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Abstract. We develop a stability theory for two-dimensional periodic traveling waves of general
parabolic systems, possibly including conservation laws. In particular, we identify a diffusive spec-
tral stability assumption and prove that it implies nonlinear stability for variously-(non)localized
perturbations, including critically nonlocalized perturbations. Thus we extend the stability parts of
[JNRZ14] to two-dimensional patterns and of [MR24] to systems with conservation laws. In doing
so we need to bypass two kinds of low spectral regularity, explicitly conic-like singularities due to
multidimensionality and Jordan-block like singularities due to conservation laws.
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1. Introduction

We continue here the general programme, initiated in [MR24], aiming at a complete stability
theory for genuinely multi-dimensional periodic traveling waves of parabolic systems, extending to
the multidimensional context the comprehensive theory available for plane periodic waves [JNRZ14].

We carry out most of our present analysis in the two-dimensional context but discuss higher-
dimensional extensions in Appendix A. Namely we consider essentially

(1.1) W t “ ∆W ` ∇TGpWq ` fpWq ,

for the Rn-valued unknown W , Wpt,xq P Rn (with n P N‹), t denoting the time variable and
x P R2 the spatial variables. In (1.1), we identify elements of Rn with column vectors, the operator
∇T acts row-wise and ∆ is the scalar Laplacian. The flux function G : Rn Ñ M2,npRq and
the reaction rate f : Rn Ñ Rn are assumed to be smooth. Finally, we assume that the first r
components of f vanish identically, so that the first r equations of (1.1) are conservation laws.
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Our goal is to study the dynamics of (1.1) near one of its (uniformly) traveling solutions, that is
near a solution of the form

Wpt,xq “ Upx ´ t cq ,

where c P R2 is the wavespeed vector and U is the wave profile of the wave under consideration.
We restrict to two-dimensional periodic traveling waves, meaning that there exists a fixed basis
pX1,X2q of R2 such that the wave profile U is left invariant by translations in both the X1 and
X2 directions. Alternatively, letting pK1,K2q denote the dual basis of pX1,X2q, one may express
such traveling waves in the form

(1.2) Wpt,xq “ UpKTpx ´ t cqq “ UpKTx ` tΩq,

where K “
`

K1 K2

˘

P M2,2pRq is the matrix of wave vectors, Ω “ ´KTc is the time frequency

vector and the scaled wave profile U is left invariant by translations by the canonical basis of R2.
Throughout we identify waves by their mathematical structure but, to ease comparison with the
rest of the literature, we stress that they commonly receive more vivid names, planar periodic
waves being often designed as stripes or rolls whereas two-dimensional periodic waves include
cases designed as square, hexagon, herringbone, etc. patterns, depending on the geometric shape
of pX1,X2q. For a more thorough discussion on the existence of waves we simply refer to the
introductions of [MR24, RR].

Bloch symbols. The fact that waves are not isolated but form a smoothly parameterized family
plays a deep role in the organization of the dynamics. When we pick a single specific wave we shall
materialize it by underlining the various features of the specific wave, U, c, Ω, etc. To study its
stability it is expedient to move to an adapted co-moving frame

Wpt,xq “ W
´

t,KT px ´ t cq

¯

(1.3)

so that (1.1) is turned into

(1.4) Wt “ pK∇q
T

pK∇qW ` pK∇q
TGpWq ` pKTc ¨ ∇qW ` fpWq.

admitting U as a stationary Z2-periodic solution. Linearizing (1.4) about U yields the periodic-
coefficient equation pBt ´ LqV “ 0 with L given by

LV :“ pK∇q
T

pK∇qV ` pK∇q
T dGpUqpVq ` pKTc ¨ ∇qV ` d fpUqpVq .

The operator L is seen as acting on L2pR2;Cnq with domain H2pR2;Cnq. The spectral stability
of U is then expressed in terms of the spectrum of L.

As classical for periodic-coefficient operators the spectrum of L is more conveniently handled by
introducing a suitable integrable transform — the Floquet-Bloch transform — so as to study L
through its Bloch symbols Lξ, parametrized by Floquet exponents ξ P r´π, πs2. Each Lξ acts on
L2pr0, 1s2;Cnq – L2pR2{Z2;Cnq with domain H2

perpr0, 1s2;Cnq – H2pR2{Z2;Cnq through

LξV “ pKp∇ ` i ξqq
TKp∇ ` i ξqV ` pKp∇ ` i ξqq

T dGpUqpVq ` pKTc ¨ p∇ ` i ξqqV ` d fpUqpVq ,

thus has compact resolvents hence discrete spectrum, reduced to eigenvalues of finite multiplicity.
In particular, the following spectral decomposition holds

σpLq “
ď

ξPr´π,πs2

σpLξq .

We recall the associated minimal background in Subsection 2.1 and refer to [MR24, Appendix A]
for a more detailed treatment.
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Jordan block structure. The presence of conservation laws in (1.1) deeply affects the nature of
the spectrum of L0 compared to the situation dealt with in [MR24], essentially as the situation in
[JNRZ14] differs from the one in [JNRZ13a, JNRZ13b]. The generalized kernel of L0 is directly
related to the properties of periodic traveling waves near U that share the same lattice of periods.
In the absence of conservation laws, as in systems of [MR24], generically the set of nearby co-
periodic waves is reduced to U and its spatial translates and, accordingly, the generalized kernel of
L0 is reduced to its kernel and spanned by spatial derivatives of U, thus here two-dimensional and
spanned by B1U, B2U. In turn, the fact that the first r equations of (1.1) are conservation laws
directly implies that the kernel of the adjoint of L0 contains the functions constant equal to ej ,
j “ 1, ¨ ¨ ¨ , r (where pe1, ¨ ¨ ¨ , enq denotes the canonical basis of Rn). Since those are independent
and orthogonal to B1U and B2U, the generalized kernel of L0 must be of dimension at least r ` 2.

The following assumptions thus encode generic criticality (in the stable case).

(D1) The spectrum of L0 intersects iR only at λ “ 0, λ “ 0 being an eigenvalue of L0 of algebraic
multiplicity r ` 2.

(D2) For any ξ ‰ 0, σpLξq Ă tλ ; ℜpλq ă 0 u.

Under Condition (D1), one derives that, near U, periodic traveling waves of wavevector matrix
K take the form pU, cq “ pUK,Mp¨ `φq, cK,Mq, where φ P R2 and M P Rr with Mj “

ş

r0,1s2
ej ¨U.

In particular, pB1U, B2U, BM1U, ¨ ¨ ¨ , BMrUq span the generalized kernel of L0 with

L0pBMjUq “ ´pKTBMjc ¨ ∇qU .

Therefore, unless dM c vanishes, the generalized kernel of L0 contains nontrivial Jordan blocks (as
in [JNRZ14]). Before stating our main results we still need to explain how those Jordan blocks
affect the dynamics.

Space-modulated stability. In [JNRZ14] the main dynamical effect was the necessity of proving
stability in a space-modulated sense. Translated into our current multi-D framework this consists
in measuring in the classical definition of stability the proximity to U of both initial data and
solutions at later times by

inf
Φ invertible

}W ˝ Φ ´ U}X ` }∇pΦ ´ Idq}Y

where pX,Yq are some functional spaces (possibly different for initial data and the solution). This
is crucial when Φ ´ Id is not decaying with time but ∇pΦ ´ Idq is. For more informal insights we
refer to [Rod13, Rod15]. For comparison, note that naive stability requires control on }W ´ U}X
whereas orbital stability requires control on

inf
Φ uniform translation

}W ˝ Φ ´ U}X .

Note that it is possible to choose Y as a space of curl-free vector-fields, on which it is natural to

choose } ¨ }Y as }V}Y :“ }∇TpVq}
rY
for some functional space rY.

The notion encodes that one should introduce a local phase shift to capture the main effect
of perturbations and that replacing this local phase shift with its derivative tames the growth
induced by Jordan blocks. It is intuitively clear that when dM c is nonzero, local perturbations in
shape will result in modifications in local speeds which in turn will accumulate over time into local
modification of phase shifts. Formal geometrical optics expansions in the spirit of [NR13] give more
quantitative educated guesses.

The upshot of such a formal analysis is that the large-time dynamics is expected to be described
at leading order by modulation in parameters

Wpt,xq „ UpK,Mqpt,xqpΨpt,xqq , K “ ∇Ψ ,
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with pK,Mq remaining close to pK,Mq (in the stable case) and solving

Bt

ˆ

K
M

˙

“

ˆ

∇pΩpK,Mqq

∇TFpK,Mq

˙

` Λr∇spK,Mq , K curl-free(1.5)

where ΩpK,Mq “ ´KT cpK,Mq, FpK,Mq P M2,r, F
pK,Mq

j,ℓ :“
ş

r0,1s2
Gj,ℓ ˝ UpK,Mq, and Λr∇s is a

(less explicit) second-order operator compatible with the propagation of the curl-free condition.

Diffusive spectral stability. We shall make only a loose use of the foregoing expected modulation
behavior. The main insight we want to extract is how the spectral singularity resulting from Jordan
blocks should be blown up. For this purpose we may safely replace the curl-free wavevector variable
K “ ∇Ψ with p´∆q1{2Ψ and drop the curl-free constraint, since ´p´∆q´1{2∇T and ∇p´∆q´1{2

may be used as L2 isometric inverses.
To give more details about the connection let us first introduce, for ξ sufficiently small, a basis

pQξ
1, ¨ ¨ ¨ ,Qξ

r`2q of the sum of generalized eigenspaces of Lξ associated with its r`2 eigenvalues near

0, starting from pB1U, B2U, BM1U, ¨ ¨ ¨ , BMrUq at ξ “ 0, and a dual basis p rQξ
1, ¨ ¨ ¨ , rQξ

r`2q playing

the same role for the adjoint of Lξ, starting from1 p˚, ˚, e1, ¨ ¨ ¨ , erq at ξ “ 0. In particular for ξ
small the spectrum of Lξ near 0 coincides with the spectrum of the matrix

Dξ :“ px rQξ
j ;LξQ

ξ
ℓ yL2pr0,1s2qq1ďj,ℓďr`2 .

Note that

D0 “

ˆ

02,2 ´KT dM c
0r,2 0r,r

˙

.

By design, in the chosen basis the first two coordinates play the role of (the Fourier transform

of) local phases. To mimick the change Ψ ÞÑ p´∆q1{2Ψ, we introduce for ξ ‰ 0 small

∆ξ :“

ˆ

}ξ} I2 02,r
0r,2 Ir

˙

Dξ

ˆ

}ξ} I2 02,r
0r,2 Ir

˙´1

extended as ∆0 “ 0r`2,r`2. We prove in Subsection 2.3 that despite the apparent singularity the
map ξ ÞÑ ∆ξ is indeed smooth in polar coordinates.

The following assumption encodes that System (1.5) is diffusive near pK,Mq (at least at low-
frequency).

(D3) There exist positive θ, C and ξ0 such that when }ξ} ď ξ0, the matrix ∆ξ defined above
(using Condition (D1)) satisfies for any t ě 0

} et∆ξ } ď C e´t θ }ξ}2 .

The control afforded by Conditions (D1)-(D2)-(D3) is weaker than the ones provided by dif-
fusive stability in both [JNRZ14] and [MR24] with many respects. In all cases diffusive stability
implies that there exists a θ1 ą 0 such that for any ξ

σpLξq Ă t λ ; ℜpλq ď ´θ1}ξ}2 u .

