hamiltonian H extends as a C2 function of (k; �; M ) to a connected open
neighborhood (in R+ × R× R) of � s.

Proof. The proof is similar to the one of Theorem 3. In particular the issue is readily
reduced to checking that the assumptions of Theorem 4 ensure that in the relevant regimes
∇2

�;c; � � is invertible and ∇2
k;�; M H possesses a limit, the study of the latter relying on (29).

In the harmonic limit, we have already checked all the required claims along the proof
of Theorem 3 since there we have checked that∇2

�;c; � � possesses an invertible limit.
The soliton limit requires slightly more work. We already know from the proof of

Theorem 3 that both

0

@
(%ln %)2 0

0 I N +1

1

A k Ps
T(∇2

�;c; � �) ( AT)−1 and

0

BBBBBB@

1= ln(%) 0 0

0 ln(%) 0

0 0 I N

1

CCCCCCA
Ps

T A

13Note that since � is connected, w0 has a de�nite sign on � 0.
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possess invertible limits. Thus the result stems from

∇2
k;�; M H + cB−1

= −

0

@

0

@
(%ln %)2 0

0 I N +1

1

A k Ps
T∇2

�;c; � � ( AT)−1

1

A

−1

×

0

BBBBBB@

%2(ln %)3 0

0 1= ln(%) 0

0 0 I N

1

CCCCCCA
×

0

BBBBBB@

1= ln(%) 0 0

0 ln(%) 0

0 0 I N

1

CCCCCCA
Ps

T A

derived from (29).

4.2 Basic features of the limiting modulated systems
A detailed inspection of the proof of Theorem 4 provides explicit formulas for limiting
values of∇2

k;�; M H thus of the Whitham matrix W = −B∇2
k;�; M H in terms of coe�cients

from Theorem 2. Yet �rst we restrain from giving these and focus instead on what can
be derived from more elementary arguments, using only the conclusion from Theorem 4,
that is, C2 regularity of H. Along the discussion we shall still denote as H the extension
of H to either � 0 or � s.

To do so, we �rst point out the elementary

@kH = � − �c = 0 on � 0 ; @� H = −kc = 0 on � s ;

which by di�erentiating tangentially yield

@2
k H = 0 and @k∇M H = 0 on � 0 ; @2

� H = 0 and @� ∇M H = 0 on � s :

In particular,

B∇2
k;�; M H =

0

BB@

@2
k� H @2

� H @� ∇M HT

0 @2
k� H 0

0 B@� ∇M H B∇2
M H

1

CCA on � 0 ;

B∇2
k;�; M H =

0

BB@

@2
k� H 0 0

@2
k H @2

k� H @k∇M HT

B@k∇M H 0 B∇2
M H

1

CCA on � s ;

and a direct computation of a characteristic polynomial shows that, on either �0 or � s,
the spectrum ofW is the union, with multiplicity, of the spectrum of −B∇2

M H and twice
−@2

k� H.
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The fact that some second order derivatives of H are easier to compute is no accident.
Since it is easy to extend H as aC1 map it is also straightforward to extend its second-order
derivatives that contain at most one normal derivative. The hard parts of Theorem 4 are
the extensions of@2

� H to � 0 and, even more, of@2
k H to � s. To illustrate this further let

us stress that fori ∈ {0; s}

H(k; �; U i ) = H(U i ; 0) on � i ; thus ∇2
M H(k; �; U i ) = ∇2

U H(U i ; 0) on � i

so that, on � i , −B∇2
M H(k; �; U i ) is the characteristic matrix at U i of the dispersionless

system (7). Likewise, for any (k0; U 0) such that (k0; 0; U 0) ∈ � 0

@2
k� H(k0; 0; U 0) = −@k(k c0)(k0; U 0) = −vg(k0; U 0) ;

@� ∇M H(k0; 0; U 0) = −k0 ∇U c0(k0; U 0) ;

wherevg(k0; U 0) is the linear group velocity andc0(k0; U 0) = c(k; 0; U 0) is the harmonic
phase velocity of the harmonic wavetrain onU 0 at wavenumber k0. Similarly, at the
soliton limit, we have for any (cs; U s) ∈ �

@kH(0; @cM(cs; U s); U s) = M(cs; U s) − cs @cM(cs; U s)

so that for any (cs; U s) ∈ �

@2
k� H(0; @cM(cs; U s); U s) = −cs ;

@k∇M H(0; @cM(cs; U s); U s) = ∇U M(cs; U s) :

Going back to the cancellations inB∇2
k;�; M H, we make the following elementary alge-

braic observation, whose proof follows from a short computation | left to the reader.

Lemma 1. For any real numbers v and a, any vectors l0, r 0 in RN and any N ×N matrix
M such that v is not an eigenvalue of M we have

0

B@

1 0 lT
0 1 0

0 r I N

1

CA

−1 0

B@

v a l0T

0 v 0

0 r 0 M

1

CA

0

B@

1 0 lT
0 1 0

0 r I N

1

CA =

0

B@

v a− l0T (M− v I N )−1r 0 0
0 v 0

0 0 M

1

CA

0

B@

1 0 0
0 1 lT

r 0 I N

1

CA

−1 0

B@

v 0 0
a v l0T

r 0 0 M

1

CA

0

B@

1 0 0
0 1 lT

r 0 I N

1

CA =

0

B@

v 0 0
a− l0T (M− v I N )−1r 0 v 0

0 0 M

1

CA

with
l := ( MT − v I N )−1l0 ; r := −(M− v I N )−1r 0 :

Note that the two matrices considered in Lemma 1 are obtained one from the other
merely by exchanging the �rst and second coordinates. We have introduced these two
cases just to emphasize that this algebraic lemma applies to both kinds of limit.

For convenience, let us summarize part of the foregoing �ndings in the following state-
ment.
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Corollary 5. Under the assumptions of Theorem 4, still denoting by H its extension to
either � 0 or � s, we have
Harmonic limit At any point (k0; 0; U 0) of � 0, the spectrum of the characteristic matrix of
the modulation system −B ∇2

k;�; M H(k0; 0; U 0) is given, with algebraic multiplicity, by the
spectrum of the dispersionless characteristic matrix −B ∇2

U H(U 0; 0) and twice the linear
group velocity vg(k0; U 0) = −@2

k� H(k0; 0; U 0), so that in particular the modulation system
is weakly hyperbolic if and only if the dispersionless system is so.
Moreover, vg(k0; U 0) is a semisimple characteristic of (22) if and only if @2

� H(k0; 0; U 0)
coincides with14

(@� ∇M H)T(∇2
M H − (@2

k� H) B−1)−1@� ∇M H

= k2
0 (∇U c0)T(∇2

U H(U 0; 0) + vg B−1)−1∇U c0

so that the modulation system is hyperbolic if and only if the foregoing condition is satis-
fied and the dispersionless system is hyperbolic.
Soliton limit For any (cs; U s) of � , the spectrum of the characteristic matrix of the modu-
lation system −B ∇2

k;�; M H(0; @cM(cs; U s); U s) is given, with algebraic multiplicity, by the
spectrum of the dispersionless characteristic matrix −B ∇2

U H(U s; 0) and twice the soliton
velocity cs = −@2

k� H(0; @cM(cs; U s); U s), so that in particular the modulation system is
always weakly hyperbolic.
Moreover, cs is a semisimple characteristic of (22) if and only if @2

k H(0; @cM(cs; U s); U s)
coincides with15

(@k∇M H)T(∇2
M H − (@2

k� H) B−1)−1@k∇M H

= ( ∇U M)T(∇2
U H(U s; 0) + cs B−1)−1∇U M

so that the modulation system is hyperbolic if and only if the foregoing condition is satisfied.

Proof. At the soliton limit, the only thing left is to check that from the assumptions of
Theorem 4 stem thatcs is not an eigenvalue of−B ∇2

U H(U s; 0) and that eigenvalues of
the latter matrix are real and distinct. Yet a relatively direct computation (for which the
reader is referred to Appendix A and [BGMR20, Appendix A]) shows that

det(B ∇2
U H(U s; 0) + cs I N ) =

(
b @2vW(vs; cs; � s) if N = 1
b2 � (vs) @2

vW(vs; cs; � s) if N = 2

so that the conditions stem from Assumption 2 that contains@2
vW(vs; cs; � s) < 0.

