
ERRATUM/ADDENDUM TO: FINITUDE GÉOMÉTRIQUE EN GÉOMÉTRIE DE
HILBERT

PIERRE-LOUIS BLAYAC AND LUDOVIC MARQUIS

ABSTRACT. We amend Theorems 1.3 and 1.11 of [CM14a]: Finitude géométrique en géométrie
de Hilbert. We seize the opportunity to show that in round Hilbert geometry, geometrical
finiteness (gf) is equivalent to cusp-uniform action and to fill some small gaps that appear in
two other proofs of [CM14a].

1. THE PUBLISHED STATEMENT

LetΩ be an open subset of RPd which is properly convex, i.e. contained in an affine chart of
RPd where it is bounded. Suppose further Ω is round, in the sense that it has C 1-boundary
and is strictly convex (any segment contained in the boundary must be reduced to a point).
Finally, let Γ be a discrete subgroup of PGLd+1(R) that preserves Ω. Recall that, using a
famous Γ-invariant metric on Ω, denoted dΩ and called the Hilbert metric, one can check
that Γ acts properly discontinuously on Ω, and Ω/Γ is called a convex projective orbifold. For
more detailed reminders on convex projective geometry and the Hilbert metric, see [CM14a,
§2].

The main goal of [CM14a] was to introduce a notion of geometrical finiteness for the action
of Γ on Ω and for the underlying orbifold Ω/Γ, and then to study this notion, in particular
by giving various characterisations of it, in the spirit of [Bow93, Bow95]. Before we describe
these characterisations, let us recall some notations from [CM14a].

The limit set of Γ is ΛΓ =ΓxàΓx ⊂ ∂Ω, which is independent of the choice of an x ∈Ω. The
convex core C (ΛΓ) is the convex hull in Ω of the limit set. More generally, we will use the
notation C (·) to denote convex hulls.

Note that for any p ∈ P(Rd+1), the projective space P(Rd+1/p) identifies with the space of
lines of P(Rd+1) containing p. If p ∈ ∂Ω then we denote by Dp(Ω) the space of lines containing
p and intersecting Ω. Since ∂Ω is C 1 at p, the space of lines Dp(Ω) identifies with the affine
space Ap = P(Rd+1/p)àP(Tp∂Ω/p), where Tp∂Ω is the tangent space to ∂Ω at p. The map
sp : Ωà {p} → Ap given (through the former identification) by q 7→ (pq), will be called the
stereographic projection from p.

Recall that p ∈ ∂Ω is a parabolic point if its stabilizer Γp is infinite and parabolic, which
is equivalent to saying that γnx → p for any injective sequence (γn)n ⊂Γp and any x ∈Ω (see
[CM14a, §3.5] for more characterisations of parabolicity); this implies p ∈ ΛΓ. A parabolic
point is bounded if the action of Γp on ΛΓà {p} is cocompact. A parabolic point is uniformly
bounded if the action of Γp on sp(C (ΛΓ)) is cocompact. Note that sp(C (ΛΓ)) is the convex
hull in Ap of sp(ΛΓà {p}), so uniformly bounded implies bounded.

2010 Mathematics Subject Classification. 20F55, 20F65, 20H10, 22E40, 51F15, 53C50, 57M50, 57S30.
1



2 PIERRE-LOUIS BLAYAC AND LUDOVIC MARQUIS

Finally, a point p ∈ ∂Ω is called conical if there are x ∈Ω and (γn)n ⊂ Γ such that γnx → p
and γnx stays at bounded Hilbert distance from the ray [x, p); this implies p ∈ΛΓ.

We defines the following properties for the action of Γ on Ω:
(gf) : Every point of ΛΓ is either conical or bounded parabolic.
(GF) : Every point of ΛΓ is either conical or uniformly bounded parabolic.
(HC) : (gf) holds and for each parabolic point p, the group Γp is conjugate into Od,1(R).
(TF) : There exists a Γ-invariant family P of points p ∈ΛΓ, a family of standard1 regions

Rp centered at p, such that (Rp)p is (Γ,Γp)-precisely equivariant (see Definition 6.1),
the action of Γ on Ωà (ΛΓ∪⋃

p Rp) is cocompact.

(PEC) : The thick part2 of the convex core is compact.
(PNC) : The non-cuspidal part3 of the convex core is compact.

