Feuille d'exercices nº 4

RECHERCHE DE MODES PROPRES

Exercice 1. Théorème de Gerschgorin.

Soit $n \in \mathbf{N}^*$ et $A \in \mathcal{M}_n(\mathbf{C})$. Montrer que

$$\sigma(A) \subset \bigcup_{i=1}^{n} \left\{ \lambda \in \mathbf{C} \mid |\lambda - A_{i,i}| \leq \sum_{j \neq i} |A_{i,j}| \right\}.$$

Exercice 2. Discrétisation du laplacien.

Soit $N \in \mathbb{N}$, $N \geq 2$. On définit $A \in \mathcal{M}_N(\mathbf{R})$ par, pour tout $(i,j) \in [1,N]^2$,

$$A_{i,j} = \begin{cases} 2(N+1)^2 & \text{si } i = j \\ -(N+1)^2 & \text{si } |i-j| = 1 \\ 0 & \text{sinon} \end{cases}.$$

1. Intégration par parties discrète.

Montrer que, pour tout $(f_0, \dots, f_N) \in \mathbf{R}^{N+1}$ et tout $(g_0, \dots, g_{N+1}) \in \mathbf{R}^{N+2}$,

$$\sum_{i=0}^{N} f_i (g_{i+1} - g_i) = - \sum_{i=1}^{N} (f_i - f_{i-1}) g_i + (f_N g_{N+1} - f_0 g_0) .$$

- 2. En déduire que A est symétrique définie positive.
- 3. Soit $k \in [1, N]$. On définit le vecteur $v^{(k)}$ par

$$v_j^{(k)} = \sin\left(\frac{k\pi j}{N+1}\right), \quad \text{pour } j \in [1, N].$$

Montrer que $v^{(k)}$ est un vecteur propre de A associé à une valeur propre à préciser.

4. Calculer $||A^{(N)}||_1$, $||A^{(N)}||_{\infty}$, $||A^{(N)}||_2$ et $\operatorname{Cond}_2(A^{(N)})$.

Commentaire : les résultats des trois premières questions sont évidemment cohérents avec le fait que A est une discrétisation en les nœuds $\left(\frac{j}{N+1}\right)_{1\leq j\leq N}$ de l'opérateur $f\mapsto -f''$ agissant sur les fonctions $f:[0,1]\to\mathbf{R}$ telles que f(0)=f(1)=0.

Exercice 3. Méthode de la puissance.

On considère la matrice

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

- 1. Calculer les modes propres de A.
- 2. Soit $x \in \mathbb{C}^2$ non nul.
 - (a) Calculer $(A^k x)_{k \in \mathbf{N}}$.
 - (b) On pose $(x^{(k)})_{k\in\mathbf{N}}=\left(\frac{A^kx}{\|A^kx\|}\right)_{k\in\mathbf{N}}$. À quelle condition sur x la suite

$$\left(\left\langle x^{(k)}, Ax^{(k)} \right\rangle\right)_{k \in \mathbf{N}}$$

converge-t-elle vers une valeur propre de A?

Exercice 4. Méthode QR.

Calculer les itérations successives de la méthode QR de recherche de valeurs propres pour la matrice

$$A = \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix}.$$

Qu'en conclure?