At the harmonic limit, we only need to check that from the assumptions of Theorem 4
stems that vg is not an eigenvalue of−B ∇2

U H(U 0; 0). We �rst stress that the relation
pointed out above also holds forU 0 (instead of U s) so that

det(B ∇2
U H(U 0; 0) + c0(k0; U 0) I N ) =

(
b(2� )2k2

0 � (v0) if N = 1
b2 � (v0) (2� )2k2

0 � (v0) if N = 2
:

14The left-hand side being evaluated at (k0; 0; U 0) and the right-hand side at (k0; U 0).
15The left-hand side being evaluated at (0; @cM(cs; U s); U s) and the right-hand side at (cs; U s).
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Multiplying �rst the latter by k0 then di�erentiating it with respect to k0 yield by the
N -linearity of the determinant

det(B ∇2
U H(U 0; 0) + vg(k0; U 0) I N )

=

(
3b(2� )2k2

0 � (v0) if N = 1
3b2 � (v0) (2� )2k2

0 � (v0) + ( k0@kc0(k0; U 0))2 if N = 2
:

This proves the claim.

Remark 13. Concerning the caseN = 2, at the harmonic limit, note that B ∇2
U H(U 0; 0)

is never diagonal and that

(tr(B ∇2
U H(U 0; 0)))2 − 4 det(B ∇2

U H(U 0; 0)) = 4 b2� (v0)
�

f ′′(v0) +
1
2

� ′′(v0) u2
0

�

so that the dispersionless system is weakly hyperbolic (resp. hyperbolic) atU 0 if and only
if f ′′(v0) + 1

2
� ′′(v0) u2

0 ≥ 0 (resp. f ′′(v0) + 1
2
� ′′(v0) u2

0 > 0). In particular when � is a�ne,
as is the case for Euler-Korteweg systems, this condition reduces to the requirement that
f be convex, which is the usual hyperbolicity condition for the Euler systems in terms of
pressure monotonicity.

Despite the symmetry of Corollary 5 with respect to permutation of the variablesk and
� , the harmonic and soliton limits di�er signi�cantly in terms of the hyperbolic nature of
the limiting system. Indeed as it follows from the analysis expounded in next subsection,
the condition of Corollary 5 ensuring the semisimplicity of the characteristic value−@2

k� H
is always satis�ed at the soliton limit whereas in general it fails at the harmonic limit.
In particular as we show in Appendix A the latter condition does fail for the classical
Korteweg{de Vries equation.

We stress however that in both cases limiting systems contain two subsystems of size
3×3 whose hyperbolicity is directly determined by the hyperbolicity of the dispersionless
system at the limiting constant. On one hand, as expected, in the harmonic limit (resp.
the soliton limit) the limiting modulation system leaves invariant the hyperplane� = 0
(resp. k = 0) and its restriction �ts the claim. On the other hand, in the harmonic limit
(resp. the soliton limit) one may leave out the@tk equation (resp. @t � equation) and
obtain a closed system in (�; M ) (resp. (k; M )) that also �ts the claim. We warn the
reader that a careless16 choice of variables, e�ectively loosing one dimension at the limit,
could suggest as a limiting system a system apparently of size 4×4 but actually reducible
to the latter 3 × 3 system and hence fail to capture losses of hyperbolicity at the limit.

Note however that the direct consequences of the above discrepancy on the original
modulation systems (and not their limiting extensions) are almost immaterial. Indeed
whereas the failure of weak hyperbolicity (as potentially caused here by the failure of
weak hyperbolicity of the dispersionless system) is stable under perturbation, neither hy-
perbolicity nor failure of hyperbolicity are stable phenomena in the presence of a multiple

16In contrast, Theorem 3 ensures that the set of variables (k; �; M ) does not su�er from such a aw.
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root. The determination of the nature of the original modulation systems will require an
even �ner analysis than the one carried out in next subsection.

The reader is referred to Appendix B for further comments on the foregoing phenom-
ena, with fully workout details illustrated on a 2× 2 model system.

4.3 Explicit formulas for the limiting modulation systems
Now, to push our analysis a bit further, we extract from the proof of Theorem 4 explicit
formulas for the limiting values of∇2

k;�; M H, in particular for @2
� H in the harmonic limit

and for @2
k H in the soliton limit.

Let us begin with the harmonic limit. For concision’s sake we �rst introduce

� 0 =

8
>><

>>:

�
2c0 b−2

�
if N = 1

 
2c0 � 2

0 2c0 � 0 w0

2c0 � 0 w0 2c0 w2
0 − � 2

0

!

if N = 2

and

x0 =

8
>><

>>:

�
b0 b−1

�
if N = 1

 
b0 � 0

b0 w0 + c0 � 0

!

if N = 2

so that it follows from Theorem 2 and Corollary 3 that

k P0
T(∇2

�;c; � �) ( AT)−1B−1 =

0

BBBBBBBB@

c0w0 � 0 − a0
� 0

x0
T(A 0

T)−1

0
c0w0

� 0

0

0 −x0

� 0

� 0(A 0
T)−1

1

CCCCCCCCA

+ O(� 2)

thus its inverse is
0

BBBBBBBBB@

1
c0w0 � 0

1
c20w2

0 � 0

�
a0 − x0

T(� 0)−1x0

�
− 1
c0w0 � 0

x0
T(� 0)−1

0
� 0

c0w0

0

0
1

c0w0

A 0
T(� 0)−1x0 A 0

T(� 0)−1

1

CCCCCCCCCA

+ O(� 2) :
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From this stems that 1
k BAT (∇2

�;c; � �) −1 A equals
0

BBBBBBBBB@

− 1
c0w0

− 1
c20w2

0 � 2
0

�
a0 − x0

T(� 0)−1x0

�
− 1
c0w0 � 0

x0
T(� 0)−1A 0B−1

0 − 1
c0w0

0

0 − 1
c0w0� 0

A 0
T(� 0)−1x0 A 0

T(� 0)−1A 0B−1

1

CCCCCCCCCA

+ O(� 2) :

In particular, on � 0,
∇2

k;�; M H =
0

BBBBBBBBB@

0 −c +
1

c0w0

0

−c +
1

c0w0

1
c20w2

0 � 2
0

�
a0 − x0

T(� 0)−1x0

� 1
c0w0 � 0

x0
T(� 0)−1A 0B−1

0
1

c0w0� 0

B−1A 0
T(� 0)−1x0 −cB−1 − B−1A 0

T(� 0)−1A 0B−1

1

CCCCCCCCCA

;

W =

0

BBBBBBBBB@

c− 1
c0w0

− 1
c20w2

0 � 2
0

�
a0 − x0

T(� 0)−1x0

�
− 1
c0w0 � 0

x0
T(� 0)−1A 0B−1

0 c− 1
c0w0

0

0 − 1
c0w0� 0

A 0
T(� 0)−1x0 cI N + A 0

T(� 0)−1A 0B−1

1

CCCCCCCCCA

:

Translating, by identi�cation, the foregoing computations into the notation of Corol-
lary 5 yields the following result.

Theorem 5. Under the assumptions of Theorem 4, let us still denote by H and W their
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extensions to � 0. Then at any point (k0; 0; U 0) of � 0, we have17

@2
� H = k4

0(@kc0)2 a0 + k2
0 ∇U c0T (∇2

U H(U 0; 0) + c0B−1)−1∇U c0

∇2
k;�; M H =

0

BBBBBB@

0 −c0 − k0@kc0 0
−c0 − k0@kc0 @2

� H −k0 ∇U c0T

0 −k0 ∇U c0 ∇2
U H(U 0; 0)

1

CCCCCCA

W =

0

BBBBBB@

c0 + k0@kc0 −@2
� H k0 ∇U c0T

0 c0 + k0@kc0 0

0 k0 B∇U c0 −B∇2
U H(U 0; 0)

1

CCCCCCA

where a0 is as in Theorem 2

a0 = k0 @2
� �( � 0; c0; � 0) :

In particular, at any (k0; 0; U 0) of � 0, denoting vg = c0 + k0@kc0(k0; U 0), we have

eP−1
0 W eP0 =

0

B@

vg ea0 0
0 vg 0

0 0 −B ∇2
U H(U 0; 0)

1

CA

with

ea0 := −k4
0(@kc0)2 a0 − k2

0 ∇U c0T (∇2
U H(U 0; 0) + c0B−1)−1∇U c0

+ k2
0 ∇U c0T (∇2

U H(U 0; 0) + vgB−1)−1∇U c0

eP0 :=

0

B@

1 0 −k0 ∇U c0T(∇2
U H(U 0; 0) + vgB−1)−1B−1

0 1 0

0 k0 (∇2
U H(U 0; 0) + vgB−1)−1∇U c0 I N

1

CA :

As already announced, in generalea0 is not zero andW possesses a Jordan block
associated withvg. In particular, in Appendix A we check that no vanishing occurs for
the classical KdV equation.