(CU) : The action ΓæΩ is cusp-uniform i.e. there exists a Γ-invariant family P of points
p ∈ΛΓ, a family of horoballs Hp center at p, such that (Hp)p is (Γ,Γp)-precisely equi-
variant, and the action of Γ on C (ΛΓ)à⋃

p Hp is cocompact.4

(VF)R : Γ is finitely generated and the uniform R-neighborhood (for the Hilbert metric) of
the convex core C (ΛΓ)/Γ is of finite volume.5

(VF)0 : Γ is finitely generated and the convex core C (ΛΓ)/Γ is of finite volume for the Hilbert
volume form from Ω∩Span(C (ΛΓ)).

(Hyp) : The convex core C (ΛΓ) is Gromov-hyperbolic6 for the Hilbert metric of Ω.
(Gen) : The limit set ΛΓ spans RPd, or its dual spans the dual projective space.7

Remark 1.1. Note that for all R,R′ > 0, it is easy to check that (VF)R and (VF)R′ are equiv-
alent and imply (VF)0. However, (VF)0 does not implies (VF)1, for example suppose we have
two discrete subgroups G,H < Isom(Hd) such that G stabilizes a proper subspace V < Hd

and H is generated by a loxodromic element whose axis A is disjoint from V . If G′ < G and
H′ < H are sufficiently small finite-index subgroups then one can play ping-pong (see e.g.
[Mas88]) to prove that the group Γ generated by G′ and H′ is discrete, is isomorphic to the
free product G∗H, the convex cores C1 ⊂V /G and C2 ⊂ A/H of G and H embed (disjointly) in
the convex core C ⊂Hd/Γ of Γ, and, fixing a point x0 ∈ C, there is a constant K > 0 such that
any point x ∈ C at distance r from x0 is at distance at most K e−r from C1⊔C2. In particular,
if V has codimension 1 and V /G is an abelian cover of a closed hyperbolic manifold, then one
can check that C has finite volume, as was mentioned to us by D. Cooper.

1We do not recall the technical definition of standard parabolic regions since it will not be used here, see
[CM14a, §7.3].

2The thick part consists of the projections of x ∈Ω such that {γ ∈ Γ |dΩ(x,γx) < ε} generates a finite group,
given a sufficiently small ε, see Section 8.1.

3For us the non-cuspidal part is the union of the thick part with the components of the thin parts that
consists of tubular neighborhoods of short geodesics, see [CM14a, §6.2].

4See Section 7.1 for reminders on horoballs.
5Here our volume form is the Hausdorff measure of the Hilbert metric, see [CM14a, §2.1].
6Recall that a geodesic metric space is Gromov-hyperbolic if for some δ all geodesic triangles are δ-thin: any

side is in the δ-neighborhood of the union of the two other sides, see e.g. [BH99, §III.H.1].
7Recall that Γ also preserves a properly convex open set Ω∗ in the projective space of linear forms on Rd+1,

and hence has a limit set there too, see [CM14a, §2.3].
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Note also, that the assumption Γ finitely generated cannot be removed from (VF)R has
shown by [Ham98]. One can see (Gen) as a genericity assumption. It holds when Γ is
irreducible, and a fortiori when it is Zariski-dense.

Those properties were linked by the following theorem, which is wrong.

Theorem 1.2. [CM14a, Thm. 1.3 & 1.11, Prop. 1.4] For any Γ acting on a round convex Ω, the
assertions (GF), (TF), (HC), (PEC), (PNC) , (VF)1 and ((gf)&(Hyp)) are equivalent.

Morever they all imply (gf) but are not equivalent to it.

The former proof used the following pattern, which is also recapitulated in Figure 1. We
indicated in brackets where to find the proof in the original paper.

• (GF) ⇒ (TF) [Prop. 7.21 & 7.23], whose proof is correct.
• (TF) ⇒ (PEC) ⇒ (PNC)8 [§8.2], whose proofs are corrects.
• (PNC) ⇒ (GF) [§8.2], this proof is wrong, and in fact the statement is wrong. However,

the implication (PNC) ⇒ (gf) is true. The proof of the implication (PNC) ⇒ (gf)
appears as a step in (PNC) ⇒ (GF). The proof of this implication is incomplete but can
be corrected using the same strategy as the original paper. We will correct it with a
slightly different strategy.

