Devoir nº 2

L'étudiant attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Il veillera à justifier soigneusement toutes ses réponses.

Les exercices sont réputés indépendantes et peuvent donc être traités dans n'importe quel ordre.

Exercice 1. Soit $\lambda \in \mathbb{C}^*$. On munit \mathbb{C}^2 de sa structure hermitienne canonique et l'on considère

$$A = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}.$$

- 1. Donner explicitement $(A^k)_{k \in \mathbb{N}}$. Consigne : on veillera à démontrer le résultat.
- 2. En déduire que si $X_0 = (x_0, y_0)$ est tel que $y_0 \neq 0$ alors la méthode de la puissance partant de X_0 est définie globalement et la suite $(X_k)_{k \in \mathbb{N}}$ ainsi construite vérifie

$$X_k \stackrel{k \to \infty}{=} \left(\frac{\lambda}{|\lambda|}\right)^{(k-1)} \left(\frac{y_0}{|y_0|}, 0\right) + \mathcal{O}\left(\frac{1}{k}\right) \qquad \text{et} \qquad \langle X_k, AX_k \rangle \stackrel{k \to \infty}{=} \lambda + \mathcal{O}\left(\frac{1}{k}\right)$$

où $\langle \cdot, \cdot \rangle$ désigne le produit scalaire hermitien canonique (linéaire en son second membre).

Exercice 2. On cherche à approcher un zéro par dichotomie. On part d'un intervalle de longueur 4. Au bout de combien d'itérations peut-on obtenir un intervalle de longueur 2^{-6} dans lequel on peut garantir que se trouve un zéro?

Exercice 3. On considère la fonction

$$f: \mathbf{R} \to \mathbf{R}, \quad x \mapsto x^3 - x^2.$$

- 1. Déterminer les zéros de f.
- 2. Pour lesquels de ces zéros peut-on assurer que le calcul approché par la méthode de Newton converge au moins à l'ordre 2?
- 3. Calculer les deux premières itérations de la méthode de Newton partant des points suivants

(a)
$$x_0 = 1/4$$
; (b) $x_0 = 3/2$.

Exercice 4. Pour chacune des propositions, décider si elle est vraie ou fausse, et surtout justifier avec précision cette réponse par une démonstration ou un contre-exemple. Attention : aucune réponse ne sera prise en compte sans justification.

- 1. Appliquée à $A = \begin{pmatrix} 1 & 1 \\ 0 & -2 \end{pmatrix}$, la méthode QR produit une suite convergente de matrices $(A_k)_{k \in \mathbb{N}}$.
- 2. La fonction $\Phi: \mathbf{R} \to \mathbf{R}, x \mapsto \frac{1}{2}x + \cos(\frac{x}{5})$ est strictement contractante.
- 3. Pour tout a > 0, les points critiques de $f_a : \mathbf{R} \to \mathbf{R}$, $x \mapsto a x^2 + 3x + 1$ sont des minima globaux.
- 4. Les points critiques de la fonction $f: \mathbf{R}^2 \to \mathbf{R}$, $(x,y) \mapsto xy x y$ sont des extrema locaux.