Now we turn to the soliton limit. For concision’s sake we �rst introduce

� s =

8
>><

>>:

�
2cs b−2

�
if N = 1

 
2cs � 2

s 2cs � s ws

2cs � s ws 2cs w2
s + � 2

s

!

if N = 2

17The left-hand side being evaluated at (k0; 0; U 0) and the right-hand side at (k0; U 0).
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and

ys =

8
>><

>>:

�
(S−1W s) ·Os S−1V s

�
if N = 1

 
(S−1T s) ·Os S−1V s

(S−1W s) ·Os S−1V s

!

if N = 2

so that it follows from Theorem 2 and Corollary 3 that
0

@
(%ln %)2 0

0 I N +1

1

A k Ps
T(∇2

�;c; � �) ( AT)−1B−1

= −

0

B@

−Ξs
� hsQ(Y s) �

Ξs
hs −hsY s

TB−1

@2
cM 0 0

Ξs
�

�
ys + � s(A s

T)−1Y s
�

0 � s(A s
T)−1

1

CA + O
�

1
(ln %)

�

and its inverse is
0

BB@

0 − 1
@2

c M
0

− Ξs
� hs

Ξ2
s

� 2@2
c M

�
Q(Y s) + Y s

TB−1A s
T(� s)−1ys

�
−Ξs

� Y s
TB−1A s

T(� s)−1

0 Ξs
� @2

c M

�
Y s + A s

T(� s)−1ys
�

−A s
T(� s)−1

1

CCA

+O
�

1
(ln %)

�
:

From this stems that 1
k BAT (∇2

�;c; � �) −1 A equals

−

0

B@

0 0 0
Ξ2

s
� 2 Y s

TB−1A s
T(� s)−1A sB−1Y s 0 Ξs

� Y s
TB−1A s

T(� s)−1A sB−1

Ξs
� A s

T(� s)−1A sB−1Y s 0 A s
T(� s)−1A sB−1

1

CA + O
�

1
(ln %)

�
:

In particular, on � s,

∇2
k;�; M H =

0

B@

Ξ2
s

� 2 Y s
TB−1A s

T(� s)−1A sB−1Y s −c Ξs
� Y s

TB−1A s
T(� s)−1A sB−1

−c 0 0

Ξs
� B−1A s

T(� s)−1A sB−1Y s 0 −cB−1 + B−1A s
T(� s)−1A sB−1

1

CA

W =

0

B@

c 0 0
−Ξ2

s
� 2 Y s

TB−1A s
T(� s)−1A sB−1Y s c −Ξs

� Y s
TB−1A s

T(� s)−1A sB−1

−Ξs
� A s

T(� s)−1A sB−1Y s 0 c I N − A s
T(� s)−1A sB−1

1

CA :

Translating again, by identi�cation, into the notation of Corollary 5 yields the following
result.
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Theorem 6. Under the assumptions of Theorem 4, let us still denote by H and W their
extensions to � s. Then for any (cs; U s) of � , we have18

∇2
k;�; M H =

0

BBBBBB@

∇U MT(∇2
U H(U s; 0) + csB−1)−1∇U M −cs ∇U MT

−cs 0 0

∇U M 0 ∇2
U H(U s; 0)

1

CCCCCCA

W =

0

BBBBBB@

cs 0 0

−∇U MT(∇2
U H(U s; 0) + csB−1)−1∇U M cs −∇U MT

−B∇U M 0 −B∇2
U H(U s; 0)

1

CCCCCCA

thus

eP−1
s W ePs =

 
csI 2 0

0 −B ∇2
U H(U s; 0)

!

with

ePs :=

0

B@

1 0 0
0 1 ∇U MT(∇2

U H(U s; 0) + csB−1)−1B−1

−(∇2
U H(U s; 0) + csB−1)−1∇U M 0 I N

1

CA :

Remark 14. In both limits, the 2 × 2 principal block of ∇2H has negative determinant
hence signature (1; 1), and therefore∇2H is neither positive de�nite nor negative de�nite
in either regime.

5 Asymptotics of the modulation eigen�elds
Since limiting characteristic matrices exhibit double roots, we need to perform a higher-
order asymptotic analysis so as to determine the hyperbolic nature of modulation systems
not at the limit of interest but near the distinguished limit. We undertake this task now.

5.1 Small amplitude regime
In the harmonic regime, theN eigenvalues arising from those of−B∇2

U H(U 0; 0) may be
analyzed by standard spectral perturbation analysis. We only need to blow up the two
eigenvalues nearvg and we shall do it by inverting and scalingW−vgI N +2 so as to reduce
the problem to the spectral perturbation of simple eigenvalues.

18The left-hand side being evaluated at (0; @cM(cs; U s); U s) and the right-hand side at (cs; U s).
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The scaling process will reveal the prominent role played by some of the higher-order
correctors not made explicit in Theorem 2. With this in mind, note that the proof of
Theorem 2, in [BGMR20], also gives that under the assumptions of Theorem 2,∇3

�;c; � �
possesses a limit with convergence rateO(� ) when � → 0. This implies that � pos-
sesses as a function of (�; c; � ) a C3 extension to the limit � = 0 with convergence rate
O(� ). In turn this implies, under the assumptions of Theorem 3, that H as a function of
(k; �; M ) possesses aC3 extension to � 0, with convergence rateO(� ). Then proceeding
as in Subsection 4.2, we deduce that

@2
k H(k0; �; U 0) = @3

kk� H(k0; 0; U 0) � + O(� 3) ;
@k∇M H(k0; �; U 0) = @2

k� ∇M H(k0; 0; U 0) � + O(� 3) ;

with

@3
kk� H(k0; 0; U 0) = −@2

k (k c0)(k0; U 0) = −2@kc0(k0; U 0) − k0 @2
k c0(k0; U 0) ;

@2
k� ∇M H(k0; 0; U 0) = −@k∇U (k c0)(k0; U 0) = −∇U c0(k0; U 0) − k0 @k∇U c0(k0; U 0) :

As a consequence, with notation from Theorem 5, we have

eP−1
0 W(k0; �; U 0) eP0 =

0

B@

vg + O(� 2) ea0 + O(� 2) O(� 2)
−@3

kk� H(k0; 0; U 0) � + O(� 3) vg + O(� 2) −@2
k� ∇M H(k0; 0; U 0)

T � + O(� 3)

O(� 2) O(� 2) −B ∇2
U H(U 0; 0) + O(� 2)

1

CA

so that whenea0 @2
k� ∇M H(k0; 0; U 0) 6= 0

1√
�

0

BB@

1 0 0
0 1√

� 0

0 0 I N

1

CCA
eP−1
0 [W(k0; �; U 0) − vg I N +2] eP0

0

BB@

1 0 0
0

√
� 0

0 0 I N

1

CCA

=

 
I 2 0

0 1√
� I N

! 2

64

0

B@

0 ea0 0
−@3

kk� H(k0; 0; U 0) 0 −@2
k� ∇M H(k0; 0; U 0)

T

0 0 −B ∇2
U H(U 0; 0) − vgI N

1

CA + O(� )

3

75

is invertible (provided that � is su�ciently small) and its inverse is
0

BB@

0 − 1
@3

kk� H(k0;0;U 0)
0

1
ea0

0 0

0 0 0

1

CCA + O(� ) :

At last we may apply elementary spectral perturbation theory to the latter matrix to
study its two simple eigenvalues near±1=

p
−ea0@3

kk� H(k0; 0; U 0) (where here
√

· denotes
any determination of the square root function). This leads to the following result.
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Theorem 7. Under the assumptions of Theorem 4, let us still denote by H its extension
to � 0 and consider (k0; 0; U 0) ∈ � 0, with associated linear group velocity

vg(k0; U 0) = −@2
k� H(k0; 0; U 0) = c0(k0; U 0) + k0@kc0(k0; U 0) :

Then in the small amplitude regime, the spectrum of the Whitham matrix W(k0; �; U 0)
contains

1. two eigenvalues near vg, that expand as

vg ±
p

� � MI + O(� )

(where here
√

· denotes some determination of the square root function), with cor-
responding eigenvectors

0

BB@

1 + O(
√

� )
∓@3

kk� H(k0;0;U 0)√
∆MI

√
� + O(� )

O(
√

� )

1

CCA ;

provided that the modulational-instability index � MI (k0; U 0), given by19

� MI :=
�
− k5

0(@kc0)2 @2
� �( � 0; c0; � 0) − k2

0 ∇U c0T (∇2
U H(U 0; 0) + c0B−1)−1∇U c0

+ k2
0 ∇U c0T (∇2

U H(U 0; 0) + vgB−1)−1∇U c0
�

×
�
2@kc0 + k0 @2

k c0
�

=
�

@2
� H − (@� ∇M H)T(∇2

M H − (@2
k� H) B−1)−1@� ∇M H

�
× @3

kk� H ;

is not zero ;

2. and N eigenvalues near the eigenvalues of the dispersionless characteristic matrix
−B ∇2

U H(U 0; 0), that expand as

zj + O(� ) ; j ∈ {1; N }

with associated eigenvectors

0

BB@

−k0 ∇U c0T(∇2
U H(U 0; 0) + vgB−1)−1B−1r j + O(� )

O(� )

r j + O(� )

1

CCA ; j ∈ {1; N }

where zj , j ∈ {1; N }, are the eigenvalues of −B∇2
U H(U 0; 0), with corresponding

eigenvectors, r j , j ∈ {1; N }, provided that these N eigenvalues are distinct.