In [MR24] the absence of conservation laws thus of Jordan blocks at the critical part of the spectrum
allowed the latter spectral assumption to be reinforced into: for some positive C 1, θ1, for any ξ,

}etLξ}L2pr0,1s2qÑL2pr0,1s2q ď C 1 e´tθ1}ξ}2 ,

where etLξ denotes the semigroup generated by the Bloch symbol Lξ. A similar bound holds for
the one-dimensional conservationless case [JNRZ13a] but it comes as a consequence of the spectral
bound alone, whereas in the multi-dimensional case the bound contains extra information; see the

1We identify here constant functions with their values.
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detailed discussion in [MR24, Appendix A] and [RR]. In contrast, here, as in [JNRZ14], diffusive
stability only yields: for some positive C 1, θ1, for any ξ,

}etLξ}L2pr0,1s2qÑL2pr0,1s2q ď C 1 e
´tθ1}ξ}2

}ξ}
.

In the one-dimensional case one may benefit from the fact that one-parameter families of opera-
tors have much better spectral regularity properties. In particular, in [JNRZ14], beyond the desin-
gularization of phase/wavenumber type turning Dξ into ∆ξ, one may also enforce that ξ ÞÑ ∆ξ

is smooth2 and not only smooth in polar coordinates, and that it is smoothly diagonalized. The
distinction here is similar to the one for first-order hyperbolic systems: whereas in one dimension
the strict hyperbolicity may be thought as generic, there is a much larger variety in higher dimen-
sions. In particular the acoustic system — that is, the system form of the wave equation — share
almost no common feature with a system of uncoupled transport equations in dimension at least
two. The formulation of Condition (D3) is precisely designed to not dive into this complexity and
encompass all the reasonable cases without distinction.

Part of this multiD system complexity is also present in [MR24]. However the modulation
system there, replacing (1.5), has only two equations. The most refined analysis in [MR24] uses the
special structure of systems of two equations. Note for instance that hyperbolic constant-coefficient
systems of two first-order equations are either strictly hyperbolic or consist of two uncoupled scalar
equations. In contrast we have here r ` 2 equations to deal with and the situation with three
equations in 2D is expected to be close to generic. To give a hint in this direction, we point out
that with three equations in dimension two one may already design a system that is hyperbolic in
each direction but not hyperbolic ; see Petrowski’s example in [BGS07].

The main technical question our current analysis answers positively is whether with both diffi-
culties jointly occurring one may still conclude to nonlinear stability.

Main results. Before stating our main results the last thing remaining to discuss is which class
of perturbations we are considering. The level of localization of the initial perturbation is directly
connected to the rate of time decay one may expect. On general grounds, with this is mind, there
are two natural choices. On one hand one may pick the maximal level of localization that may
be converted into time decay, thus obtaining the maximal time decay (for general3 data). On the
other hand one may pick the localization resulting in the minimal time decay rate compatible with
a proof of nonlinear stability by the Duhamel formula, encoding the variation of constant strategy.
The latter situation is said to be critical and it is characterized by the fact that in the Duhamel
formula the linear and nonlinear part decay at the same rate, whereas in subcritical situations the
nonlinear part decays faster.

Here the multidimensionality actually helps since the decay mechanism is spreading (by diffusion)
and is thus stronger in higher dimensions. In the one-dimensional case with conservation laws of
[JNRZ14] there is no choice: maximal decay and critical decay are at the same level. It corresponds
to taking an initial phase shift ϕ0 such that ∇ϕ0 is integrable. The presence of a Jordan block
at the spectral origin prevents further localization to be of any use. The critical conservationless
one-dimensional case is analyzed in [JNRZ13a]. Yet for the same class of equations the maximal
decay case was analyzed decades before in the pioneering [Sch96]. The approach of Schneider
sets a renormalization procedure, thus relies heavily on the self-similar character of the Burgers
equation (playing the role of (1.5)) and is therefore by design restricted to the conservationless

2This requires us to use at the modulation level ∇Ψ and not p´∆q
1{2Ψ, and at spectral level to replace }ξ} with

ξ in the definition of ∆ξ, which is only possible in dimension 1.
3Commonly one may beat this decay rate on a subset of positive codimension, being defined by some exceptional

vanishing. For instance mean-free solutions to the heat equation decay faster than the heat decay rate.
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one-dimensional case. It was subsequently extended to the critical decay case in [SSSU12]. Proofs
of [JNRZ13a, JNRZ14] rather build from the revisiting of the maximal decay rate in [JZ11]. As
an interesting recent piece of work we point out [dR24] revisiting the crictical conservationless one-
dimensional case, that combines arguments similar to those of [JNRZ13a] with special properties
of the Burgers equation so as to replace the integrability assumption on ∇ϕ0 with a boundedness
assumption on ϕ0, both being, in dimensional one, essentially4 at the same level of localization but
the latter is slightly more general than the former.

In the two-dimensional conservationless framework treated in [MR24] the maximal decay thresh-
old is at the integrable ϕ0 level and the critical threshold is at the integrable ∆ϕ0 level. In the
present framework the presence of a Jordan block at the spectral origin reduces the range of pos-
sibilities from integrable ∇ϕ0 to integrable ∆ϕ0.

Theorem 1.1 (Critical decay). Assume (D1)-(D2)-(D3). There exist ε0 ą 0 and C ą 0 such
that if for some sublinear5 ϕ0

E0 :“ }W0p¨ ´ ϕ0q ´ U}pH2XW 2,4qpR2;Rnq ` }∆ϕ0}pL1XW 1,4qpR2;R2q ď ε0

then, there exist a unique global solution to (1.4) with initial datum W0 and a phase shift ϕ with
ϕp0, ¨q “ ϕ0 such that, for any t ě 0,

}Wpt, ¨ ´ ϕpt, ¨qq ´ U}W 2,4pR2;Rnq ` }∇ϕpt, ¨q}W 2,4pR2;M2pRqq ` }Btϕpt, ¨q}W 2,4pR2;R2q ď
C E0

p1 ` tq
1
4

.

Furthermore, with constants independent of pW0,ϕ0q and no further restriction on E0,

(1) for any t ě 0,

}Wpt, ¨ ´ ϕpt, ¨qq ´ U}L8pR2;Rnq ` }∇ϕpt, ¨q}L8pR2;M2pRqq ` }Btϕpt, ¨q}L8pR2;R2q ď C E0
lnp2 ` tq

p1 ` tq
1
2

;

(2) for any 2 ă p0 ă q0 ă 8, there exists a constant Cp0,q0 ą 0, such that for any p P rp0, q0s,
and any t ě 0

}Wpt, ¨ ´ ϕpt, ¨qq ´ U}LppR2;Rnq ` }∇ϕpt, ¨q}LppR2;M2pRqq ` }Btϕpt, ¨q}LppR2;R2q ď
Cp0,q0 E0

p1 ` tq
1
2

´ 1
p

.

Theorem 1.2 (Maximal decay). Assume (D1)-(D2)-(D3). There exist ε0 ą 0 and C ą 0 such
that if for some ϕ0

E0 :“ }W0p¨ ´ ϕ0q ´ U}pL1XH2XW 2,4qpR2;Rnq ` }∇ϕ0}pL1XH2XW 2,4qpR2;M2pRqq ď ε0

then, there exist a unique global solution to (1.4) with initial datum W0 and a phase shift ϕ with
ϕp0, ¨q “ ϕ0 such that, for any t ě 0, for any 2 ď p ď 4

}Wpt, ¨ ´ ϕpt, ¨qq ´ U}W 2,ppR2;Rnq ` }∇ϕpt, ¨q}W 2,ppR2;M2pRqq ` }Btϕpt, ¨q}W 2,ppR2;R2q ď
C E0

p1 ` tq
1´ 1

p

.

Furthermore, with no further restriction

(1) for any 2 ď p ď 8 and any t ě 0

}Wpt, ¨ ´ ϕpt, ¨qq ´ U}LppR2;Rnq ` }∇ϕpt, ¨q}LppR2;M2pRqq ` }Btϕpt, ¨q}LppR2;R2q ď
C E0

p1 ` tq
1´ 1

p

,

4We use the homogeneity of seminorms under the action of homotethies as a measure of how much regular-
ity/localization the seminorm controls. In dimension d, s derivatives in Lp is associated with the index s ´ d{p, the
lower it is the more localization and the less regularity we control.

5By this, we mean as in [MR24] that ϕ0 may differ from ∆´1
p∆ϕ0q by a constant function but not by a non-

constant affine function. This is for instance the case if one enforces ∇ϕ0 P Span
´

Ť

1ďpă8
Lp

pR2;M2pRqq

¯

.
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(2) there exists a constant ϕ8 depending only on ϕ0 such that for any t ě 0

}Wpt, ¨q ´ U}LppR2;Rnq ` }ϕpt, ¨q ´ ϕ8}LppR2;R2q ď
CE0

p1 ` tq
1
2

´ 1
p

, 2 ď p ď `8 .

Having System (1.5) in mind, the foregoing decay rates should be compared with the decay rates
of the two-dimensional heat equation in the variable ∇ϕ. Note however that we only state and
prove such rates in Lp-based spaces with 2 ď p ď 8. As may also be guessed from (1.5) this is not
a purely technical restriction. The first-order part of the modulation system if it contains parts of
wave-type induces dispersive effects that deteriorate decay rates in Lp, p ă 2. We refer the reader
to the detailed analysis of the two-dimensional barotropic compressible Navier-Stokes system in
[HZ95, Rod09] for a sharp related discussion.

Those dispersive effects are precisely the spatial counterparts to the low regularity on the spectral
side, due to multidimensionality. In particular our main challenge is to check that the analysis of
[JNRZ14] may be extended to the present case without suffering from Lp, p ă 2, deterioration.
To stress that the outcome is not completely obvious, we point out that [HZ95, Rod09] deals with
the maximal decay case whereas the critical decay case for small solutions of the two-dimensional
barotropic compressible Navier-Stokes system is widely open; see the discussion in [Rod07].

Even when dealing with the critical decay case we benefit from the fact that non critical linear
estimates do hold in order to deal with nonlinear contributions. Note that this does not hold for
[JNRZ14] but the dispersive obstruction is absent in dimension one. The benefit is similar (but
smaller) than the one one uses to close convective nonlinear stability with no decay at all, as for
instance in [GR25].

We postpone to Subsection 4.3 a thorough technical discussion of the scheme of the proof of
Theorem 1.1. Yet we would like to stress that its proof differs significantly from proofs in both
[JNRZ14] and [MR24]. When examining the contribution of nonlinear terms in a Duhamel formula
only terms with a good conservative structure may be treated as in [MR24]. Unfortunately the
introduction of the phase does bring new non-conservative terms. To deal with those one must
use and prove that higher derivatives of the phase decay faster. This is expected from the linear
analysis but a proof at the nonlinear level requires the propagation of those higher decay rates in a
critical decay regime. The foregoing is inherently difficult. A similar difficulty occurs in [JNRZ14]
but it is bypassed there by resorting to estimates on the linear propagator that are precluded here
by the possible dispersive effects. Instead, we show that for a suitable Bloch multiplier operator J ,
JV also decays faster at the linear level and prove the nonlinear propagation of those decay rates
jointly with those of the higher derivatives of the phase. This requires a (soft) multilinear analysis
adapted to J .