• (GF) ⇒ (VF)1 [§8.3], whose proof is incomplete as only (VF)0 is proved; we will fix this.
• (VF)1 ⇒ (PEC) [§8.3], whose proof is correct (as stated the Lemma 8.5 used in the

proof is incorrect but the proof is easy to fix, see Remark 1.5).
• (GF) ⇒ (HC) [Cor. 7.18], which is wrong in full generality but true if we ask (Gen); we

will fix this.
• (HC) ⇒ (GF) [Prop. 7.219], whose proof is correct.
• (GF) ⇒ ((gf)&(Hyp)) [Th. 9.1] is true but the proof has a small gap; we will fix this.
• ((gf)&(Hyp)) ⇒ (GF) [Th. 9.1] is false (Lemma 9.2 being wrong).
• (gf) ̸⇒ (GF) [Prop. 10.6] whose proof by counter-example is correct; in fact this

counter example satisfies (Hyp) and (VF)1 as we explain in Section 13 and in [BM].

Remark 1.3. (The error in ((gf)&(Hyp)) ⇒ (GF)). The error is hidden in the sentence: “On
peut identifier l’espace des droites Dp(C (ΛΓ)) à sa trace sur l’horosphère H .” meaning that
we can identified Dp(C (ΛΓ)) and H ∩C (ΛΓ), which is wrong. In fact, if H t is family of
horosphere such that the corresponding family of horoball decreases, then stereographic
projection on Ap of H t ∩C (ΛΓ) is a closed subset Ft of Ap. For each t, the group Γp acts co-
compactly on Ft but this family of closed subset is increasing and Γp may not act cocompactly
on their union.

Remark 1.4 (The error in (PNC) ⇒ (GF)). The error is hidden in the sentence “nécessaire-
ment uniformément borné puisque la partie non cuspidale du cœur convexe est compacte.”,
implicitly the authors had in mind that the intersection ∂Ωε(Γp)∩C (ΛΓ) can be identi-
fied with Dp(C (ΛΓ)). Similarly to the above mistake, the stereographic projection on Ap
of ∂Ωε(Γp)∩C (ΛΓ) is a closed subset Eε of Ap. For each ε, the group Γp acts cocompactly on

8Typo in the sentence “Preuve de (TF) ⇒ (PNC) ⇒ (PEC) ”, first proof of section 8.2. It should have been
written: ”Preuve de (TF) ⇒ (PEC) ⇒ (PNC) ”. Note that the implication (PNC) ⇒ (PEC) is trivial since the thick
part is a closed subset of the non-cuspidal part.

9Typo in the hypotheses: one needs to assume p is bounded parabolic.
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(PNC)

(GF)(gf)&(Hyp) (TF)

(PEC)

(VF)1

(gf)

(HC)

×

× ×
FIGURE 1. Old pattern of implications: black arrows were correctly proved
in the former paper, the red arrows are mistakes of the former paper, the
orange arrows need to be fixed (they are badly written, are incomplete, or
have mistakes in the former paper).

(TF)

(GF)

(HC)(GF)&(Gen)

(VF)1

(gf)&(Hyp)

(PEC) (PNC)

(gf) (CU)

FIGURE 2. New pattern of implications: black arrows where correctly proved
in the former paper, the green ones repair the mistakes of the former paper.

Fε but this family of closed subset is increasing (as ε→ 0) and Γp may not act cocompactly
on their union.

Remark 1.5. ((VF)1 ⇒ (PEC)) First, for any R > 0 there is a constant cR > 0 independent of
the convex Ω and of the point x ∈Ω such that VolΩ(B(x,R)) Ê cR ([CV06, Thm.12] or see e.g.
[CM14a, Lem.8.4]). Second, if x is in the ε-thick part then the ball B(x,ε) of Ω embeds in
Ω/Γ. Hence, if x is in the convex core then B(x,ε) embeds in the 1-neighborhood of the convex
core C (ΛΓ)/Γ (assuming that ε < 1). Crampon and the second author conclude erroneously
that such a ball embeds in C (ΛΓ)/Γ.

Leading to the erroneous conclusion that if the action of Γ satisfies (VF)0 then the ε-thick
part of the convex core can contain only finitely many disjoint balls of radius ε, hence is
compact. When, in fact, one needs to assume (VF)1 to conclude that the ε-thick part of the
convex core can contain in its 1-neighborhood only finitely many disjoint balls of radius ε,
and hence must be compact.
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2. A CORRECT STATEMENT

In the present paper we prove the following result, which corrects Theorem 1.2. Figure 2
shows the new pattern of the proof.

Theorem 2.1. Let Ω be a round convex of RPd and ΓÉAut(Ω). Then:
1. ((GF)&(Gen)) =⇒ (HC) =⇒ (GF) ⇐⇒ (TF).
2. (PEC) ⇐⇒ (PNC) ⇐⇒ (gf) ⇐⇒ (CU).
3. (GF) =⇒ (VF)1 =⇒ (gf).
4. (GF) =⇒ (gf)&(Hyp) =⇒ (gf).