19With evaluation either at ( k0; U 0) or at ( k0; 0; U 0), depending on terms.
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Moreover all the bounds are locally uniform with respect to (k0; U 0).

Note that the existence of an expansion into powers of
√

� of the eigenvalues of anO(� )
perturbation of a matrix possessing a double root from which they emerge is consistent
with the general | worst-case | algebraicity theory for the spectrum of matrices.

Remark 15. Instead of using � MI , a simpli�ed criterion on @2
� H × @3

kk� H = @� ! × @2
k !

is sometimes incorrectly invoked. This is based on the deceptive guess that relevant
conclusions may be derived from the consideration of the (arti�cially uncoupled) 2× 2
block of the Whitham matrix concerning the wavenumber and the amplitude (see for
instance [Whi99, p.490]). The reader is also referred to Remark A.i for a more concrete
discussion of the latter.

Remark 16. We recall that it was proved in [BGNR14] that the failure of weak hyperbol-
icity of the modulation system does imply a slow side-band20 instability of the background
periodic wave, hence the use of the term modulational instability here. It follows from
our analysis that such an instability occurs near the harmonic limit when the dispersion-
less system fails to be weakly hyperbolic or whensign(w0) � MI is negative - recall from
Corollary 4 and Remark 12 that the sign ofw0 dictates the one of� in the harmonic limit.
For this reason, given its practical importance, we make the latter sign more explicit in
Appendix A.

5.2 Small wavenumber regime
As in the harmonic regime, theN eigenvalues arising from those of−B∇2

U H(U s; 0) may
be analyzed by standard spectral perturbation analysis. We only need to blow up the two
eigenvalues nearc and we shall do it by inverting and scalingW− cI N +2.

To do so we �rst observe that, sinceS = ABAT and Ds = Ps
TSPs, we have

W− cI N +2 = ( Ps
TA)−1

�
k Ps

T(∇2
�;c; � �) PsD−1

s
� −1 Ps

TA

so that it is equivalent to study two blowing-up eigenvalues ofk Ps
T(∇2

�;c; � �) PsD−1
s .

Now for concision’s sake we introduce

D s =

8
>><

>>:

�
b−1

�
if N = 1

 
0 � s

� s ws

!

if N = 2

and

xs =

8
>><

>>:

�
bs b−1

�
if N = 1

 
bs � s

bs ws + cs � s

!

if N = 2
:

20That is, with small spectral parameter and small Floquet exponent.
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It follows from Theorem 2 and Corollary 3 that

�
� s

Ps
T(∇2

�;c; � �) PsD−1
s

=

0

B@

−csws b−1 ln(%) hs
1+%
%2 + as ln(%) xs

TD−1
s ln(%)

0 −csws b−1 ln(%) 0

0 xs ln(%) � s D−1
s ln(%)

1

CA +
�
� s

Ps
TOsPsD−1

s + O (%(ln %))

with

Ps
TOsPsD−1

s =

0

B@

∗ ∗ ∗
Ξs
� @2

cM(cs; U s) ∗ ys
TD−1

s

∗ ∗ ∗

1

CA

so that

%√
1 + %

0

BB@

1 0 0
0

√
1+%
% 0

0 0 I N

1

CCA
�
� s

Ps
T(∇2

�;c; � �) PsD−1
s

0

BB@

1 0 0
0 %√

1+% 0

0 0 I N

1

CCA

=

0

B@

0 hs 0
Ξs
� @2

cM(cs; U s) 0 ys
TD−1

s

0 0 0

1

CA + O (%(ln %)) :

To the latter matrix we may apply elementary spectral perturbation analysis to study
the two simple eigenvalues arising from±

p
hs � s @2

cM=� (where here
√

· denotes any
determination of the square root function).

Theorem 8. Under the assumptions of Theorem 4, consider (cs; U s) ∈ � such that
@2

cM(cs; U s) 6= 0 . Then in the large period regime, the spectrum of the Whitham ma-
trix W(k; @2

cM(cs; U s); U s) is given by

1. two eigenvalues expanding as21

cs ±
%ln

�
1
%

� √
�

p
hs � s @2

cM(cs; U s); U s)
+ O(%2 ln(%))

(where here
√

· denotes some determination of the square root function), with cor-

21We recall that k ∼ −�= (� s ln(%)) in the solitary wave limit.
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responding eigenvectors22

(Ps
T A)−1

0

BBB@

1 + O(%ln(%))

±%
q

Ξs @2
c M(cs ;U s );U s )

hs � + O(%2 ln(%))

O(%ln(%))

1

CCCA
=

0

BB@

−k + O(%)
Q(U s − M )=k + O(%ln(%))

U s − M + O(%ln(%))

1

CCA

2. and N eigenvalues expanding as

zj + O(k) ; j ∈ {1; N }

with associate eigenvectors
0

BB@

O(k)
∇U MT(∇2

U H(U 0; 0) + csB−1)−1B−1r j + O(k)

r j + O(k)

1

CCA ; j ∈ {1; N }

where zj , j ∈ {1; N }, are the distinct and real eigenvalues of −B∇2
U H(U s; 0), with

corresponding eigenvectors, r j , j ∈ {1; N }.

Moreover all the bounds are locally uniform with respect to (cs; U s).

Remark 17. Though diagonilizability of the limiting modulation systems has little direct
impact on the hyperbolicity of modulation systems near the limit, in the reverse direction
the expansions derived in Theorems 7 and 8 shed some light on the asymmetry between
the harmonic and the soliton limits in terms of diagonalizability of the asymptotic sys-
tems. Indeed, in the latter limit, the convergence of the eigenvalues towards the double
root occurs exponentially faster | as %ln %| than the convergence of eigenvectors, which
converge as 1=(ln %)2 and this may be proved to implyper se persistence of diagonaliz-
ability at the limit. In contrast, in the former limit the perturbations of eigenvectors and
eigenvalues are of the same order | namely� | leaving room for a limiting Jordan block.

Remark 18. The eigenvectors associated with the eigenvalues going to cs tend to align
with 0

@
−1

Q(U s − M )=k2
(U s − M )=k

1

A =

 
−1

Q( Ξs
� Y s) + O(k2)

Ξs
� Y s + O(k2)

!

;

22We recall that

(Ps
T A)−1 =

0

BBBBBB@

−k 0 0

Q(U s − M )=k −1=k (U s − M )T A −1
s =k

U s − M 0 B A −1
s

1

CCCCCCA
=

0

BBB@

−k 0 0
O(k) −1=k O(1)

O(k) 0 O(1)

1

CCCA
:
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which is of course in the limit an eigenvector of the limiting matrix

W =

0

B@

cs 0 0
−Ξ2

s
� 2 Y s

TB−1A s
T(� s)−1A sB−1Y s cs −Ξs

� Y s
TB−1A s

T(� s)−1A sB−1

−Ξs
� A s

T(� s)−1A sB−1Y s 0 cs I N − A s
T(� s)−1A sB−1

1

CA ;

but not the ’natural’ one 0

@
0
1
0

1

A :

Appendix

A Explicit formula for the modulational-instability index
The goal of this section is to make explicit bothea0 and � MI that are involved in the
hyperbolicity of the Whitham system near or at the harmonic limit.

This requires the extraction from [BGMR20] of an explicit value for the coe�cienta0
in Theorem 2 (denoted� 0 in [BGMR20]). First we recall from [BGMR20] that

a0 := − 1
3

@3
vW(v0)

(@2
vW(v0))2

@vY 0 + 2 @zY 0

Y 0
+

2
@2

vW(v0)

1
4

@2
vY

0 + @2
zY

0 − @2
wzY

0

Y 0

where

Y (v; w; z) :=

s
2� (v)

R(v; w; z)
;

R(v; w; z) :=
Z 1

0

Z 1

0

t@2
vW(w + t(z − w) + ts(v − z)) dsdt :

Here we omit to specify the dependence ofW, R and Y on parameters (c0; � 0) since
they are held �xed along the computation, and the exponent0 denotes that functions of
(v; w; z) are evaluated at (v0; v0; v0).