Perspectives. In [JNRZ13b, JNRZ14, MR24] is also provided a detailed description of the large-
time asymptotic behavior including the validation of a system such as (1.4). We expect that some
form of validation could also be obtained here but a rough computation, in the critical case, only
shows that refinement in modulation (in all parameters) yield an improvement of the decay rates of

the remainders in Lp from p1 ` tq´p1{2´1{pq to p1 ` tq´1{2. It is far from obvious that the later rate
is optimal and we have decided to save some technicalities and leave this for further investigation.
As in the current stability analysis the technical issue is that in general, unlike in [MR24], one faces
dispersion in some of the components but not in all of them so that one may have to pay the price
of worst rates in Lp, p ă 2 without benefiting from extra decay in Lp, p ą 2.

In order to apply the present results and those in [MR24] it is important to provide stability
diagrams in all relevant bifurcation scenarios, multiplying the type of analysis carried out in [RR].
The analysis there untangles for conservationless equations the situation where plane waves become
unstable by a transverse instability at nonzero frequencies. The stable two-dimensional patterns
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then appear as secondary instablities and the arising modulation system is indeed fully dispersive.
We stress that even the case when small-amplitude two-dimensional patterns arise from primary
instability of constant solutions needs further investigation. Indeed whereas the corresponding
existence part has been thoroughly developed for a long time — as far ago as [Sat79] —, the
accompanying stability is currently restricted at best6 to co-periodic perturbations, corresponding
to Floquet ξ “ 0. We see the development of a complete bifurcation analysis incorporating diffusive
spectral stability as the primary remaining target to reach.

We expect that as in [RR] the elucidation of bifurcations will also shed some light on the struc-
ture of modulation systems near bifurcation and provide sufficient elements to clarify the analysis
of asymptotic behavior. To be somewhat more concrete, in scenarios7 when the modulation sys-
tem would exhibit a clear separation between a dispersive part and a scalar-type part one could
prove that at leading order only the dispersiveless part matter in large-time. This would echo the
fact that solutions to the barotropic compressible Navier-Stokes equations become asymptotically
incompressible in large-time [HZ95, Rod09].

Outline. After the present introduction the rest of the paper is organized as follows. In the next
section we gather some preliminary results (elements of Bloch-wave spectral analysis, geometric
structure of profile equations, desingularization by phase modulation). Then in the two sections
after that, we provide first linear estimates then nonlinear estimates for the critical case, thus in the
end proving Theorem 1.1. In the final section before the appendix, we prove Theorem 1.2. Finally,
in the appendix we discuss extensions to higher dimensions, covering the critical three-dimensional
case.

Acknowledgment. A.W. thanks the University of Rennes for its hospitality when the project was
initiated. Both authors are grateful to Kevin Zumbrun for his continued interest in this project.

2. Preliminaries

2.1. Basic facts about the Floquet-Bloch analysis. We gather here a minimal set of useful
facts about the Floquet-Bloch transform. As a preliminary we make explicit our convention for the
Fourier transform. When g P L1pR2q, its Fourier transform is defined by

Fpgqpξq “ pgpξq :“
1

p2πq2

ż

R2

e´ i ξ¨x gpxq dx .

Then when g P SpR2q its Floquet-Bloch transform is defined by

Bpgqpξ,xq “ qgpξ,xq :“
ÿ

pPZ2

e2 iπp¨x
pgpξ ` 2πpq “

1

p2πq2

ÿ

qPZ2

e´ i ξ¨px`qq gpx ` qq ,

the equivalence of both formula being a special case of the Poisson summation formula. Note that
Bpgqpξ, ¨q is pe1, e2q-periodic for any r´π, πs2.

Proposition 2.1. Let g P SpR2q. The following properties hold.

(1) Floquet-Bloch inversion. For any x P R2

gpxq “

ż

r´π,πs2
ei ξ¨x

qgpξ,xqd ξ .

(2) Differentiation. For any pξ,xq P r´π, πs2 ˆ R2

­p∇xgqpξ,xq “ p∇x ` i ξqpqgqpξ,xq .

6For patterns with extra symmetry, such as hexagonal pattern, the class of studied perturbations is further
restricted by the extra symmetries.

7We expect the latter for instance when r “ 1.
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(3) Periodic multiplication. When h is pe1, e2q-periodic, for any pξ,xq P r´π, πs2 ˆ R2

~pg hqpξ,xq “ hpxq qgpξ,xq .

(4) Low-frequency functions. If supp pg Ă r´π, πs2, for any pξ,xq P r´π, πs2 ˆ R2

qgpξ,xq “ pgpξq .

(5) Parseval identity.

}g}L2pR2q “ p2πq}qg}L2pr´π,πs2;L2pr0,1s2qq .

(6) Hausdorff-Young inequalities. For any 2 ď p ď 8 and p1 its Lebesgue conjugate,
that is, 1

p ` 1
p1 “ 1

}g}LppR2q ď p2πq
2
p }qg}Lp1

pr´π,πs2;Lppr0,1s2qq
,

}qg}Lppr´π,πs2;Lp1
pr0,1s2qq

ď p2πq
´ 2

p1 }g}Lp1
pR2q

.

Properties p2q and p3q imply the announced BpLgqpξ,xq “ LξpBpgqpξ, ¨qqpxq. Properties p3q and
p4q explain how by taking a Floquet-Bloch transform and averaging one may extract the evolution
of parameters, such as phase shifts, out of linear slow modulations. Properties p5q and p6q are key
to extend the Floquet-Bloch transform by duality and continuity.

Let us denote with an index ¨per the closure of (restrictions of) C8 functions that are pe1, e2q-
periodic.

Proposition 2.2. (1) p2πqB is a one-to-one isometry from L2pR2q to L2pr´π, πs2;L2pr0, 1s2qq.
(2) For any s P R, B is one-to-one between HspR2q and L2pr´π, πs2;Hs

perpr0, 1s2qq.

(3) For any s P R`, 2 ď p ď 8, B is continuous from Lp1

pr´π, πs2;W s,p
perpr0, 1s2qq to W s,ppR2q

and B´1 is continuous from W s,p1

pR2q to Lppr´π, πs2;W s,p1

per pr0, 1s2qq.

Finally we introduce the Bloch multiplier operator J defined by

BpJ gqpξ,xq :“ ξBpgqpξ,xq .

The convention is that it acts component-wise on vector-valued functions. Note that J commutes
with any operator defined by Bloch symbols, such as L, or in other words with any operator
diagonalized by the Floquet-Bloch transform in the sense that it acts Floquet exponent by Floquet
exponent. We shall use J to track that in the dynamical situation we consider a higher cancellation
at low-Floquet exponents is associated with a faster time decay.

The following lemma proves a Leibniz’ rule for multilinear expressions of sufficiently low-Floquet
functions, particularly convenient to deal with nonlinear terms.

Lemma 2.3. Let m P N, m ě 2. If the Floquet-Bloch transforms of g1, ¨ ¨ ¨ , gm are supported
where }ξ} ď π{m, then for any α P N2

J αpg1 ¨ ¨ ¨ gmq “
ÿ

pαp1q,¨¨¨ ,αpmqqPpN2qm

αp1q`¨¨¨`αpmq“α

ˆ

α
αp1q, ¨ ¨ ¨ , αpmq

˙

J αp1qpg1q ¨ ¨ ¨J αpmqpgmq .

Proof. This follows by combining that from any pζp1q, ¨ ¨ ¨ , ζpmqq P pR2qm

pζp1q ` ¨ ¨ ¨ ` ζpmqq
α “

ÿ

pαp1q,¨¨¨ ,αpmqqPpN2qm

αp1q`¨¨¨`αpmq“α

ˆ

α
αp1q, ¨ ¨ ¨ , αpmq

˙

ζ
αp1q

p1q
¨ ¨ ¨ ζ

αpmq

pmq

9



and that from the low-Floquet assumption stems

Bpg1 ¨ ¨ ¨ gmqpξ,xq “ pBpg1qp¨,xq ‹ ¨ ¨ ¨ ‹ Bpgmqp¨,xqq pξq .

□

2.2. Profile variations. We now untangle the structure of nearby waves under assumption (D1).
In doing so we mostly follow [MR24, Appendix B1].

Let M P Rr be defined by M j “
ş

r0,1s2
ej ¨U and observe that the profile equation for waves of

wavematrix K and speed c is

(2.1) 0 “ pK∇q
T

pK∇qU ` pK∇q
TGpUq ` pKTc ¨ ∇qU ` fpUq.

Proposition 2.4. Assume (D1). Then there exist ε0 ą 0 and a smooth map

BppK,Mq, ε0q Ñ H2
perpr0, 1s2;Rnq ˆ R2 , pK,Mq ÞÑ pUK,Mp¨q, cpK,Mqq

such that, for any pK,Mq P BpK, ε0q, pK,UK,Mp¨q, cpK,Mqq solves (2.1) with

Mj “

ż

r0,1s2
ej ¨UK,M , j “ 1, ¨ ¨ ¨ , r ,(2.2)

and for any pU, cq P H2
perpr0, 1s2;Rnq ˆ R2 such that pU, cq solves (2.1)-(2.2) and

}c ´ c} ď ε0 , inf
φ0PR2

}U ´ Up¨ ` φ0q}H2
perpr0,1s2;Rnq ď ε0 ,

one has c “ cpK,Mq and there exists φ P R2 such that U “ UK,Mp¨ ` φq. Moreover the map
pK,Mq ÞÑ UK,M is valued in H8

perpr0, 1s2;Rnq and, for any s P N, there exists 0 ă ε1
0 ď ε0 such

that it is smooth as a map from BppK,Mq, ε1
0q to Hs

perpr0, 1s2;Rnq.

Proof. The proof follows the Lyapunov-Schmidt reduction. Let Π0 denote the spectral projector as-

sociated with the eigenvalue 0 of L0 and complete first p˚, ˚, e1, ¨ ¨ ¨ , erq into a basis p rQ0
1 , ¨ ¨ ¨ , rQ0

r`2q

of the kernel of Π˚
0 such that

x rQ0
j ; BℓUyL2pr0,1s2;Rnq “ δj,ℓ , 1 ď j, ℓ ď 2 ,

then pB1U, B2U, ˚, ¨ ¨ ¨ , ˚q into a basis pQ0
1 , ¨ ¨ ¨ ,Q0

r`2q of the kernel of Π0 dual to p rQ0
1 , ¨ ¨ ¨ , rQ0

r`2q.
To enforce uniqueness we shall reduce to seeking an unknown V lying in the kernel of Π0, that is,

orthogonal to p rQ0
1 , ¨ ¨ ¨ , rQ0

r`2q.
We first show that we can factor out translational invariance and enforce orthogonality to

p rQ0
1 ,

rQ0
2q. To do so, we may apply the Implicit Function Theorem to the map

H2pr0, 1s2;Rnq ˆ R2 Ñ R2 , pU,φq ÝÑ px rQ0
j ;Up¨ ´ φqyL2pr0,1s2;Rnqqj“1,2 .

