Contrôle continu nº 2: Correction

Rappel de notations : On rappelle les conventions suivantes

— les coefficients de Fourier $T\mathbf{Z}$ -périodiques d'une fonction L^1_{loc} $T\mathbf{Z}$ -périodique sont définis par

$$c_j^T(u) = \frac{1}{T} \int_0^T e^{-\frac{2i\pi j}{T}x} u(x) dx, \qquad j \in \mathbf{Z}$$

— la transformée de Fourier est donnée pour les fonctions intégrables sur \mathbf{R}^d par

$$\mathcal{F}(u)(\xi) = \int_{\mathbf{R}^d} e^{-i\xi \cdot x} u(x) dx, \qquad \xi \in \mathbf{R}^d.$$

De plus,

— pour $k \in \mathbb{N}$, on note $H_{\text{pér}}^k(]a, a+T[)$ l'adhérence des polynômes trigonométriques $T\mathbf{Z}$ -périodiques dans $H^k(]a, a+T[)$, et l'on pose

$$H_{\text{pér}}^{\infty}(]a, a+T[) = \bigcap_{k \in \mathbb{N}} H_{\text{pér}}^{k}(]a, a+T[)$$

— pour $k \in \mathbb{N}$, on note $H_0^k(]a, b[)$ l'adhérence dans $H^k(]a, b[)$ des fonctions \mathcal{C}^{∞} à support compact dans [a, b[, et l'on pose

$$H_0^{\infty}(]a,b[) = \cap_{k \in \mathbb{N}} H_0^k(]a,b[).$$

Exercise 1. Déterminer les coefficients de Fourier Z-périodiques des fonctions suivantes.

1. $\cos(2\pi \cdot)$

 $2. \sin(8\pi \cdot)$

3. $1 + \cos(4\pi \cdot) + \sin(8\pi \cdot)$

- 4. $\cos(2\pi \cdot)^2 + \sin(8\pi \cdot)^3$
- 5. $\cos(2\pi \cdot) \sin(8\pi \cdot)$
- 6. $\cos(2\pi \cdot) \sin(2\pi \cdot)^4$

Correction:

Il suffit de décomposer chaque fonction dans la base de Fourier. On peut aussi calculer les coefficients à la main mais c'est plus long. Dans la suite on note c_j pour c_j^1 de la fonction étudiée.

1. On a

$$\forall x \in \mathbf{R}, \quad \cos(2\pi x) = \frac{1}{2} \left(e^{2i\pi x} + e^{-2i\pi x} \right)$$

de sorte que

$$c_1 = c_{-1} = \frac{1}{2}$$
 et $\forall j \notin \{-1, 1\}, \ c_j = 0.$

2. On a

$$\forall x \in \mathbf{R}, \quad \sin(8\pi x) = \frac{1}{2i} \left(e^{8i\pi x} - e^{-8i\pi x} \right)$$

de sorte que

$$c_4 = \frac{1}{2i}$$
, $c_{-4} = -\frac{1}{2i}$ et $\forall j \notin \{-4, 4\}, c_j = 0$.

3. On a

$$\forall x \in \mathbf{R}, \quad 1 + \cos(4\pi x) + \sin(8\pi x) = 1 + \frac{1}{2} \left(e^{4i\pi x} + e^{-4i\pi x} \right) + \frac{1}{2i} \left(e^{8i\pi x} - e^{-8i\pi x} \right)$$

de sorte que

$$c_0 = 1$$
, $c_2 = c_{-2} = \frac{1}{2}$, $c_4 = \frac{1}{2i}$, $c_{-4} = -\frac{1}{2i}$ et $\forall j \notin \{-4, -2, 0, 2, 4\}$, $c_j = 0$.

4. On a

$$\forall x \in \mathbf{R}, \quad \cos(2\pi x)^2 + \sin(8\pi x)^3 = \frac{1}{4} \left(e^{2i\pi x} + e^{-2i\pi x} \right)^2 - \frac{1}{8i} \left(e^{8i\pi x} - e^{-8i\pi x} \right)^3$$
$$= \frac{1}{2} + \frac{1}{4} e^{4i\pi x} + \frac{1}{4} e^{-4i\pi x} + \frac{3}{8i} e^{8i\pi x} - \frac{3}{8i} e^{-8i\pi x} - \frac{1}{8i} e^{24i\pi x} + \frac{1}{8i} e^{-24i\pi x}$$

de sorte que

$$c_0 = \frac{1}{2}$$
, $c_2 = c_{-2} = \frac{1}{4}$, $c_4 = \frac{3}{8i}$, $c_{-4} = -\frac{3}{8i}$, $c_{12} = -\frac{1}{8i}$, $c_{-12} = \frac{1}{8i}$