First we recall from [BGMR20, Appendix B] that R is a symmetric function and we
observe that

R0 =
1
2

@2
vW(v0) ; @vR

0 =
1
6

@3
vW(v0) ;

@2
vR

0 =
1
12

@4
vW(v0) ; @2

wzR
0 =

1
24

@4
vW(v0) :

Moreover direct computations yield

@vY 0

Y 0
=

1
2

� ′(v0)
� (v0)

− 1
2

@vR0

R0
;

@zY 0

Y 0
= −1

2
@vR0

R0
;

@vY 0 + 2 @zY 0

Y 0
=

1
2

� ′(v0)
� (v0)

− 3
2

@vR0

R0
=

1
2

� ′(v0)
� (v0)

− 1
2

@3
vW(v0)

@2
vW(v0)

;

53



and

@2
vY

0

Y 0
=

�
@vY 0

Y 0

� 2

+
1
2

 
� ′′(v0)
� (v0)

−
�

� ′(v0)
� (v0)

� 2
!

− 1
2

 
@2

vR
0

R0
−

�
@vR0

R0

� 2
!

=
1
2

 
� ′′(v0)
� (v0)

− 1
2

�
� ′(v0)
� (v0)

� 2
!

− 1
2

� ′(v0)
� (v0)

@vR0

R0
− 1

2

 
@2

vR
0

R0
− 3

2

�
@vR0

R0

� 2
!

;

@2
zY

0

Y 0
= −1

2

 
@2

vR
0

R0
− 3

2

�
@vR0

R0

� 2
!

;

@2
wzY

0

Y 0
= −1

2

 
@2

wzR
0

R0
− 3

2

�
@vR0

R0

� 2
!

= −1
2

 
1
2

@2
vR

0

R0
− 3

2

�
@vR0

R0

� 2
!

;

so that
1
4

@2
vY

0 + @2
zY

0 − @2
wzY

0

Y 0
=

1
8

 
� ′′(v0)
� (v0)

− 1
2

�
� ′(v0)
� (v0)

� 2
!

− 1
8

� ′(v0)
� (v0)

@vR0

R0
− 3

8

 
@2

vR
0

R0
− 1

2

�
@vR0

R0

� 2
!

=
1
8

 
� ′′(v0)
� (v0)

− 1
2

�
� ′(v0)
� (v0)

� 2
!

− 1
24

� ′(v0)
� (v0)

@3
vW(v0)

@2
vW(v0)

− 1
16

 
@4

vW(v0)
@2

vW(v0)
− 1

3

�
@3

vW(v0)
@2

vW(v0)

� 2
!

thus
@2

vW(v0) a0 =

1
4

 
� ′′(v0)
� (v0)

− 1
2

�
� ′(v0)
� (v0)

� 2
!

− 1
4

� ′(v0)
� (v0)

@3
vW(v0)

@2
vW(v0)

− 1
8

@4
vW(v0)

@2
vW(v0)

+
5
24

�
@3

vW(v0)
@2

vW(v0)

� 2

:

To go further with computations we �nd it convenient to separate the scalar and
system case.

A.1 The scalar case

In the scalar case, note that the computations in the proof of Corollary 5 provide

@2
vW(v0) = −f ′′(v0) −

c0(k0; v0)
b

= (2 � )2 k2
0 � (v0)

b @2vH(v0; 0) + c0(k0; v0) = −b @2vW(v0)
b @2vH(v0; 0) + vg(k0; v0) = −3b @2vW(v0)
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and observe that when‘ ≥ 3, @‘
vW(v0) = −f (‘ )(v0). From this one readily derives

k0 @kc0(k0; v0) = −2b @2vW(v0) ;
k0 (−2@kc0(k0; v0) − k0@2

k c0(k0; v0)) = 6 b @2vW(v0) ;

@v0c0(k0; v0) = b @3vW(v0) − b
� ′(v0)
� (v0)

@2
vW(v0) ;

so that
ea0

b2k2
0 @2

vW(v0)
= −4@2

vW(v0) a0 +
2
3

�
@3

vW(v0)
@2

vW(v0)
− � ′(v0)

� (v0)

� 2

= −

 
� ′′(v0)
� (v0)

− 1
2

�
� ′(v0)
� (v0)

� 2
!

+
� ′(v0)
� (v0)

@3
vW(v0)

@2
vW(v0)

+
1
2

@4
vW(v0)

@2
vW(v0)

− 5
6

�
@3

vW(v0)
@2

vW(v0)

� 2

= − � ′′(v0)
� (v0)

+
5
6

�
� ′(v0)
� (v0)

� 2

+
1
3

� ′(v0)
� (v0)

f ′′′(v0)
(2� )2 k2

0 � (v0)
−1

6

�
f ′′′(v0)

(2� )2 k2
0 � (v0)

� 2

+
1
2

f ′′′′(v0)
(2� )2 k2

0 � (v0)
:

From the foregoing computations we also derive that

� MI = ea0
�
2@kc0 + k0 @2

k c0
�

= 6 b3 k0 (@2
vW(v0))2

(58)

×

"
� ′′(v0)
� (v0)

− 5
6

�
� ′(v0)
� (v0)

� 2

− 1
3

� ′(v0)
� (v0)

f ′′′(v0)
(2� )2 k2

0 � (v0)
+

1
6

�
f ′′′(v0)

(2� )2 k2
0 � (v0)

� 2

− 1
2

f ′′′′(v0)
(2� )2 k2

0 � (v0)

#

:

Recall from Proposition 2 that in the scalar case the sign of� is given by the sign ofb
so that we are interested in the sign ofb� MI . We stress moreover that this sign may be
determined by considering a second-order polynomial in the unknownk2

0, that varies in
(0;∞), with coe�cients depending on v0.

We leave this general discussion to the reader and focus now on the most classical case
when � is constant. To begin, note that for the ’genuine’ Korteweg-de Vries equation,f
is cubic and � is constant so that both−ea0 and b� MI are positive. Likewise, when� is
constant, we have

• when either (f ′′′(v0) 6= 0 and f ′′′′(v0) = 0) or f ′′′′(v0) < 0, −ea0 and b� MI are
positive;

• when f ′′′(v0) = 0 and f ′′′′(v0) > 0, −ea0 and b� MI are negative;

• when f ′′′(v0) 6= 0 and f ′′′′(v0) > 0, the common sign of−ea0 and b� MI depends on
the harmonic wavenumberk0, modulational instability occurring for wavenumbers
k0 larger than the critical wavenumber

kc(v0) :=
1√
3

|f ′′′(v0)|
2�

p
� (v0) f ′′′′(v0)

:
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It is worth pointing out that the general case when� is arbitrary is richer and that there
are situations when two critical wavenumbers appear in the analysis.

Remark A.i. For comparison, let us compute the incorrect index by extrapolating [Whi99,
p.490]

b @� ! × @2
k ! = b @2� H × @3

kk� H

= 6 b4 k0 (@2
vW(v0))2

 

−
ea0

b2k2
0 @2

vW(v0)
− 1

3

�
f ′′′(v0)

@2
vW(v0)

+
� ′(v0)
� (v0)

� 2
!

= 6 b4 k0 (@2
vW(v0))2

×

"
� ′′(v0)
� (v0)

− 7
6

�
� ′(v0)
� (v0)

� 2

− � ′(v0)
� (v0)

f ′′′(v0)
(2� )2 k2

0 � (v0)
− 1

6

�
f ′′′(v0)

(2� )2 k2
0 � (v0)

� 2

− 1
2

f ′′′′(v0)
(2� )2 k2

0 � (v0)

#

:

Note that even for the ’genuine’ Korteweg-de Vries equation this predicts deceptively
instability. More generally, when � is constant, the associated wrong criterion predicts
instability when one of the following conditions is satis�ed

• (f ′′′(v0) 6= 0 and f ′′′′(v0) = 0) or f ′′′′(v0) > 0;

• f ′′′′(v0) < 0 and the wavenumberk0 is smaller than

1√
3

|f ′′′(v0)|
2�

p
� (v0) |f ′′′′(v0)|

:

This is in strong contrast with the correct conclusions drawn above.