Indeed the map is C1 and, at pU,0q, its differential map with respect to φ is ´ I. By using
translational invariance, this implies that there exist ε ą 0 and C ą 0 such that if pU,φ0q is such
that

}U ´ Up¨ ` φ0q}H2
perpr0,1s2;Rnq ď ε

then there exists φ such that rU “ Up¨ ´ φq satifies

} rU ´ U}H2
perpr0,1s2;Rnq ď C }U ´ Up¨ ` φ0q}H2

perpr0,1s2;Rnq ,

x rQ0
j ; p rU ´ UqyL2pr0,1s2;Rnq “ 0 , 1 ď j ď 2 .(2.3)

It is thus sufficient to prove genuine uniqueness under the assumption that U ´ U is small and

satisfies (2.3). Let us denote by L:
0 the inverse of L0 restricted to the range of pI´Π0q. With the

extra constraint (2.3), Equations (2.1)-(2.2) are equivalent to

U ´ U “
`

Q0
3 ¨ ¨ ¨ Q0

r`2

˘

M ` V
10



with

V “ ´L:
0rpI´Π0qRs

c “ pK´1Kq
T
c ´ pK´1q

T

˜

x rQ0
1 ; ¨yL2pr0,1s2;Rnq

x rQ0
2 ; ¨yL2pr0,1s2;Rnq

¸

R

where

R “

´

pK∇q
T

pK∇q ´ pK∇q
T

pK∇q

¯

U ` ppKTc ´ KTcq ¨ ∇qpU ´ Uq

` pK∇q
TGpUq ´ pK∇q

T
pGpUq ` dGpUqpU ´ Uqq

` fpUq ´ fpUq ´ dfpUqpU ´ Uqq .

Note that in the foregoing reformulation we are using that from the conservative structure of the

original system stems that Π0R “ 0 is equivalent to x rQ0
j ;RyL2pr0,1s2;Rnq “ 0, 1 ď j ď 2. The proof

is then achieved by another application of the Implicit Function Theorem solving for pV, cq such
that pI´Π0qV “ 0. □

Let us stress that the above construction also yields pBM1U, ¨ ¨ ¨ , BMrUq “ pQ0
3 , ¨ ¨ ¨ ,Q0

r`2q.

2.3. Side-band structure. We turn to discuss the desingularization of the Jordan block struc-
ture at 0 when ξ “ 0. By standard spectral perturbation theory, for which we refer to [MR24,
Appendix A2], we obtain, for ξ sufficiently small,

‚ a spectral projector Πξ, smoothly dependent on ξ, associated with the spectrum of Lξ near
the origin

‚ a basis pQξ
1, ¨ ¨ ¨ ,Qξ

r`2q of the range of Πξ smoothly dependent on ξ and extending the

above pQ0
1 , ¨ ¨ ¨ ,Q0

r`2q

‚ a dual basis p rQξ
1, ¨ ¨ ¨ , rQξ

r`2q of the range of Π˚
ξ smoothly dependent on ξ and extending the

above p rQ0
1 , ¨ ¨ ¨ , rQ0

r`2q.

In particular with

Dξ :“ px rQξ
j ;LξQ

ξ
ℓ yL2q1ďj,ℓďr`2

there holds for ξ sufficiently small

et Lξ Πξ “

´

Qξ
1 ¨ ¨ ¨ Qξ

r`2

¯

etDξ

¨

˚

˝

x rQξ
1; ¨yL2

...

x rQξ
r`2; ¨yL2

˛

‹

‚

.

To prepare further analysis of Dξ, we expand

LξV “ L0V ` pLp1qVq
T
ipKξq ´ }Kξ}2V

where

Lp1qV :“ 2K∇V ` dGpUqpVq ` cVT.

In order to blow up the Jordan block, we introduce for ξ ‰ 0 small

∆ξ :“

ˆ

}ξ} I2 02,r
0r,2 Ir

˙

Dξ

ˆ

}ξ} I2 02,r
0r,2 Ir

˙´1

11



extended as ∆0 “ 0r`2,r`2. Note that by setting

´

qξ
1 ¨ ¨ ¨ qξ

r`2

¯

:“
´

Qξ
1 ¨ ¨ ¨ Qξ

r`2

¯

ˆ

I2 02,r
0r,2 }ξ} Ir

˙

´

rqξ
1 ¨ ¨ ¨ rqξ

r`2

¯

:“
´

rQξ
1 ¨ ¨ ¨ rQξ

r`2

¯

ˆ

}ξ} I2 02,r
0r,2 Ir

˙

one obtains for ξ sufficiently small

et Lξ Πξ “
1

}ξ}

´

qξ
1 ¨ ¨ ¨ qξ

r`2

¯

et∆ξ

¨

˚

˝

xrqξ
1; ¨yL2

...

xrqξ
r`2; ¨yL2

˛

‹

‚

.

The following proposition is the main result of the present subsection.

Proposition 2.5. Under (D1), the map ξ ÞÑ ∆ξ is indeed smooth in polar coordinates.

Proof. Note that since Q0
1 , Q

0
2 lie in the kernel of L0 and rQ0

3 , ¨ ¨ ¨ , rQ0
r`2 lie in the kernel of L˚

0, we
already know that

D0 “

ˆ

02,2 ˚

0r,2 0r,r

˙

, Dξ “

ˆ

Op}ξ}q Op1q

Op}ξ}q Op}ξ}q

˙

,

so that there only remains to show that for any ξ

pdξ D0pξqqj,ℓ “ 0 , pDξqj,ℓ “ Op}ξ}2q , 3 ď j ď r ` 2 , 1 ď ℓ ď 2 .

For the same structural reason, for such a pj, ℓq,

pdξ D0pξqqj,ℓ “ x rQ0
j ; pLp1qQ0

ℓ q
T
ipKξqyL2 “ xej´2; pLp1qBℓUq

T
ipKξqyL2 .

At last, from the conservative structure of the system and the explicit formula of Lp1q stem the
claimed cancellation. □

Though we have decided to prove Proposition 2.5 in a more elementary way, we’d like to stress
that it follows in a more robust way by differentiating along the family of periodic traveling waves.
See [BGNR14, KR16, AR22] for similar results in more elaborate situations.

From the definition of ∆ξ one also derives readily the following proposition.

Proposition 2.6. Under assumptions (D1)-(D2)-(D3), there exist positive ξ0, θ1 and C 1 such
that the following hold.

(1) For any }ξ} ě ξ0

}etLξ}L2ÑL2 ď C 1 e´tθ1

.

(2) For any }ξ} ď ξ0

}etLξ pI´Πξq}L2ÑL2 ď K e´tθ1

,

}etDξ}Cr`2ÑCr`2 ď
C 1

}ξ}
e´tθ1}ξ}2 ,

}etLξ Πξ}L2ÑL2 ď
C 1

}ξ}
e´tθ1}ξ}2 .

Proof. The last two estimates follow from the definition of ∆ξ whereas the two first ones are derived
from the fact that Lξ when }ξ} ě ξ0 and the restriction of Lξ to the kernel of Πξ when }ξ} ě ξ0
generate analytic semigroups and possess uniform spectral gaps. □
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When analyzing the phase contributions the following lemma will also turn out to be useful. It
plays a role similar to [MR24, Lemma 3.1] and a similar normalization is also hidden in the proof
of [JNRZ14, Proposition 1.7].

Lemma 2.7. Under assumption (D1), one may also enforce that for 3 ď j ď r ` 2, 1 ď ℓ ď 2,

x rQξ
j ;Q

0
ℓ yL2 “ Op}ξ}2q , x rQ0

j ;Q
ξ
ℓ yL2 “ Op}ξ}2q .

Proof. Both terms are smooth and vanish at ξ “ 0 so that we only need to check that their linear

expansions vanish identically. Since for such pj, ℓq, x rQξ
j ;Q

ξ
ℓ yL2 “ 0, the linear expansion of the

first term is equal to the opposite of the linear expansion of the second term thus they vanish
simultaneously.

To conclude the proof, we only need to prove that by replacing ppQξ
1, ¨ ¨ ¨ ,Qξ

r`2qqξ, pp rQξ
1, ¨ ¨ ¨ , rQξ

r`2qqξ

with some ppPξ
1, ¨ ¨ ¨ ,Pξ

r`2qqξ, pprPξ
1, ¨ ¨ ¨ , rPξ

r`2qqξ satisfying the same spectral conditions one may
also achieve the extra normalization condition: for any ξ, and pj, ℓq as above

xrP0
ℓ ; dξ P

0
j pξqyL2 “ 0 .

This may be achieved, for ξ sufficiently small, through

Pξ
ℓ :“ Qξ

ℓ ´

r`2
ÿ

j“3

x rQ0
j ; dξ Q

0
ℓ pξqyL2 Qξ

j , 1 ď ℓ ď 2 ,

Pξ
ℓ :“ Qξ

ℓ , 3 ď ℓ ď r ` 2 ,

and

rPξ
j :“ rQξ

j , 1 ď j ď 2 ,

rPξ
j :“ rQξ

j `

2
ÿ

ℓ“1

x rQ0
j ; dξ Q

0
ℓ pξqyL2 rQξ

ℓ , 3 ď j ď r ` 2 .

□

From now on we shall enforce the normalization from Lemma 2.7.

3. Linear estimates

We begin the stability analysis with linear estimates, that is, estimates on pSptqqtě0 the semigroup
generated by L, in particular proving linear space-modulated stability in the sense made explicit
in [Rod18].

3.1. Linear phase separation. With notation from the previous section, we may decompose Sptq
according to

Sptqrgs “ psptqrgs ¨ ∇qU ` S1ptqrgs ` S2ptqrgs

with

psptqrgsqpxq :“

ż

r´π,πs2

χpξq

}ξ}
eix¨ξ

`

I2 02,r
˘

et∆ξ

¨

˚

˚

˚

˝

A

rqξ
1; qgpξ, ¨q

E

L2

...
A

rqξ
r`2; qgpξ, ¨q

E

L2

˛

‹

‹

‹

‚

d ξ ,
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and

pS1ptqrgsqpxq

:“

ż

r´π,πs2
p1 ´ χpξqq eix¨ξ et Lξpqgpξ, ¨qqpxqd ξ `

ż

r´π,πs2
χpξq eix¨ξ et LξpI´Πξqpqgpξ, ¨qqpxq d ξ

pS2ptqrgsqpxq

:“

ż

r´π,πs2
χpξq eix¨ξ

´

Qξ
1pxq´Q0

1 pxq

}ξ}

Qξ
2pxq´Q0

2 pxq

}ξ}
Qξ

3pxq ¨ ¨ ¨ Qξ
r`2pxq

¯

et∆ξ

¨

˚

˚

˚

˝

A

rqξ
1; qgpξ, ¨q

E

L2

...
A

rqξ
r`2; qgpξ, ¨q

E

L2

˛

‹

‹

‹

‚

d ξ

where χ is a smooth function valued in r0, 1s, compactly supported in a sufficiently small neighbor-
hood of 0 and equal to 1 in a (smaller) neighborhood of 0.

3.2. Localized perturbations.

Proposition 3.1. Assume (D1)-(D2)-(D3).

(1) There exists θ1 ą 0, such that, for any ps, s1q P pR`q2 such that s1 ď s, there exists Cs1,s

such that for any t ą 0

}S1ptqrgs}Hs ď
Cs1,s

pminpt1, tuqq
ps´s1q

2

e´θ1 t }g}Hs1 .

(2) For any s P R`, any β P N2 and any γ P N2, there exists Cs,β,γ such that for any
1 ď q ď 2 ď p ď `8, and any t ě 0

}S2ptqrBβ
x J γ gs}W s,p ď

Cs,β,γ

p1 ` tq
|γ|

2
` 1

q
´ 1

p

}g}Lq ,

and if |β| ą 0 or g vanishes identically in its first r components

}S2ptqrBβ
x J γgs}W s,p ď

Cs,β,γ

p1 ` tq
1`|γ|

2
` 1

q
´ 1

p

}g}Lq .