et

$$\forall j \notin \{0, \pm 2, \pm 4, \pm 12\}, \ c_j = 0.$$

5. On a

$$\forall x \in \mathbf{R}, \quad \cos(2\pi x)\sin(8\pi x) = \frac{1}{4i} \left(e^{2i\pi x} + e^{-2i\pi x} \right) \left(e^{8i\pi x} - e^{-8i\pi x} \right)$$
$$= \frac{1}{4i} e^{6i\pi x} - \frac{1}{4i} e^{-6i\pi x} + \frac{1}{4i} e^{10i\pi x} - \frac{1}{4i} e^{-10i\pi x}$$

de sorte que

$$c_3 = c_5 = \frac{1}{4i}$$
, $c_{-3} = c_{-5} = -\frac{1}{4i}$ et $\forall j \notin \{-5, -3, 3, 5\}$, $c_j = 0$.

6. On a

$$\begin{aligned} \forall x \in \mathbf{R} \,, \quad \cos(2\pi x)\sin(2\pi x)^4 &= \frac{1}{32} \left(\mathrm{e}^{2\mathrm{i}\pi x} + \mathrm{e}^{-2\mathrm{i}\pi x} \right) \left(\mathrm{e}^{2\mathrm{i}\pi x} - \mathrm{e}^{-2\mathrm{i}\pi x} \right)^4 \\ &= \frac{1}{32} \left(\mathrm{e}^{2\mathrm{i}\pi x} + \mathrm{e}^{-2\mathrm{i}\pi x} \right) \left(6 - 4\mathrm{e}^{4\mathrm{i}\pi x} - 4\mathrm{e}^{-4\mathrm{i}\pi x} + \mathrm{e}^{8\mathrm{i}\pi x} + \mathrm{e}^{-8\mathrm{i}\pi x} \right) \\ &= \frac{1}{16} \mathrm{e}^{2\mathrm{i}\pi x} + \frac{1}{16} \mathrm{e}^{-2\mathrm{i}\pi x} - \frac{3}{32} \mathrm{e}^{6\mathrm{i}\pi x} - \frac{3}{32} \mathrm{e}^{-6\mathrm{i}\pi x} + \frac{1}{32} \mathrm{e}^{10\mathrm{i}\pi x} + \frac{1}{32} \mathrm{e}^{-10\mathrm{i}\pi x} \end{aligned}$$

de sorte que

$$c_1 = c_{-1} = \frac{1}{16}$$
, $c_3 = c_{-3} = -\frac{3}{32}$, $c_5 = c_{-5} = \frac{1}{32}$ et $\forall j \notin \{\pm 1, \pm 3, \pm 5\}$, $c_j = 0$.

Exercise 2. Soit (E, μ) un espace mesuré, $\omega : E \to \mathbf{R}_+$ et $f : E \to \mathbf{R}$ mesurables, $(s_0, s_1) \in \mathbf{R}^2$, $(p_0, p_1) \in [1, \infty]^2$ et $\theta \in [0, 1]$. On définit $(s_\theta, p_\theta) \in \mathbf{R} \times [1, \infty]$ par

$$s_{\theta} = s_0 (1 - \theta) + s_1 \theta,$$
 $\frac{1}{p_{\theta}} = \frac{1 - \theta}{p_0} + \frac{\theta}{p_1}.$

Montrer que

$$\|\omega^{s_{\theta}} f\|_{L^{p_{\theta}}} \le \|\omega^{s_{0}} f\|_{L^{p_{0}}}^{1-\theta} \|\omega^{s_{1}} f\|_{L^{p_{1}}}^{\theta}.$$

Correction:

Notons qu'on a l'identité

$$1 = \frac{(1-\theta)p_{\theta}}{p_0} + \frac{\theta p_{\theta}}{p_1}$$

de sorte que par inégalité d'Hölder on a

$$\int_{E} |\omega^{s_{\theta}} f|^{p_{\theta}} d\mu = \int_{E} |\omega^{s_{0}} f|^{(1-\theta)p_{\theta}} |\omega^{s_{1}} f|^{\theta p_{\theta}} d\mu
\leq \left(\int_{E} |\omega^{s_{0}} f|^{p_{0}} \right)^{\frac{(1-\theta)p_{0}}{p_{\theta}}} \left(\int_{E} |\omega^{s_{1}} f|^{p_{1}} d\mu \right)^{\frac{\theta}{p_{1}} p_{\theta}} = \left(\|\omega^{s_{0}} f\|_{L^{p_{0}}}^{1-\theta} \|\omega^{s_{1}} f\|_{L^{p_{1}}}^{\theta} \right)^{p_{\theta}}.$$

Exercise 3. Pour $(a, b, c, d) \in \mathbb{R}^4$, on considère

$$f_{a,b,c,d}:]0,1[\to \mathbf{R}, \quad x \mapsto a x^2 + b x + c + d \cos(2\pi x).$$

- 1. Déterminer en fonction de $(a, b, c, d) \in \mathbf{R}^4$ le plus grand $k \in \mathbf{N} \cup \{\infty\}$ tel que $f_{a,b,c,d} \in H^k_{pér}([0,1])$.
- 2. Déterminer en fonction de $(a, b, c, d) \in \mathbf{R}^4$ le plus grand $k \in \mathbf{N} \cup \{\infty\}$ tel que $f_{a,b,c,d} \in H_0^k(]0,1[)$.