A.2 The system case

As a preliminary to computations in the system case, we recall that

b � (v) g(v; c; � ) = −c v− b � ;

W(v; c; � ) = −f (v) − 1
2

� (v) (g(v; c; � 2))2 −
c
b

v g(v; c; � 2) − � · (v; g(v; c; � 2)) ;

so that

b � (v) @vg(v; c; � ) = −c− b � ′(v) g(v; c; � ) ;
b � (v) @2

v g(v; c; � ) = − b � ′′(v) g(v; c; � ) − 2b � ′(v) @vg(v; c; � ) ;
b � (v) @3

v g(v; c; � ) = − b � ′′′(v) g(v; c; � ) − 3b � ′′(v) @vg(v; c; � ) − 3b � ′(v) @2
v g(v; c; � ) ;
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and

@vW(v; c; � ) = −f ′(v) − 1
2

� ′(v) (g(v; c; � 2))2 −
c
b

g(v; c; � 2) − � 1 ;

@2
vW(v; c; � ) = −@2

vH((v; g(v; c; � 2)) ; 0) + � (v) (@vg(v; c; � 2))2 ;
@3

vW(v; c; � ) = −@3
vH((v; g(v; c; � 2)) ; 0) − 3 � ′′(v) g(v; c; � 2) @vg(v; c; � 2)

− 3� ′(v) (@vg(v; c; � 2))2 ;
@4

vW(v; c; � ) = −@4
vH((v; g(v; c; � 2)) ; 0) − 4 � ′′′(v) g(v; c; � 2) @vg(v; c; � 2)

− 6 � ′′(v) (@vg(v; c; � 2))2 − 3 � ′′(v) g(v; c; � 2) @2
v g(v; c; � 2)

− 6� ′(v) @vg(v; c; � 2) @2
v g(v; c; � 2) :

In particular, it follows recursively that for ‘ ≥ 2, @‘
vg(v; c; � 2) and @‘

vW(v; c; � ) may be
written as functions ofv, g(v; c; � 2) and @vg(v; c; � ), independently of � and c. Note that
it follows from Remark 13 that @2

vH(U 0; 0) < 0 yields modulational instability through
non hyperbolicity of the dispersionless system atU 0 so that from now on when discussing
signs of � MI we may assume without mention that@2

vH(U 0; 0) ≥ 0 hence@2
vW ≤ � (@vg)2.

We also observe, essentially as in the proof of Corollary 5, that

tr(B ∇2
U H((v; g(v; c; � )) ; 0) + c I N ) = −2b � (v) @vg(v; c; � 2) ;

det(B ∇2
U H((v; g(v; c; � )) ; 0) + c I N ) = b2 � (v) @2

vW(v; c; � ) :

Now we point out that c0(k0; U 0) is de�ned by

det(B ∇2
U H(U 0; 0) + c0(k0; U 0) I N ) = b2 � (v0) (2� )2 k2

0 � (v0)

more explicitly written as

(c0(k0; U 0))2+ c0(k0; U 0) tr(B ∇2
U H(U 0; 0))+det( B ∇2

U H(U 0; 0)) = b2 � (v0) (2� )2 k2
0 � (v0)

and that this de�nition makes sense if and only if

k2
0 ≥

det(B ∇2
U H(U 0; 0)) − 1

4
(tr(B ∇2

U H(U 0; 0)))2

b2 � (v0) (2� )2 � (v0)
= −

f ′′(v0) + 1
2
� ′′(v0) u2

0

(2� )2 � (v0)
:

Yet the latter prescribes a minimal value fork0 only if f ′′(v0) + 1
2
� ′′(v0) u2

0 < 0, that is,
only if the corresponding dispersionless system already fails to be hyperbolic. Moreover
when the inequality on k2

0 is strictly satis�ed there are actually two possible values for
c0(k0; U 0). This de�nes two branches forc0 and henceforth we follow one such branch.

By di�erentiating the relation de�ning c0 with respect to k we derive

@vg(v0) k0 @kc0(k0; U 0) = −b @2vW(v0) ;

@vg(v0) k2
0 @2

k c0(k0; U 0) = −b @2vW(v0) +
k2
0(@kc0(k0; U 0))2

b � (v0)
;

(−2@kc0(k0; U 0) − k0 @2
k c0(k0; U 0)) =

b @2vW (−@2
vW + 3 � (@vg)2)

k0 � (@vg)3
;
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(where again here and from now on we omit to mark dependencies onc and � on g and
W).

At this stage, we could di�erentiate with respect toU to compute∇U c0(k0; U 0) and
conclude as in the scalar case. Yet, instead we shall directly use the relatively explicit
formula derived in Subsection 4.3. The only missing piece to carry out this task is to
extract from [BGMR20] a formula for the coe�cient b0 from Theorem 2 (denoted� 0 in
[BGMR20]). With notation introduced above,

b0 := − 1
3

@3
vW(v0)

(@2
vW(v0))2

+
1

@2
vW(v0)

@vY 0

Y 0

= − 1
3

@3
vW(v0)

(@2
vW(v0))2

+
1

@2
vW(v0)

�
1
2

� ′(v0)
� (v0)

− 1
6

@3
vW(v0)

@2
vW(v0)

�

=
1
2

1
@2

vW(v0)

�
� ′(v0)
� (v0)

− @3
vW(v0)

@2
vW(v0)

�
:

Now with notation from Subsection 4.3

� −1
0 = − 1

2c0 � 4
0

�
2c0 w2

0 − � 2
0 −2c0 � 0 w0

−2c0 � 0 w0 2c0 � 2
0

�

− k2
0

c20 w2
0

x0
T� −1

0 x0 =
k2
0

2c30 w2
0

�
−b20 + 2c30

� 2
0

� 2
0

�

=
1
4
b2k2

0

@2
vW (@vg)2

 

−
�

� ′

�
@2

vW − @3
vW

� 2

+ ( @2
vW) � (@2

v g)2
!

thus at the harmonic limit

@2
� H =

k2
0

c20w2
0

�
a0 − x0

T(� 0)−1x0

�

=
1
4
b2k2

0

@2
vW (@vg)2

"  
� ′′

�
− 1

2

�
� ′

�

� 2
!

(@2
vW)2 − � ′

�
@3

vW @2
vW

− 1
2

@4
vW @2

vW +
5
6

�
@3

vW
� 2 −

�
� ′

�
@2

vW − @3
vW

� 2

+ ( @2
vW) � (@2

v g)2
#

=
1
4
b2k2

0

@2
vW (@vg)2

"

− 1
2

@4
vW @2

vW − 1
6

�
@3

vW
� 2 +

� ′

�
@3

vW @2
vW

+

 
� ′′

�
− 3

2

�
� ′

�

� 2
!

(@2
vW)2 + ( @2

vW) � (@2
v g)2

#

:

To proceed we now consider at the harmonic limit

− (@� ∇M H)T(∇2
M H − (@2

k� H) B−1)−1@� ∇M H

=
k2
0

c20w2
0

x0
T(� 0)−1A 0B−1

�
B−1A 0

T(� 0)−1A 0B−1 +
1

c0w0

B−1

� −1

B−1A 0
T(� 0)−1x0
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and observe that on one hand

A 0B−1 =
�

� 0 0
w0

2
1
b

�

B−1A 0
T(� 0)−1A 0B−1 = − 1

2c0 � 2
0

�
c0 w2

0

2
− � 2

0 − c0 w0

b
− c0 w0

b
2c0
b2

�

B−1A 0
T(� 0)−1A 0B−1 +

1
c0w0

B−1 =
1

2c0 � 2
0

 
− c0 w2

0

2
+ � 2

0
c0 w0

b + 2� 2
0

bw0

c0 w0

b + 2� 2
0

bw0
−2c0

b2

!