(3) For any α P N2, any β P N2, any γ P N2 and any ℓ P N, there exists Cα,ℓ,β,γ such that for
any 1 ď q ď 2 ď p ď `8, and any t ě 0
(a) provided that |α| ` |γ| ` ℓ ě 1 or 1{q ´ 1{p ą 1{2

} Bα
x Bℓ

t sptqrBβ
x J γ gs}Lp ď

Cα,ℓ,β,γ

p1 ` tq
|α|`|γ|`ℓ´1

2
` 1

q
´ 1

p

}g}Lq ,

(b) if |β| ą 0 or g vanishes identically in its first r components

} Bα
x Bℓ

t sptqrBβ
x J γgs}Lp ď

Cα,ℓ,β,γ

p1 ` tq
|α|`|γ|`ℓ

2
` 1

q
´ 1

p

}g}Lq .

We recall that J commutes with Bx, Bt, sptq, S1ptq, S2ptq, etc.
Compared to [MR24, Proposition 2.2] algebraic decay estimates for a general g are deteriorated

by a p1 ` tq´1{2 factor. Compared to [JNRZ14, Proposition 3.3], there are two main differences:

‚ the slope of 1{q ´ 1{p depends on the dimension, being equal to d{2 in dimension d
‚ the restriction 1 ď q ď 2 ď p ď `8 is not a pure feature of the chosen proof, but a hard
restriction that cannot be relaxed at need without deteriorating the heat-type decay rates.
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Proof. To prove the first point, it is sufficient to combine an Hs1

Ñ Hs bound for 0 ă t ď 1 with an
Hs Ñ Hs bound for t ě 0. Moreover the former follows from the parabolicity of L (combined with
bounds on sptq and S2ptq proved below). In turn, the latter may be derived, through Parseval’s
identity and exponential bounds from Proposition 2.6.

All the algebraic decay rates arise from the fact when 1 ď r ď 8 and (η ą ´2{r or η “ 0)
›

›

›
ξ ÞÑ }ξ}η e´θt}ξ}2

›

›

›

Lr
ξ

À p1 ` tq´p η
2

` 1
r q .

For instance, to prove the first part of the second point, by integration by parts in scalar products,
from (D3), Hausdorff-Young and Hölder inequalities one derives

}S2ptqrBβ
x J γgs}W s,p À

›

›

›
ξ ÞÑ e´θt}ξ}2 }ξ}|γ|}qgpξ, ¨q}Lq

›

›

›

Lp1

ξ

À

›

›

›
ξ ÞÑ }ξ}|γ| e´θt}ξ}2

›

›

›

Lr
ξ

ˆ }qg}
Lq1

ξ Lq
x

À p1 ` tq
´

´

|γ|

2
` 1

r

¯

}g}Lq

with p1, q1 Lebesgue conjugate respectively to p and q, and 1{r “ 1{p1 ´1{q1 “ 1{q´1{p. Hence the
second bound. The second part of the second point follows from a similar bound benefiting from
an extra }ξ} factor due to the cancellation arising from the extra g structure and prq0

1 , ¨ ¨ ¨ , rq0
r`2q ”

p0,0, e1, ¨ ¨ ¨ , erq. The third point is proved similarly starting from

pBα
x Bℓ

tsptqrBβ
x J γ gsqpxq

“

ż

r´π,πs2

χpξq

}ξ}
eix¨ξpi ξqα ξβ

`

I2 02,r
˘

p∆ξqℓ et∆ξ

¨

˚

˚

˚

˝

A

rqξ
1; pBx ` i ξqβqgpξ, ¨q

E

L2

...
A

rqξ
r`2; pBx ` i ξqβqgpξ, ¨q

E

L2

˛

‹

‹

‹

‚

d ξ .

□

3.3. Perturbation by phase modulation. We restrict here to estimates useful to analyze the
critical-decay case.

Throughout we implicitly assume that ϕ has no affine component at 8, in the sense that ϕ “

∆´1∆ϕ. Consistently, the phases built with sptq also satisfy the latter condition.

Proposition 3.2. Assume (D1)-(D2)-(D3).

(1) There exists θ1 ą 0, such that, for any ps, s1q P R` such that s1 `1 ď s and any pp0, p1q such
that 2 ă p0 ă p1 ă 8, there exists Cp0,p1,s,s1 such that for any t ą 0, and any p0 ď p ď p1,

}S1ptqrpϕ ¨ ∇qUs}W s,p ď
Cp0,p1,s,s1

pminpt1, tuqq
ps´ps1`1qq

2

e´θ1 t }∆ϕ}L1XHs1 .

(2) For any α P N2, any s P R` and any 2 ď p ď `8 such that |α| ` 1 ´ 2
p ą 0, there exists

Cp,α,s such that for any t ě 0

}J αS2ptqrpϕ ¨ ∇qUs}W s,p ď
Cp,α,s

p1 ` tq
|α|`1

2
´ 1

p

}∆ϕ}L1 .

(3) For any α P N2, any β P N2, any ℓ P N and any 2 ď p ď `8 such that |α|`|β|`ℓ´ 2
p ą 0,

there exists Cp,α,β,ℓ such that for any t ě 0

} Bα
x Bℓ

t J β sptqrpϕ ¨ ∇qUs}Lp ď
Cp,α,ℓ

p1 ` tq
|α|`|β|`ℓ

2
´ 1

p

}∆ϕ}L1 .
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To ease comparisons with bounds of Proposition 3.1, we point out that }∆ϕ}L1XHs should be
thought as a relaxed version of }∇ϕ}Hs`1 . Note moreover that the condition |α| ` |β| ` ℓ ´ 2

p ą 0

may be written more explicitly as |α| ` |β| ` ℓ ě 2 or (|α| ` |β| ` ℓ “ 1 and p ą 2).

Proof. To establish various bounds it is convenient to single out the low-frequency part of ϕ,
according to

ϕ “ ϕLF ` ϕHF , {pϕLF q “ χpϕ .

The contribution of ϕHF to the first bound may be deduced from the corresponding estimate in
Proposition 3.1. Indeed, since 2 ď p ă 8,

}S1ptqrpϕHF ¨ ∇qUs}W s,p À }S1ptqrpϕHF ¨ ∇qUs}Hs`1 ,

}pϕHF ¨ ∇qU}Hs1`2 À }ϕHF }Hs1`2 À }∆ϕ}Hs1 .

The analysis of the contribution of ϕLF requires more care. To begin with, we recall that

­ppϕLF ¨ ∇qUqpξ,xq “ p {pϕLF qpξq ¨ ∇qUpxq(3.1)

and observe that this may be used to gain an extra }ξ}-factor in the second part of the definition
of S1 through

pI´Πξqp ­ppϕLF ¨ ∇qUqpξ, ¨qq “ pI´ΠξqpΠ0 ´ Πξqp ­ppϕLF ¨ ∇qUqpξ, ¨qq

(which holds since B1U and B2U lie in the range of Π0 and pI´Πξq is a projector). Moreover, an
extra }ξ}-factor in the first part of S1 is readily obtained from the trivial p1 ´ χpξqq À }ξ}. With
this in hands, from Hausdorff-Young inequalities and the embedding Hs`1

per ãÑ W s,p
per, one derives

}S1ptqrpϕLF ¨ ∇qUs}W s,p À e´θ1 t }∆ϕLF }L1

›

›ξ ÞÑ }ξ}´1
›

›

Lp1

ξ

À e´θ1 t }∆ϕ}L1

since p ą 2, thus p1 ă 2. This achieves the proof of the first bound.
The contribution of ϕHF to the second bound may also be deduced from the corresponding

estimate in Proposition 3.1. Indeed

}pϕHF ¨ ∇qU}L1 À }ϕHF }L1 À }∆ϕ}L1 .(3.2)

By using the cancellations brought by (3.1) the analysis in terms of }∆ϕ}L1 of the contribution of
ϕLF to the second bound becomes similar to the one in terms of }J αg}L1 of the contribution of a
general g to sptqrJ αgs in Proposition 3.1.

The third bound is proved similarly with an extra }ξ}|β|`ℓ´1 factor. □

3.4. Short-time phase estimate. The final linear estimate we need is a short-time bound on
sptq. Let us anticipate on the nonlinear scheme and mention that we only need it insofar as to
enforce ϕp0, ¨q “ ϕ0 in the Duhamel formulation.

Lemma 3.3. Assume (D1)-(D2)-(D3). For any α P N2, any ℓ P N and any 2 ď p ď `8 such
that p ą 2 if |α| “ 0 and p ă 8 if |α| ě 2, there exists Cp,α such that for any t ě 0

} Bα
x psptqrpϕ ¨ ∇qUs ´ ϕq }Lp ď Cp,α }∆ϕ}

L1XW p|α|´2q`,p

$

&

%

p1 ` tq
1
2

´

1´

´

|α|´ 2
p

¯¯

` if |α| ´ 2
p ‰ 1

lnp2 ` tq otherwise
.

Proof. We first take a detour and show that it suffices to bound sp0qrpϕ ¨ ∇qUs ´ ϕ. To do so, we
integrate the bounds on Bα

xBt s from Proposition 3.2 and are led to

} Bα
x psptq ´ sp0qqrpϕ ¨ ∇qUs}Lp À }∆ϕ}L1

ż t

0

d τ

p1 ` τq
|α|`1

2
´ 1

p

,

which predicts the growth time rates.
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To bound sp0qrpϕ ¨∇qUs ´ϕ, we split the phase ϕ into low and high frequency components as in
the proof of Proposition 3.2. For the high-frequency contribution, we rely on the triangle inequality
and observe that the proof of Proposition 3.2 yields

} Bα
x sptqrpϕHF ¨ ∇qUs}Lp À

}∆ϕ}L1

p1 ` tq
|α|

2
`1´ 1

p

À }∆ϕ}L1 ,

whilst the conditions on p ensure

}ϕHF }W |α|,p À }∆ϕ}
L1XW p|α|´2q`,p ,

For the low-frequency contribution of ϕ, we observe that

psp0qrpϕLF ¨ ∇qUs ´ ϕLF q pxq “

ż

r´π,πs2
ei ξ¨x pχpξq ´ 1q {pϕLF qpξq d ξ

`

ż

r´π,πs2
ei ξ¨x χpξq

¨

˚

˝

A

rqξ
1 ´ rq0

1 ; p {pϕLF qpξq ¨ ∇qU
E

L2
per

A

rqξ
2 ´ rq0

2 ; p {pϕLF qpξq ¨ ∇qU
E

L2
per

˛

‹

‚

d ξ .

Thus

} Bα
x psp0qrpϕ ¨ ∇qUs ´ ϕq }Lp À }∆ϕ}L1 ˆ

›

›

›
ξ ÞÑ }ξ}|α|´1

›

›

›

Lp1

ξ

.

Hence the result (since p1 ă 2 when |α| “ 0). □

4. Nonlinear stability

4.1. Nonlinear separation of the phase. Our nonlinear analysis begins by reformulating Equa-
tion (1.4) in terms of ϕ and V such that Wpt, ¨ ´ ϕpt, ¨qq “ U ` Vpt, ¨q.

At the beginning the algebraic manipulations are identical to the ones of [MR24, Section 2.2].
Namely, we introduce

ArWs “ ApW,∇W,∇2Wq :“ ∇T
´

KTK∇W
¯

` ∇T
´

KT pGpWq ` cWTq

¯

` fpWq

and consider its image under a change of variable Φ

ArĂW,Φs “ ApĂW,∇ĂW,∇2
ĂW,∇Φ,∇2Φq :“ pArĂW ˝ Φ´1sq ˝ Φ(4.1)

“ |∇Φ|´1∇T
´

|∇Φ| pK r∇Φs´1q
T

pK r∇Φs´1q∇ĂW
¯

` |∇Φ|´1∇T
´

|∇Φ| pK r∇Φs´1q
T

pGpĂWq ` c ĂWTq

¯

` fpĂWq .