Correction:

1. On a la caractérisation suivante :

$$u \in H^k_{p\acute{e}r}(]0,1[)$$
 si et seulement si $u \in H^k(]0,1[)$ et $\forall j \leq k-1\,,\ u^{(j)}(0)=u^{(j)}(1).$

Comme pour toutes valeurs de $a, b, c, d, f_{a,b,c,d}$ est une fonction lisse, il suffit de vérifier la condition de périodicité. Comme $c + d\cos(2\pi \cdot)$ est périodique, il suffit de vérifier la partie en $x \mapsto ax^2 + bx$. En évaluant la fonction et ses dérivées en 0 et en 1 on obtient

- si $a + b \neq 0$, alors k = 0;
- si a + b = 0 et $a \neq 0$, alors k = 1;
- si a = b = 0 alors $k = \infty$.
- 2. De façon similaire, on vérifie cette fois que la fonction et ses dérivées s'annulent au bord puisqu'on a la caractérisation :

$$u \in H_0^k \big(]0,1[\big)$$
 si et seulement si $u \in H^k \big(]0,1[\big)$ et $\forall j \leq k-1 \, , \ u^{(j)}(0) = u^{(j)}(1) = 0.$

On a pour tout $x \in]0,1[$

$$f'_{a,b,c,d}(x) = 2ax + b - 2\pi d \sin(2\pi x)$$
 et $f''_{a,b,c,d}(x) = 2a - 4\pi^2 \cos(2\pi x),$

de sorte que

$$f(0) = c + d$$
, $f(1) = a + b + c + d$, $f'(0) = b$, $f'(1) = 2a + b$, $f''(0) = f''(1) = 2a - 4\pi^2 d$.

Finalement

- si $a + b \neq 0$ ou $c + d \neq 0$, alors k = 0;
- si a + b = c + d = 0 et $a \neq 0$, alors k = 1;
- si a + b = c + d = 0, a = 0 et $d \neq 0$, alors k = 2;
- si a = b = c = d = 0, alors $k = \infty$.

Exercise 4. Soit $d \in \mathbf{N}^*$.

1. Déterminer $a \in \mathbf{R}$ tel que pour toute fonction intégrable sur \mathbf{R}^d et tout $\lambda > 0$,

$$\mathcal{F}\left(f\left(\frac{\cdot}{\lambda}\right)\right) = \lambda^a \, \mathcal{F}\left(f\right)\left(\lambda \, \cdot\right) \, .$$

2. En déduire que si $(p,q) \in [1,\infty]^2$ sont tels qu'il existe $C \in \mathbf{R}_+$ telle que, pour tout $f \mathcal{C}^{\infty}$ à support compact sur \mathbf{R}^d ,

$$\|\mathcal{F}(f)\|_{L^q(\mathbf{R}^d)} \le C \|f\|_{L^p(\mathbf{R}^d)}$$

alors $\frac{1}{p} + \frac{1}{q} = 1$.

Correction:

1. En posant le changement de variable $u = \lambda^{-1}x$ on a pour tout $\xi \in \mathbf{R}^d$

$$\int_{\mathbf{R}^d} e^{-i\xi \cdot x} f(\lambda^{-1}x) dx = \lambda^d \int_{\mathbf{R}^d} e^{-i\lambda \xi \cdot u} f(u) du = \lambda^d \mathcal{F}(f)(\lambda \xi).$$

Donc a = d convient.

2. Soit $f \in \mathcal{D}(\mathbf{R}^d)$ non identiquement nulle et $\lambda > 0$, on note $f_{\lambda} = f(\lambda^{-1} \cdot)$ de sorte que $\mathcal{F}(f_{\lambda}) = \lambda^d \mathcal{F}(f)(\lambda \cdot)$ par ce qui précède. D'une part on a

$$\|\mathcal{F}(f_{\lambda})\|_{L^{q}}^{q} = \lambda^{qd} \|\mathcal{F}(f)(\lambda \cdot)\|_{L^{q}}^{q}$$
$$= \lambda^{d(q-1)} \|\mathcal{F}(f)\|_{L^{q}}^{q},$$

et d'autre part

$$||f_{\lambda}||_{L^{p}}^{p} = \lambda^{d} ||f||_{L^{p}}^{p}.$$

En injectant dans l'inégalité $\|\mathcal{F}(f)\|_{L^q(\mathbf{R}^d)} \leq C\|f\|_{L^p(\mathbf{R}^d)}$ on a alors

$$\|\mathcal{F}(f)\|_{L^q(\mathbf{R}^d)} \le C\lambda^{-d\left(\frac{q-1}{q}-\frac{1}{p}\right)} \|f\|_{L^p(\mathbf{R}^d)}.$$