�
B−1A 0

T(� 0)−1A 0B−1 +
1

c0w0

B−1

� −1

=
b2c0w2

0

2� 2
0 + 3c0 w2

0

 
2c0
b2

c0 w0

b + 2� 2
0

bw0

c0 w0

b + 2� 2
0

bw0

c0 w2
0

2
− � 2

0

!

and that on the other hand

(� 0)−1x0 = − 1
2c0� 3

0

�
−b0� 2

0 − 2c20� 0w0

2c20� 0� 0

�

B−1A 0
T(� 0)−1x0 =

1
2c0� 2

0

�
b0� 2

0 + c20� 0w0

−2c20� 0
b

�
:

Thus

− (@� ∇M H)T(∇2
M H − (@2

k� H) B−1)−1@� ∇M H

=
b2k2

0

4c30� 4
0(2� 2

0 + 3c0 w2
0)

"
2c0
b2

(b0� 2
0 + c20� 0w0)2 −

4c20� 0
b

(b0� 2
0 + c20� 0w0)

�
c0 w0

b
+

2� 2
0

bw0

�

+
4c40� 2

0

b2

�
c0 w2

0

2
− � 2

0

� #

=
k2
0

2c20w0� 2
0(2� 2

0 + 3c0 w2
0)

"

b20�
2
0w0 − 4b0c0� 2

0 � 0 − 6c30�
2
0w0

#

=
1
4
b2k2

0 �
@vg(@2

vW)(@2
vW + 3 � (@vg)2)

"

@vg
�

� ′

�
@2

vW − @3
vW

� 2

− 2@2
v g @2vW

�
� ′

�
@2

vW − @3
vW

�
− 3@2

vW � @vg (@2
v g)2

#

=
1
4
b2k2

0 �
@vg(@2

vW)(@2
vW + 3 � (@vg)2)

"

@vg (@3
vW)2 + 2@3

vW @2
vW

�
− � ′

�
@vg + @2

v g
�

+ ( @2
vW)2

 �
� ′

�

� 2

@vg− 2
� ′

�
@2

v g

!

− 3@2
vW � @vg (@2

v g)2
#

:
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Finally

−ea0 = @2
� H − (@� ∇M H)T(∇2

M H − (@2
k� H) B−1)−1@� ∇M H

=
1
4
b2k2

0

(@vg)2(@2
vW)(@2

vW + 3 � (@vg)2)

"

� (@vg)2 (@3
vW)2

+ 2@3
vW @2

vW � (@vg)
�
− � ′

�
@vg + @2

v g
�

+ ( @2
vW)2�@vg

 �
� ′

�

� 2

@vg− 2
� ′

�
@2

v g

!

− 3@2
vW � 2 (@vg)2 (@2

v g)2

+ ( @2
vW + 3 � (@vg)2)

 

− 1
2

@4
vW @2

vW − 1
6

�
@3

vW
� 2 +

� ′

�
@3

vW @2
vW

+

 
� ′′

�
− 3

2

�
� ′

�

� 2
!

(@2
vW)2 + ( @2

vW) � (@2
v g)2

!#

=
1
4
b2k2

0

(@vg)2(@2
vW)(@2

vW + 3 � (@vg)2)

"

− 1
2

@4
vW @2

vW(@2
vW + 3 � (@vg)2)

− 1
6

�
@3

vW
� 2 (@2

vW − 3� (@vg)2) + @3
vW @2

vW
�

� ′

�
(@2

vW + � (@vg)2) + 2 � (@vg)@2
v g

�

+

 
� ′′

�
− 3

2

�
� ′

�

� 2
!

(@2
vW)3

+ ( @2
vW)2

 

� (@vg)2
 

3
� ′′

�
− 7

2

�
� ′

�

� 2
!

− 2
� ′

�
�@vg @2v g + � (@2

v g)2
! #

and

4� (@vg)5

b3k0

@2
vW + 3 � (@vg)2

−@2
vW + 3 � (@vg)2

× � MI

= −1
2

@4
vW @2

vW(@2
vW + 3 � (@vg)2)

− 1
6

�
@3

vW
� 2 (@2

vW − 3� (@vg)2) + @3
vW @2

vW
�

� ′

�
(@2

vW + � (@vg)2) + 2 � (@vg)@2
v g

�

+

 
� ′′

�
− 3

2

�
� ′

�

� 2
!

(@2
vW)3

+ ( @2
vW)2

 

� (@vg)2
 

3
� ′′

�
− 7

2

�
� ′

�

� 2
!

− 2
� ′

�
�@vg @2v g + � (@2

v g)2
!

:

Recall that � is of the sign ofw0 = 2 @vg=bso that this is the sign of@vg � MI =b, hence
of the quantity written above, that matters here. We observe that in order to write this
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criterion directly in terms of (k0; U 0), one may use that

@2
vW(v0) = (2 � )2 k2

0 � (v0) ;

@vg(v0) = ± 1
p

� (v0)

q
@2

vH(U 0; 0) + (2 � )2 k2
0 � (v0)

with the sign choice corresponding to the choice of a branch forc0(k0; U 0) and that all
other quantities have already been expressed in terms ofU 0 and @vg(v0). Note however
that since @vg(v0), thus c0, is not a polynomial function of k0 the range of possibilities
is signi�cantly harder to analyze in terms of (k0; U 0) than in the scalar case. It may be
preferable instead to express the criterion in terms of (U 0; @vg(v0)).

Alternatively, since the general computations are somewhat tedious, from now on
we shall rather make the extra assumption, satis�ed by the most standard cases that�
is a�ne. This ensures that the expression to study is indeed a polynomial ink2

0 with
coe�cients depending onU 0. In this direction, note that in this case

� (@vg(v0))2 = f ′′(v0) + @2
vW(v0) ;

@2
v g(v0) = −2

� ′(v0)
� (v0)

@vg(v0) ;

@3
vW(v0) = −f ′′′(v0) − 3

� ′(v0)
� (v0)

� (v0)(@vg(v0))2 ;

@4
vW(v0) = −f ′′′′(v0) + 12

�
� ′(v0)
� (v0)

� 2

� (v0)(@vg(v0))2 :

Thus under the same assumption the range of admissible parameters is described by
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@2
vW ≥ −f ′′ and we have

4� (@vg)5

b3k0

4@2
vW + 3 f ′′

2@2
vW + 3 f ′′ × � MI

(59)

=

 
1
2

f ′′′′ − 6
�

� ′

�

� 2

(@2
vW + f ′′)

!

@2
vW(4@2

vW + 3 f ′′)

+
1
6

�
f ′′′ + 3

� ′

�
(@2

vW + f ′′)
� 2

(2@2
vW + 3 f ′′)

−
�

f ′′′ + 3
� ′

�
(@2

vW + f ′′)
�

@2
vW

�
� ′

�
(2@2

vW + f ′′) − 4
� ′

�
(@2

vW + f ′′)
�

+

 
� ′′

�
− 3

2

�
� ′

�

� 2
!

(@2
vW)3

+ ( @2
vW)2(@2

vW + f ′′)

 

3
� ′′

�
− 7

2

�
� ′

�

� 2

+ 4
� ′

�
� ′

�
+ 4

�
� ′

�

� 2
!

= ( @2
vW)3

 

−5
�

� ′

�

� 2

− 2
� ′

�
� ′

�
− 5

�
� ′

�

� 2

+ 4
� ′′

�

!

+ ( @2
vW)2

 

f ′′

 

−7
2

�
� ′

�

� 2

− 5
� ′

�
� ′

�
− 7

2

�
� ′

�

� 2

+ 3
� ′′

�

!

+ f ′′′
�

6
� ′

�
− 2

� ′

�

�
+ 2 f ′′′′

!

+ @2
vW

 

(f ′′)2
 

6
�

� ′

�

� 2

− 3
� ′

�
� ′

�

!

+ f ′′ f ′′′
�

9
� ′

�
− � ′

�

�
+

1
3

(f ′′′)2 +
3
2

f ′′ f ′′′′

!

+
1
2

f ′′
�

f ′′′ + 3
� ′

�
f ′′

� 2

:

Recall that @2
vW(v0) = � (v0) (2� )2k2

0 so that the latter expression is indeed a third-order
polynomial expression ink2

0 with coe�cients depending on v0, k2
0 being allowed to vary

in (max({0;−f ′′(v0)=(� (v0) (2� )2)});∞) and that this is negativity of the expression that
yields modulational instability.

Note that if one specializes to the cases arising from the hydrodynamic formulation of
a nonlinear Schr�odinger equation (see [BG13] for instance)

i @t  = −@2
x  + f ′(| |2)  ;

then � = Id and � is given by � (v) = 1 =(4v) so that the foregoing expression is reduced
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to v−2
0 times the second-order polynomial

(@2
vW)2

�
4v−2

0 f ′′ + 8v−1
0 f ′′′ + 2 f ′′′′�

+ @2
vW

�
9v−2

0 (f ′′)2 + 10v−1
0 f ′′ f ′′′ +

1
3

(f ′′′)2 +
3
2

f ′′ f ′′′′
�

+
1
2

f ′′ � f ′′′ + 3v−1
0 f ′′� 2 :

We remind the reader thatf ′′(v0) < 0 is already known to yield modulational instability
through non hyperbolicity of the dispersionless system. We observe furthermore that in
the case under consideration whenf ′′(v0) > 0, f ′′′(v0) ≥ 0 and f ′′′′(v0) ≥ 0 then any k0

is admissible and no modulational instability occurs. In particular for the hydrodynamic
formulations of cubic Schr�odinger equations, that is, whenf ′ is an a�ne function, mod-
ulational instability is completely decided by the sign off ′′(v0) independently ofk0, that
is, it is driven by the focusing/defocusing nature of the equation.