At the linear level, the key observation is that

´LΦArU, Idspϕq “ LWArUsppϕ ¨ ∇qUq ´ pϕ ¨ ∇qpArUsq

thus, since ArUs ” 0,

(4.2) L
p ĂW,Φq

ArU, IdspV,´ϕq “ LWArUspV ` pϕ ¨ ∇qUq “ LpV ` pϕ ¨ ∇qUq ,

where LΦ, LW and L
p ĂW,Φq

stand for linearization operators. With this in hands, we may rephrase

(1.4).

Lemma 4.1. Let W and pϕ,Vq be smooth functions such that

(4.3) Wpt,x ´ ϕpt,xqq “ Upxq ` Vpt,xq ,

and for any t, }∇ϕpt, ¨q}L8pR2q ă 1. Then W satisfies (1.4) if and only if pϕ,Vq satisfies

(4.4) pBt ´ Lq pV ` pϕ ¨ ∇qUq “ N rV,ϕs ,
17



or equivalently

(4.5) BtV ´ LϕV “ ´pϕt ¨ rI2 ´∇ϕs´1∇qpU ` Vq ` ArU, Id´ϕs ´ ArU, Ids ` N0rV,ϕs ,

with

LϕV :“ L
ĂW
ArU, Id´ϕspVq ,

N0rV,ϕs “ N0p∇ϕ,∇2ϕ,V,∇Vq :“ ArU ` V, Id´ϕs ´ ArU, Id´ϕs ´ L
ĂW
ArU, Id´ϕspVq ,

N rV,ϕs “ N pϕt,∇ϕ,∇2ϕ,V,∇V,∇2Vq

:“
`

L
ĂW
ArU, Id´ϕs ´ L

ĂW
ArU, Ids

˘

pVq ` N0rV,ϕs ´ pϕt ¨ ∇ϕ rI2 ´∇ϕs´1∇qU

´ pϕt ¨ rI2 ´∇ϕs´1∇qV ` ArU, Id´ϕs ´ ArU, Ids ´ LΦArU, Idsp´ϕq .

Proof. To begin with, note that if Ψ is defined by Ψpt, ¨q :“ Φpt, ¨q´1, then

∇Ψpt,xq “ r∇Φpt,Ψpt,xqqs´1 , BtΨpt,xq “ ´rp∇Φpt,Ψpt,xqqq
T

s´1 BtΦpt,Ψpt,xqq .

Define ĂW by Wpt,Φpt,xqq “ ĂWpt,xq or equivalently ĂWpt,xq “ Wpt,Ψpt,xqq. Then W solves

(1.4) if and only if pΦ, ĂWq satisfies

ĂWt ´ pΦt ¨ r∇Φs´1∇qĂW “ ArĂW,Φs .

Inserting ĂW “ U ` V and Φ “ Id´ϕ, we readily deduce (4.5) and derive (4.4) by combining it
with (4.2). □

The form (4.4) is adapted to the large-time analysis whereas the form (4.5) is used in nonlinear
regularity estimates. A key consequence of Lemma 4.1 is that, as long as }∇ϕ}L8 ă 1, (1.4) is
equivalently written as Vp0, ¨q “ V0, ϕp0, ¨q “ ϕ0 and

Vpt, ¨q ` pϕpt, ¨q ¨ ∇qU “ SptqrV0 ` pϕ0 ¨ ∇qUs `

ż t

0
Spt ´ τqN rVpτ, ¨q,ϕpτ, ¨qs d τ .

At this stage, we would like to simply use the semigroup splitting of the linear analysis so as to
split the foregoing nonlinear equation while enforcing Vp0, ¨q “ V0, ϕp0, ¨q “ ϕ0. To do so, we pick
rχ a smooth function on R` valued in r0, 1s, compactly supported in r0, 1s and equal to 1 on r0, 12 s.
Then, we consider

ϕpt, ¨q “ sptqrV0 ` pϕ0 ¨ ∇qUs `

ż t

0
spt ´ τqN rVpτ, ¨q,ϕpτ, ¨qsd τ(4.6)

` rχptq pϕ0 ´ sptqrV0 ` pϕ0 ¨ ∇qUsq

Vpt, ¨q “ pS1 ` S2qptq rV0 ` pϕ0 ¨ ∇qUs `

ż t

0
pS1 ` S2qpt ´ τqN rVpτ, ¨q,ϕpτ, ¨qsd τ(4.7)

´ rχptq
´

pϕ0 ´ sptqrV0 ` pϕ0 ¨ ∇qUsq ¨ ∇
¯

U

and observe that, as long as }∇ϕ}L8 ă 1, (4.6)-(4.7) imply that W defined by

Wpt, ¨q :“ pU ` Vpt, ¨qq ˝ pId´ϕpt, ¨qq´1

satisfies (1.4) with Wp0, ¨q :“ pU ` V0q ˝ pId´ϕ0q´1.
Now we would like to use (4.5) to derive a nonlinear high-frequency damping estimate and insert

the linear estimates of the previous section in (4.6)-(4.7). Yet, to make the most of the latter, we
must add to the computations of [MR24] a further study of the conservative structure of N rV,ϕs,
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reminiscent of arguments from [JNRZ14]. To do so we begin by splitting A into flux, source and
commutator terms

ArĂW,Φs “ ∇T
´

Af rĂW,Φs

¯

` AsrĂWs ` AcrĂW,Φs

where

Af rĂW,Φs “ Af pĂW,∇ĂW,∇Φq :“ pK r∇Φs´1q
T

pK r∇Φs´1q∇ĂW ` pK r∇Φs´1q
T

pGpĂWq ` c ĂWTq

AcrĂW,Φs “ ApĂW,∇ĂW,∇Φ,∇2Φq

:“
”

|∇Φ|´1,∇T
ı ´

|∇Φ| pK r∇Φs´1q
T

´

pK r∇Φs´1q∇ĂW ` GpĂWq ` c ĂWT
¯¯

,

and AsrĂWs :“ fpĂWq.
The following lemma provides the required structure. Note that by design flux-type terms are

conservative, source-type terms vanish identically in their first r components and commutator terms
contain second-order derivatives of phase shifts as linear factors.

Lemma 4.2. With assumptions and notation from Lemma 4.1,

N rV,ϕs “ ∇T pNf rV,ϕsq ` NsrVs ` NcrV,ϕs

with

Nf rV,ϕs “ Nf pϕt,∇ϕ,V,∇Vq

:“
`

L
ĂW
Af rU, Id´ϕs ´ L

ĂW
Af rU, Ids

˘

pVq ´ U pϕtq
T∇ϕ rI2 ´∇ϕs´1

´ V pϕtq
T

rI2 ´∇ϕs´1 ` Af rU, Id´ϕs ´ Af rU, Ids ´ LΦAf rU, Idsp´ϕq

` Af rU ` V, Id´ϕs ´ Af rU, Id´ϕs ´ L
ĂW
Af rU, Id´ϕspVq ,

NsrVs “ NspVq :“ AsrU ` Vs ´ AsrUs ´ L
ĂW
AsrUspVq ,

NcrV,ϕs “ N pϕt,∇ϕt,∇ϕ,∇2ϕ,V,∇Vq

:“
`

L
ĂW
AcrU, Id´ϕs ´ L

ĂW
AcrU, Ids

˘

pVq ` U∇T
´

pϕtq
T∇ϕ rI2 ´∇ϕs´1

¯

` V∇T
´

pϕtq
T

rI2 ´∇ϕs´1
¯

` AcrU, Id´ϕs ´ AcrU, Ids ´ LΦAcrU, Idsp´ϕq

` AcrU ` V, Id´ϕs ´ AcrU, Id´ϕs ´ L
ĂW
AcrU, Id´ϕspVq .

For later use note that when }∇ϕ} is small and bounded away from 1 and V varies in a compact,
one has the pointwise bounds

}Nf rV,ϕs} À }ϕt} p}V} ` }∇ϕ}q ` }∇V}}∇ϕ} ` p}V} ` }∇ϕ}q
2 ,

}NsrV,ϕs} À }V}2 ,

}NcrV,ϕs} À }∇ϕt} p}V} ` }∇ϕ}q ` }∇2ϕ} p}V} ` }∇V} ` }∇ϕ} ` }ϕt}q .

4.2. Dissipation of nonlinear high-frequency damping estimates. To close estimates in
regularity we shall perform energy estimates on (4.5). Note however that as in [MR24] but unlike
[JNRZ14], the localization we may use to do so is limited. Indeed as apparent in Proposition 3.2,
from ∆ϕ P L1 one may only obtain ∇ϕ P Lp when p ą 2. This limitation is transferred to V and
its derivatives.

Thus we must perform the energy estimates in Lp, p ą 2. Since energy estimates are cleaner
for integer powers of 2, the choice we have made in Theorem 1.1 is to rely on L4 estimates, as in
[MR24].
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Since Btp}V}q4 “ 4 }V}2V ¨BtV, the key ingredient in deriving nonlinear high-frequency damping
estimates is provided by the following lemma.

Lemma 4.3. (1) For any 0 ď η0 ă 1 and any ℓ P N, there exist θ ą 0 and C ě 0 such that for
any ϕ such that }∇ϕ}L8pR2;M2pRqq ď η0 and any V P W ℓ,4pR2;Rnq such that DℓpVq ă `8

and LϕV P W ℓ,4pR2;Rnq

ÿ

|α|“ℓ

ż

R2

}BαV}2 BαV ¨ BαpLϕVq ď ´θDℓpVq4 ` C }V}4L4

´

1 ` }∇2ϕ}
2 p2ℓ`1q

L8

¯

` C}∇ϕ}4W ℓ,4 }V}4W 1,8

where

DℓpVq :“

¨

˝

ÿ

|α|“ℓ

ż

R2

}BαV}2 }∇BαV}2

˛

‚

1
4

.

(2) For any ℓ P N, there exists C such that for any V P W ℓ`1,4pR2;Rnq and any j P N, j ď ℓ,

}∇jV}L4 ď C }V}
1´α
L4 DℓpVqα , with α :“

j

ℓ ` 1
2

.

Lemma 4.3 is identical to [MR24, Lemma 2.8] and the proof provided there also applies to our
present case. We omit to repeat it here.

The content of the lemma is that up to lower order terms W ℓ,4-estimates provide a dissipa-

tion similar, from the point of view of Sobolev embeddings, to a W ℓ` 1
2
,4 damping. Combined

with (4.5) and the low-frequency nature it implies that }Vpt, ¨q}W 2,4 decays at least as fast as
}p∇ϕ,ϕt,Vqpt, ¨q}L4 does.

4.3. Proof of Theorem 1.1. To keep the discussion focused on the large-time analysis we shall
take the local existence of solutions to (4.6)-(4.7) for granted and prove Theorem 1.1 by a continuity
argument. We stress however that one may readily extract from [MR24, Subsection 3.2] the needed
local existence result with blow-up criterion expressed in terms of }pV,∇ϕ,ϕtq}W 1,8 . Since W 2,4

embeds continuously in W 1,8, proving a W 2,4 control is sufficient to guarantee global existence.
Before digging into the proof, we briefly discuss its spirit. Our strategy is to close W 2,4 bounds

alone by a continuity argument then to use those to prove the remaining Lp bounds. When doing
so, the propagation of algebraic decay rates relies on the basic

ż t{2

0

1

p1 ` t ´ τqα

1

p1 ` τqβ
d τ À

1

p1 ` tqα`β´1
, 0 ď α , 0 ď β ă 1 ,

ż t

t{2

1

p1 ` t ´ τqα

1

p1 ` τqβ
d τ À

1

p1 ` tqα`β´1
, 0 ď α ă 1 , 0 ď β .