Comme cette inégalité est valable pour tout $\lambda > 0$, on peut faire tendre λ vers $+\infty$ (respectivement vers 0^+) ce qui donne la condition

$$\frac{q-1}{q} - \frac{1}{p} \leq 0 \quad \left(\text{respectivement } \frac{q-1}{q} - \frac{1}{p} \geq 0 \right),$$

et finalement on a nécessairement $\frac{1}{p} + \frac{1}{q} = 1$.

Exercise 5. On définit $E_{impair}: L^1_{loc}(]0, \frac{1}{2}[) \to L^1_{loc}(]-\frac{1}{2}, \frac{1}{2}[)$ par, pour tout $u \in L^1_{loc}(]0, \frac{1}{2}[)$,

$$E_{impair}(u):]-\frac{1}{2}, \frac{1}{2}[\to \mathbf{R}, x \mapsto \begin{cases} u(x) & \text{si } x \ge 0\\ -u(-x) & \text{si } x < 0 \end{cases}.$$

Montrer que, pour tout $k \in \mathbf{N}$,

$$\begin{split} E_{impair}^{-1}(H_{\text{p\'er}}^k(] - \tfrac{1}{2}, \tfrac{1}{2}[)) \\ &= \left\{ u \in H^k(]0, \tfrac{1}{2}[) \, ; \, \text{pour tout } j \in \mathbf{N} \text{ tel que } 2 \, j \leq k-1, \qquad u^{(2j)}(0) = 0 \text{ et } u^{(2j)}(\tfrac{1}{2}) = 0 \, \right\} \, , \end{split}$$

où les valeurs en 0 et en $\frac{1}{2}$ sont définies au sens des traces.

Correction:

Notons que pour u suffisamment dérivable et $v = E_{impair}(u)$, on a

$$\forall l \in \mathbf{N}, \ v^{(l)}(x) = \begin{cases} u^{(l)}(x) & \text{si } x \ge 0\\ (-1)^{l+1} u^{(l)}(-x) & \text{si } x < 0 \end{cases}$$
 (1)

On procède par double inclusion.

- Soit $u \in H^k(]0, \frac{1}{2}[)$ telle que pour $2j \le k-1$, $u^{(2j)}(0) = u^{(2j)}(\frac{1}{2}) = 0$. Soit $v = E_{impair}(u)$, v est H^k sur chacun des sous-intervalles $]-\frac{1}{2},0[$ et $]0,\frac{1}{2}[$. Pour obtenir $v \in H^k(]-\frac{1}{2},\frac{1}{2}[)$, il suffit de raccorder les dérivées en 0 jusqu'à l'ordre k-1. D'après (1), les dérivées d'ordre impair coïncident à gauche et à droite de 0, et les dérivées d'ordre pair coïncident car $u^{(2j)}(0) = 0$ par hypothèse. Pour la périodicité, le même argument avec (1) assure que $v^{(l)}(\frac{1}{2}) = v^{(l)}(-\frac{1}{2})$ pour tout $l \le k-1$, et donc finalement $v \in H^k_{\text{pér}}(]-\frac{1}{2},\frac{1}{2}[)$.
- Soit $u \in E_{impair}^{-1}\left(H_{\text{pér}}^{k}(]-\frac{1}{2},\frac{1}{2}[)\right)$, et $v=E_{impair}(u)$, alors u et v coïncident sur $]0,\frac{1}{2}[$ et en particulier $u \in H^{k}\left(]0,\frac{1}{2}[\right)$. Soit $j \in \mathbb{N}$ tel que $2j \leq k-1$, comme v est dans $H_{\text{pér}}^{k}(]-\frac{1}{2},\frac{1}{2}[)$ on a $v^{(2j)}(\frac{1}{2})=v^{(2j)}(-\frac{1}{2})$ de sorte que $u^{(2j)}(\frac{1}{2})=-u^{(2j)}(\frac{1}{2})$ et donc $u^{(2j)}(\frac{1}{2})=0$. De plus, v est de classe C^{k-1} sur $]-\frac{1}{2},\frac{1}{2}[$, les dérivées en 0 doivent donc coïncider à gauche et à droite, ce qui donne $u^{(2j)}(0)=0$ pour $j \in \mathbb{N}$ tel que $2j \leq k-1$ (les dérivées d'ordre impair ne posent pas de problème au vu de (1)).