Going back to the general case (when� is arbitrary and � is a�ne), we stress, as in Re-
mark 5, the consistency of the foregoing computations with the Eulerian/mass Lagrangian
conjugation (see [BG13, BGNR14]). To be more explicit, we denote with subscriptsE
and L quantities corresponding to each formulation. First we observe thatbE = −1 and
� E = Id, whereas bL = 1 and � L ≡ 0. Moreover

f L (v) = v f E

�
1
v

�
; � L (v) =

1
v5

� E

�
1
v

�

and at the harmonic limit

(vL )0 =
1

(vE )0
; (kL )0 =

(kE )0
(vE )0

:

Our observation is that when going from mass Lagrangian to Eulerian formulations the
third-order polynomial is simply multiplied by ((vL )0)−11.

B About splitting of double roots
In the present section we give elementary results and address some warnings and caveats
concerning the perturbation of double characteristics. Our goal is to shed some light on
the asymptotics of modulation eigen�elds in the harmonic and soliton limits.

For our present purpose it it su�cient to consider a 2×2-toy model. Thus we introduce
an � -family of systems

(60)
�

@tA + v@xA + ( ea + �� ′) @xB = 0 ;
@tB + � � @xA + v@xB = 0 ;

for some real constants (v;ea; �; � ′) and the limiting system

(61)
�

@tA + v@xA + ea@xB = 0 ;
@tB + v@xB = 0 :
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System (61) is hyperbolic if and only ifea = 0. Note that in this case Systems (60) are
hyperbolic when� > 0 if and only if either � � ′ > 0 or (� = 0 and � ′ = 0). In the former
case, pairs of eigenvalues/eigenvectors may be chosen as

v ± �
√

� � ′ ;

 
1

±
q

�
� ′

!

:

We now turn to the case whenea 6= 0 so that System (61) fails to be hyperbolic. In this
case Systems (60) are hyperbolic when� > 0 is su�ciently small if and only if � ea > 0.
Under this condition, pairs of eigenvalues/eigenvectors may be chosen so as to expand as

v ±
√

� � ea + O(�
3
2 ) ;

 
1

±
q

� �
ea + O(� 3

2 )

!

when � → 0.
We would like to add a few comments on the case� ea > 0 and we enforce this condition

from now on. We �rst observe that System (61) leaves invariant the lineB = 0 and that
its restriction to this line reduces to@tA + v@xA = 0 hence is hyperbolic. Our second
observation is that one may obviously solve System (61) by �rst solving@tB + v@xB = 0
and then recoverA from B ; this leads to the fact that, for anys ∈ R, though System (61)
is ill-posed inH s(R) × H s(R), it is well-posed inH s+1(R) × H s(R). Our last observation
is that there are � -dependent change of variables that provides a form of System (60)
converging to an hyperbolic diagonal system. Yet these change of variables are singular
in one way or the other and our claim is that they lead to spurious conclusions.

We �rst illustrate this with a rather naive change of variables. For � > 0, let us set
( eA � ; B ) := (

√
�A; B ) and observe that System (60) takes the alternative form

(62)

(
@t eA � + v@x eA � + (

√
� ea + �

3
2 � ′) @xB = 0 ;

@tB +
√

� � @x eA � + v@xB = 0 :

This suggests as a limiting system

(63)
�

@t eA + v@x eA = 0 ;
@tB + v@xB = 0 :

Yet an inspection of initial data shows that if we were interested in solving System (60)
with ( A; B )(0; ·) = ( A(0); B (0)), then we are ending up solving (63) with (eA; B )(0; ·) =
(0; B (0)), hence essentially �

0 = 0 ;
@tB + v@xB = 0 :

In disguise we have simply multiplied the �rst equation of System (60) by
√

� so as to
drop the equation at the limit.
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There are more subtle ways to arrive at similarly deceptive systems. Let us examine
what happens if one insists in diagonalizing System (60) either exactly or at main order.
To do so, consider for� > 0,

(A+
� ; A−

� ) :=

 r
�

�
ea

A + B; −
r

�
�
ea

A + B

!

and observe that System (60) takes the alternative form

(64)

8
<

:
@tA+

� +
�

v +
√

� � ea + 1
2
�
3
2

q
�
ea � ′

�
@xA+

� + 1
2
�
3
2

q
�
ea � ′@xA−

� = 0 ;

@tA−
� +

�
v −

√
� � ea− 1

2
�
3
2

q
�
ea � ′

�
@xA−

� − 1
2
�
3
2

q
�
ea � ′@xA+

� = 0 :

This suggests as a limiting system

(65)
�

@tA+ + v@xA+ = 0 ;
@tA− + v@xA− = 0 :

Yet an inspection of initial data shows that this is really
�

@tB + v@xB = 0 ;
@tB + v@xB = 0 ;

in disguise.
We stress again that in contrast with what happens with the foregoing sets of variables,

Theorem 3 ensures that the set of variables (k; �; M ) does not su�er from an hidden
reduction of dimension.

C Symbolic index
C.1 Table of symbols

• A, 23

• �, c, � , � , 16

• � MI , 49

• H, � , f , � , B , b, Q, 14

• � 0, � s, 38

• M, 28

• P0, D0, � 0, w0, � 0, A 0,
Ps, Ds, � s, ws, � s, A s, 30

• W, g, 25

• S, 25

• � 0, x0, 43

• � s, ys, 45

• W, 25

• D s, xs, 50

• E, F , V 0, W 0, Z0, T 0,
V s, W s, Zs, T s, 28
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• Y 0, Y s, 32

• � , %, 27

• a0, b0, c0, � 0,
hs, as, bs, cs, Os, � s, 29

• q, 27

• � 0(c; � ), � s(c; � ), �, 26

• ePs, 47

• ea0, eP0, 45

• k, � , M , H, B, 11

• vg, c0, 40

C.2 Specialization to gKdV

To help the reader gain some slightly more concrete acquaintance with various general
symbols, we specialize here some of the general formulas to the case of the generalized
Korteweg{de Vries equation

@tv − @x (f ′(v)) + @3
x v = 0 :

In this case

H =
1
2

v2
x + f (v) ; � ≡ 1 ; B = b= 1 ; Q(v) =

1
2

v2 ;

W = −f (v) − c
v2

2
− � v ; M = 〈v〉 ; B =

0

@
0 1 0
1 0 0
0 0 1

1

A ;

� =
1
2

Z Ξ

0

�
v(� )2 − 〈v〉2

�
d� =

1
2

Z Ξ

0

(v(� ) − 〈v〉)2 d� ;

� =
Z Ξ

0

�
1
2

v2
x + f (v) + c

v2

2
+ � v + �

�
d� ;

M =
Z +∞

−∞

�
1
2

(vs
x (� ))2 + f (vs(� )) − f (vs) − f ′(vs)(vs(� ) − vs) + c

(vs(� ) − vs)2

2

�
d� ;

@cM =
1
2

Z +∞

−∞
(vs(� ) − vs)2 d� ;

H =
1
�

Z Ξ

0

�
1
2

v2
x + f (v)

�
d� ;

V i =

0

@
1

1
2
v2

i
vi

1

A ; W i =

0

@
0
vi
1

1

A ; Z i =

0

@
0
1
0

1

A ; E =

0

@
1
0
0

1

A ; F =

0

@
0
−1
0

1

A ;
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S =

0

@
0 −1 0
−1 0 0
0 0 1

1

A ; Di =

0

@
0 1 0
1 0 0
0 0 1

1

A ;

Pi =

0

@
1 − v2

i
2

−vi
0 −1 0
0 vi 1

1

A ; A =

0

B@

− 1
k 0 0

− 1
k
〈v〉2
2

k 〈v〉
− 1

k 〈v〉 0 1

1

CA ;

wi = 1 ; � i = 2ci ; x i = bi ; D i = 1 ;

Y 0 =
b0
4c0

; −B∇2
U H(v0; 0) = −f ′′(v0) ;

c0 = −f ′′(v0) − (2� )2 k2
0 ; vg = −f ′′(v0) − 3 (2� )2 k2

0 ;

ea0 = −1
6

(f ′′′(v0))2

(2� )2
+

1
2

f ′′′′(v0) k2
0 ; � MI = k0

�
(f ′′′(v0))2 − 3 (2� )2 f ′′′′(v0) k2

0

�
:
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