When estimating critical terms any other estimate would fail to close in decay and thus one must
be able to distribute decay so as to enforce the respective constraints β ă 1 and α ă 1. For flux-
type and source-type nonlinear terms the final count is similar to the nonlinear analysis of [MR24,
Subsection 3.2] and follows from an L2 Ñ L4 bound resulting in the special case

ż t

0

1

p1 ` t ´ τq
3
4

1

p1 ` τq
1
2

d τ À
1

p1 ` tq
1
4

.

However the case of commutator-type terms is significantly different. Since they do not have the
good conservative structure we must benefit from the sharp decay rates of p∇ϕt,∇2ϕq to close the
estimates. Yet when doing so one cannot rely on an L2 Ñ L4 bound that would involve a p1` τq´1
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factor. Instead we leave the purely L4-based analysis and estimate the quadratic NcrV,ϕs in Lq

for some q ă 2.
Let us stress that the current issue differs dramatically from the situation in [MR24] where those

commutator terms turn out to be subcritical thus asymptotically irrelevant so that they may be
estimated in a non sharp way. A similar issue does occur in [JNRZ14] but since, there, one does
not need to cope with severe restriction in localization it does not require much attention. To be
more explicit on the latter we recall that on one hand ∇ϕ does not belong to L2 and that on the
other hand in the present multidimensional case involving Lp estimates of pV,∇ϕq, or of any of
their derivatives, with p ă 2 could result in supercritical decay rates and thus must be avoided
in any case. Incidentally we point out that the difficulty to overcome so as to analyze the critical
decay dynamics for small solutions of the two-dimensional barotropic compressible Navier-Stokes
system is precisely of this kind; see the discussion in [Rod07].

Here the fix is that in the closing of W 2,4 bounds we need to also involve a sharp control on
p∇ϕt,∇2ϕq in Lp for some 2 ď p ă 4 enabling a control of NcrV,ϕs in Lq with 1{q “ 1{4 ` 1{p
leading to a bound

ż t

0

1

p1 ` t ´ τq
1
p

1

p1 ` τq
5
4

´ 1
p

d τ À
1

p1 ` tq
1
4

.

With this mind we chose p “ 2 in the above discussion and introduce for any T ą 0 such that
pV,ϕq is defined on r0, T s,

ζpT q :“ max
0ďtďT

p1 ` tq
1
4 }pV,∇ϕ,ϕtqpt, ¨q}W 2,4 ` max

0ďtďT
p1 ` tq

1
2 }pJV,∇2ϕ,∇ϕtqpt, ¨q}L2 .

Before moving on, we would like to comment further on the introduction of JV. Let us first observe
that from (4.6) it follows that when t ě 1, ϕpt, ¨q is low-frequency so that }p∇2ϕ,∇ϕtqpt, ¨q}L2 “

}pJ∇ϕ,Jϕtqpt, ¨q}L2 . Moreover, when estimating the contribution to pJϕt,J∇ϕqpt, ¨q of conser-
vative terms in integrals over rt{2, ts, one cannot leave all the decay on the semigroup part since
this would violate the α ă 1 constraint. Instead we distribute the J operator on pNf rV,ϕs,NsrVsq

which is only useful if further decay on JV is proved simultaneously.
To begin with, note that a W 2,4 energy estimate based on (4.5) and Lemma 4.3 yields for some

positive constant ω and C, that if ζpT q is defined and sufficiently small, for any 0 ď t ď T ,

}Vpt, ¨q}4W 2,4 ď C E4
0 e´ω t

` C

ˆ

max
0ďtďT

p1 ` tq
1
4 p}Vpt, ¨q}L4 ` }p∇ϕ,ϕtqpt, ¨q}W 2,4q

˙4 ż t

0
e´ω pt´τq d τ

p1 ` τq
.

This implies for some positive constant C, that if ζpT q is defined and sufficiently small

max
0ďtďT

p1 ` tq
1
4 }Vpt, ¨q}W 2,4 ď C E0 ` C max

0ďtďT
p1 ` tq

1
4 p}Vpt, ¨q}L4 ` }p∇ϕ,ϕtqpt, ¨q}W 2,4q .

Then proceeding as sketched above to estimate (4.6)-(4.7) with linear estimates of the previous
section one derives for some positive constant C, that if ζpT q is defined and sufficiently small, for
any 0 ď t ď T ,

}Vpt, ¨q}L4 ` }p∇ϕ,ϕtqpt, ¨q}W 2,4

ď
C E0

p1 ` tq
1
4

` C ζpT q2

˜

ż t

0

1

p1 ` t ´ τq
3
4

1

p1 ` τq
1
2

d τ `

ż t

0

1

p1 ` t ´ τq
1
2

1

p1 ` τq
3
4

d τ

¸

.

This implies for some positive constant C, that if ζpT q is defined and sufficiently small,

max
0ďtďT

p1 ` tq
1
4 p}Vpt, ¨q}L4 ` }p∇ϕ,ϕtqpt, ¨q}W 2,4q ď C E0 ` C ζpT q2 .
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Inserting this into the above W 2,4 bound yields for some positive constant C, that if ζpT q is defined
and sufficiently small,

max
0ďtďT

p1 ` tq
1
4 }pV,∇ϕ,ϕtqpt, ¨q}W 2,4 ď C E0 ` C ζpT q2 .

It remains to bound pJV,∇2ϕ,∇ϕtq. This is both by far the most technical part and the part
that differs the most from arguments of [JNRZ14, MR24]. Let us begin by the elementary remark
that both the time-layer contributions arising from rχ and the sp0qN rVpt, ¨q,ϕpt, ¨qs contributions
to ϕtpt, ¨q are readily estimated.

At this stage it is convenient to split V as V “ VLF ` VHF according to

VLF pt, ¨q :“ S2ptq rV0 ` pϕ0 ¨ ∇qUs `

ż t

0
S2pt ´ τqN rVpτ, ¨q,ϕpτ, ¨qsd τ .

Then benefiting from the exponential decay of S1 one derives for some positive constant C, that if
ζpT q is defined and sufficiently small,

max
0ďtďT

p1 ` tq
1
2 }VHF pt, ¨q}H1 ď C E0 ` C ζpT q2 .

This contains the needed bound on }JVHF }L2 . It also implies through L
4
3 Ñ L2 bounds on S2 and

Bts that the contribution of N rV,ϕs´N rVLF ,ϕs to }pJVLF ,∇2ϕ,∇ϕtqpt, ¨q}L2 may be estimated
when 0 ď t ď T by a multiple of

pE0 ` ζpT q2q2
ż t

0

1

p1 ` t ´ τq
3
4

1

p1 ` τq
3
4

d τ À
pE0 ` ζpT q2q2

p1 ` tq
1
2

.

To apply Lemma 2.3 to the bilinear part of N rVLF ,ϕs, let us observe that the contribution of
the higher-order — thus at least cubic — part of N rVLF ,ϕs may be estimated similarly through

L
4
3 Ñ L2 bounds leading to bounds by a multiple of ζpT q3 p1 ` tq´ 1

2 . Likewise L
4
3 Ñ L2 linear

bounds are also sufficient to deal with (the rest of) the contribution of NcrVLF ,ϕs and yield a

bound by a multiple of ζpT q2 p1 ` tq´ 1
2 .

There remains to estimate the contributions of the bilinear parts of Nf rVLF ,ϕs and NsrVLF ,ϕs

to }pJV,∇2ϕ,∇ϕtq}L2 . Since, when doing so, we may involve }JV}L2 but not }J∇V}L2 , let
us observe that in (the bilinear part of) Nf rVLF ,ϕs we may factorize all derivatives on V up to
commutator terms that may be treated as NcrVLF ,ϕs was and thus use regularizing effects of
S2 and s. For the remainders contributions we estimate the r0, t{2s-part of the integral through
L2 Ñ L2 linear bounds resulting in a multiple of

ζpT q2
ż t{2

0

1

p1 ` t ´ τq

1

p1 ` τq
1
2

d τ À
ζpT q2

p1 ` tq
1
2

,

whereas in the rt{2, ts-part of the integral we distribute the J operator on the bilinear low-Floquet

terms along Lemma 2.3 with m “ 2 and then use L
3
2 Ñ L2 linear bounds deriving an estimate by

a multiple of ζpT q2 p1 ` tq´ 1
2 .

This completes the proof that for some positive constant C, if ζpT q is defined and sufficiently
small,

ζpT q ď C pE0 ` ζpT q2q p1 ` E0 ` ζpT q2q .

In turn this implies for the same C, that provided that E0 is sufficiently small, if the solution
exists on r0, T s and satisfies ζpT q ď 3C E0 then it also satisfies ζpT q ď 2C E0. From a continuity
argument one deduces that the solution is defined on R` and satisfies

sup
tě0

p1 ` tq
1
4 }pV,∇ϕ,ϕtqpt, ¨q}W 2,4 ` sup

tě0
p1 ` tq

1
2 }pJV,∇2ϕ,∇ϕtqpt, ¨q}L2 ď 2C E0 .
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To complete the proof of Theorem 1.1 there only remains to notice that this is sufficient to derive
the claimed Lp bounds. Incidentally we point out that we have decided to keep the derivation of
those Lp bounds simple but a finer analysis in the spirit of the above J -analysis would remove the
lnp2 ` tq factor of the L8 bound.

5. Maximal decay regime

We now focus on the proof of Theorem 1.2. For the sake of comparison we point out that the
closest statement in [MR24] is [MR24, Theorem 1.2], which is a subcritical but not a maximal decay
regime there.

Linear estimates. Most of the elements of the proof of Theorem 1.1 may be reused as they are
but we need to revisit the linear estimates for initial phase modulations provided by Proposition 3.2
and Lemma 3.3. Phases are here obtained from their gradient through ϕ “ ´p´∆q´1 ∇Tp∇ϕq.
Slight variations on the original proofs provide the relevant replacements.

Proposition 5.1. Assume (D1)-(D2)-(D3).

(1) There exists θ1 ą 0, such that, for any ps, s1q P R` such that s1 ď s and any pp0, p1q such
that 2 ă p0 ă p1 ă 8, there exists Cp0,p1,s,s1 such that for any t ą 0, and any p0 ď p ď p1,

}S1ptqrpϕ ¨ ∇qUs}W s,p ď
Cp0,p1,s,s1

pminpt1, tuqq
ps´ps1`1qq

2

e´θ1 t }∇ϕ}L1XHs1 .

(2) For any α P N2 and any s P R`, there exists Cα,s such that for any 2 ď p ď `8 and any
t ě 0

}J αS2ptqrpϕ ¨ ∇qUs}W s,p ď
Cα,s

p1 ` tq
|α|

2
`1´ 1

p

}∇ϕ}L1 .

(3) For any α P N2, any β P N2, any ℓ P N and any 2 ď p ď `8 such that |α| ` |β| ` ℓ ě 1
or p ą 2, there exists Cp,α,β,ℓ such that for any t ě 0

} Bα
x Bℓ

t J β sptqrpϕ ¨ ∇qUs}Lp ď
Cp,α,ℓ

p1 ` tq
|α|`|β|`ℓ

2
` 1

2
´ 1

p

}∇ϕ}L1 .

For the sake of comparison we have kept the J operator in the above statement but it is of no
use in the proof of Theorem 1.2.

Lemma 5.2. Assume (D1)-(D2)-(D3). For any α P N2, any ℓ P N and any 2 ď p ď `8 such
that p ă 8 if |α| ě 1, there exists Cp,α such that for any t ě 0

} Bα
x psptqrpϕ ¨ ∇qUs ´ ϕq }Lp ď Cp,α }∇ϕ}

L1XW p|α|´1q`,p

$

&

%

p1 ` tq
1
2

´

2
p

´|α|

¯

` if |α| ´ 2
p ‰ 0

lnp2 ` tq otherwise
.

Nonlinear high-frequency damping estimate. To propagate the better localization we com-
plete the L4-dissipation estimates of Lemma 4.3 with standard L2-based energy estimates that we
omit to state. Actually it would be possible here to obtain a statement similar to Theorem 1.2 with
purely L2-based damping estimates.
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Proof of Theorem 1.2. As in the proof of Theorem 1.1 we first close a first round of bounds by
a continuity argument and then prove the remaining bounds using the first ones. A convenient set
of norms in order to achieve the nonlinear closing part is

ζpT q :“ max
0ďtďT

p1 ` tq
3
4 }pV,∇ϕ,ϕtqpt, ¨q}W 2,4 ` max

0ďtďT
p1 ` tq

5
4 }p∇2ϕ,∇ϕtqpt, ¨q}L4

` max
0ďtďT

p1 ` tq
1
2 }pV,∇ϕ,ϕtqpt, ¨q}H2 ` max

0ďtďT
p1 ` tq }p∇2ϕ,∇ϕtqpt, ¨q}L2 .

The mixed L2{L4 framework is designed to be able to place nonlinear terms both in L1 and in
L2. Note that we do not need to involve the J operator mostly because there is less difficulty to
propagate even high decay rates in a subcritical regime.

Before giving some more concrete elements we point out that in subcritical regimes one make an
intensive use of

ż t{2

0

1

p1 ` t ´ τqα

1

p1 ` τqβ
d τ À

1

p1 ` tqβ
, 0 ď α , 1 ă β ,

ż t

t{2

1

p1 ` t ´ τqα

1

p1 ` τqβ
d τ À

1

p1 ` tqβ
, 1 ă α , 0 ď β ,

and
ż t{2

0

1

p1 ` t ´ τqα

1

p1 ` τq
d τ À

lnp2 ` tq

p1 ` tqα
, 0 ď α ,

ż t

t{2

1

p1 ` t ´ τq

1

p1 ` τqβ
d τ À

lnp2 ` tq

p1 ` tqβ
, 0 ď β .

To evaluate the r0, t{2s-part of the integrals we use L1 Ñ Lp bounds, with p “ 2, 4, resulting in
bounds by multiples of the following quantities

(1) when estimating the contribution of flux and source terms to }pV,∇ϕ,ϕtqpt, ¨q}Lp

ζpT q2
ż t{2

0

1

p1 ` t ´ τq
1
2

`1´ 1
p

1

p1 ` τq
d τ À

ζpT q2 lnp2 ` tq

p1 ` tq
1
2

`1´ 1
p

À
ζpT q2

p1 ` tq
1´ 1

p

(2) when estimating the contribution of commutator terms to }pV,∇ϕ,ϕtqpt, ¨q}Lp

ζpT q2
ż t{2

0

1

p1 ` t ´ τq
1´ 1

p

1

p1 ` τq
3
2

d τ À
ζpT q2

p1 ` tq
1´ 1

p

and similarly with extra p1`t´τq´ 1
2 and p1`tq´ 1

2 factors for contributions to }p∇2ϕ,∇ϕtqpt, ¨q}Lp .
In turn, to evaluate the rt{2, ts-part of the integrals we use L2 Ñ Lp bounds, with p “ 2, 4,

resulting in bounds by multiples of the following quantities

(1) when estimating the contribution of flux and source terms to }p∇2ϕ,∇ϕtqpt, ¨q}Lp

ζpT q2
ż t

t{2

1

p1 ` t ´ τq
1
2

`1´ 1
p

1

p1 ` τq
3
2

d τ À
ζpT q2

p1 ` tq
3
2

À
ζpT q2

p1 ` tq
3
2

´ 1
p

(2) when estimating the contribution of commutator terms to }p∇2ϕ,∇ϕtqpt, ¨q}Lp

ζpT q2
ż t

t{2

1

p1 ` t ´ τq
1´ 1

p

1

p1 ` τq2
d τ À

ζpT q2

p1 ` tq
3
2

´ 1
p

and similarly with extra p1` t´ τq
1
2 and p1` tq

1
2 factors for contributions to }pV,∇ϕ,ϕtqpt, ¨q}Lp .

This is essentially sufficient to close the continuity argument and then prove the rest of the
bounds. Again we have decided not to put too much energy in removing spurious lnp2 ` tq factors
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but we’d like to point out that one way to discard those here is to prove and use estimates that
are deteriorated by dispersion, the subcriticality compensating for the dispersive loss. We refer to
[MR24] for related analyses.

In subcritical regimes one expects nonlinear contributions to be asymptotically irrelevant. Yet
our proof does not establish this claim in the present situation. Further work would be needed to
prove it and again we refer to [MR24] for related analyses.

Appendix A. Extensions to multiD

We now turn our attention to higher dimensional cases. When going to higher dimensions the
variety of scenarios to consider increases both in types of periodic waves and in range of possible
localizations between maximal and critical decay. We focus here on genuinely d-dimensional periodic
waves in dimension d and critically localized perturbations. We expect the treatment of more
localized perturbations to follow by an easier version of the argument and we refer the reader to
[JZ10] for an example of analysis near a 1D wave in dimension d ě 3 under subcritical perturbations.

The translation of the problem in the multidimensional framework is immediate. In the set
of assumptions the only significant change is that in (D1), 0 is assumed to be an eigenvalue
of L0 of multiplicity d ` r. From the point of view of time decay, any part of the decay due
to cancellation at low-Floquet exponents, arising for instance by taking derivatives on phases, is
insensitive to dimension whereas variations in Lebesgue indices do feel the dimension, 1{q and 1{p
being now preceded by a d{2 slope. We choose to encode the critical localization assumption as

p´∆q
d
2ϕ0 P L1pRdq. Note that ∇dϕ0 P L1pRdq or, when d is odd, p´∆q

d´1
2 ∇ϕ0 P L1pRdq would

also be reasonable nonequivalent choices.

3D. Despite immediate similarities in arbitrary dimension the only dimension where our analysis
transfers almost word by word is dimension d “ 3, resulting in the following result.

Theorem A.1 (d=3). Set d “ 3 and consider a d-D periodic wave in Rd satisfying the d-D version
of diffuse spectral stability (D1)-(D2)-(D3). There exist ε0 ą 0 and C ą 0 such that if for some
sublinear8 ϕ0

E0 :“ }W0p¨ ´ ϕ0q ´ U}pHminpt2;duqXW 2,4qpRd;Rnq ` }p´∆q
d
2ϕ0}pL1XW 3´d,4qpRd;Rdq ď ε0

then, there exist a unique global solution with initial datum W0 and a phase shift ϕ with ϕp0, ¨q “ ϕ0

such that, for any t ě 0,

}Wpt, ¨ ´ ϕpt, ¨qq ´ U}W 2,4pRd;Rnq ` }∇ϕpt, ¨q}W 2,4pRd;MdpRqq ` }Btϕpt, ¨q}W 2,4pRd;Rdq ď
C E0

p1 ` tq
1
2

´ d
2

1
4

.

Furthermore, with pd defined by 1{pd :“ 1{2 ´ 1{d, constants independent of pW0,ϕ0q and no
further restriction on E0,

(1) for any t ě 0,

}Wpt, ¨ ´ ϕpt, ¨qq ´ U}Lpq pRd;Rnq ` }∇ϕpt, ¨q}L8pRd;MdpRqq ` }Btϕpt, ¨q}L8pRd;Rdq ď C E0
lnp2 ` tq

p1 ` tq
1
2

´ d
2

1
pd

;

(2) for any d ă p0 ă q0 ă pd, there exists a constant Cp0,q0 ą 0, such that for any p P rp0, q0s,
and any t ě 0

}Wpt, ¨ ´ ϕpt, ¨qq ´ U}LppRd;Rnq ` }∇ϕpt, ¨q}LppRd;MdpRqq ` }Btϕpt, ¨q}LppRd;Rdq ď
Cp0,q0 E0

p1 ` tq
1
2

´ d
2

1
p

.

8By this, we mean that ϕ0 may differ from p´∆q
´ d

2 pp´∆q
d
2 ϕ0q only by a constant function.
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Despite the fact that the previous statement only holds in dimension d “ 3 we have placed
the general letter d in most places to facilitate the later comparison with the general case. In Lp

bounds, we stress that p ą d is a hard constraint, the functions of interest do not belong to Ld,
whereas p ă pd is a soft constraint, our method of proof does not give sharp decay rates when
p ą pd because of the saturation of some time-integration constraints.

Since the proof of the foregoing theorem is essentially identical to the one of Theorem 1.1 we
only discuss parts where in principle dimension could matter.

(1) To begin with we note that, in dimension 3, the two Sobolev embeddings used in the proof
still hold, namely H1 embeds in L4 and W 2,4 embeds in W 1,8.

(2) More importantly, in dimension 3, p´∆q
3
2ϕ0 P L1 X L4 does imply both ∇ϕ P W 2,4 and

∇2ϕ P L2. This follows from ξ ÞÑ }ξ}´pd´1q P L41

and ξ ÞÑ }ξ}´pd´2q P L21

.
(3) All the time-integration constraints are satisfied. With this respect we point out that due

to the monotonicity in d of the involved time powers only the powers of p1 ` t ´ τq in the
rt{2, ts parts of the integrals must be checked. To mention only the worst constraints, with
d “ 3 one still has

d

2

ˆ

1

2
´

1

4

˙

`
1

2
ă 1 ,

d

2

ˆ

3

4
´

1

4

˙

ă 1 .

(4) The L2-based estimates used to bound contributions associated with S1 are better than the
aimed L4 estimates. Indeed with d “ 3, 1 ´ d

2
1
2 ě 1

2 ´ d
2
1
4 .

General dimension. Let us now return to the discussion of the general multiD case and examine
whether one may modify some of the arbitrary choices made in the proof of Theorem 1.1 so as to
relax the constraint d ď 3. We need to pick r1 and r2 to place pV,∇ϕq P W s,r1 (for some sufficiently
large s) and pJV,∇2ϕq P Lr2 . The first hard constraint is that this should be compatible with

assumptions on p´∆q
d
2ϕ0, namely with ξ ÞÑ }ξ}´pd´1q P Lr1

1 and ξ ÞÑ }ξ}´pd´2q P Lr1
2 . Those are

equivalent to r1 ą d and r2 ą d{2. Yet this would place nonlinear terms only in Lr1{2 with r1{2 ą 2
when d ě 4. This is incompatible with the kind of linear bounds that we have proved here by
resorting mostly to Hausdorff-Young inequalities.

A possible way out would be to distribute powers of J , this time not to balance time decay but
to enhance localization. Note in particular that for 0 ď ℓ ă d, one may derive ∇ℓϕ P Lrℓ when
rℓ ą d{ℓ.

Since the constraint d ď 3 already covers most of cases of practical interest we restrain ourselves
from delving into this avenue and leave this for possible future work. In any case we recall that
we expect that with the techniques of the present contribution the maximal decay regime could be
covered in any dimension in a more elementary way.
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