A counter-example to the reciprocal of the implication (HC) =⇒ (GF) is given in Section 9.
It is trivial to find an example satisfying (HC) but not (Gen). We will provide in a separate
article counter-examples to all implications which are not equivalence in Theorem 2.1.(3-4),
see Section 13 for an overview.

Theorem 2.2 ([BM]). Let Ω be a round convex set of RPd and ΓÉAut(Ω). Then:
1. The condition (VF)1 does not imply the condition (GF).
2. The condition (gf)&(Hyp) does not imply the condition (GF).
3. The condition (gf) does not imply the condition (VF)1.
4. The condition (gf) does not imply the condition (gf)&(Hyp).

Indeed, for any non-uniform lattice Γ of SL2(R), if ρ : SL2(R) → SL5(R) is the 5-dimensional
irreducible representation of SL2(R) then, there exists ρ(Γ)-invariant round convex domains
Ω0, Ω1 of RP4 such that :

a. ρ(Γ)æΩ0,Ω1 are (gf), but not (GF).
b. The convex core of Ω0/ρ(Γ) is of finite (nonzero) volume and
c. C (ΛΓ) is Gromov-hyperbolic for the Hilbert metric of Ω0.
d. While the convex core of Ω1/ρ(Γ) is of infinite volume and
e. C (ΛΓ) is not Gromov-hyperbolic for the Hilbert metric of Ω1.

As we mentioned, in [CM14a, Prop. 1.4], the authors exhibit examples of pairs (Ω,Γ) which
satisfies (gf) but not (GF). We use those examples to show the existence of Ω0 in Theo-
rem 2.2. The construction of Ω1 is more involved.

Remark 2.3. Fix a discrete subgroup Γ É Aut(Ω) preserving at least one round convex set
of the projective space, such that Γ is non-elementary (not virtually nilpotent). As one can
see from Theorem 2.2, the properties (VF)0, (VF)1 and (Hyp) depend on the choice of the
Γ-invariant round convex set Ω: they might hold for one domain but not for another.

However, all the other properties studied in this paper are independent of the choice of
Ω. This comes from the classical fact that the limit set ΛΓ is independent of Ω. Indeed
recall that an element g ∈ SLd+1(R) is proximal if it has an attracting fixed point in RPd.
Then one can check that the limit set ΛΓ is the closure in RPd of the set of attracting fixed
points of proximal elements of Γ, also called proximal limit set 10. From the definitions, one

10An element γ is proximal if and only if it is a hyperbolic automorphism of Ω in the sense of the classifica-
tion theorem [CM14a, Th. 3.3]. This theorem also easily implies that any attracting fixed point of a proximal
element is in the limit set, so the proximal limit set is contained in the limit set. To prove the other inclusion,
consider p in the limit set and p0 any point in the proximal limit set. Then γnx → p ∈ ∂Ω for some sequence γn.
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immediately sees that the properties (gf), (GF), (HC) and (Gen) are independent of Ω, and
Theorem 2.1 implies the properties (TF), (PEC), (PNC) and (CU) are independent of Ω too.

The second author warmly thanks the first author for pointing out to him the mistake in
the former paper and his help to find and write the proper statement. The second author
also thanks A. Zimmer for pointing out to him the second point of Theorem 2.2 using the
same Ω0 that we will use. The authors thank B. Fléchelles and D. Cooper for interesting
discussions and useful comments.

3. PLAN OF PROOF

The main results are (gf) ⇐⇒ (CU) and (gf) ⇐⇒ (PNC), whose proofs are extremely simi-
lar, so our goal is to prove them both at the same time, by proving a more general result.

In Section 4 we establish a short independent lemma, useful in the proofs of (gf) ⇐⇒ (CU)
and (gf) ⇐⇒ (PNC).

In Section 5, we prove that (gf) is equivalent to a whole family of properties. More pre-
cisely, we show that, given any precisely equivariant family of star domains that satisfy a
certain convexity condition, asking Γ to act geometrically finitely on ∂Ω (i.e. asking (gf)) is
equivalent to asking that Γ acts cocompactly on the complement in the convex core of the
family of star domains.

In Section 7, we check that horoballs satisfy the above convexity condition (because horoballs
are convex), and obtain the equivalence (gf) ⇐⇒ (CU) as a consequence. The condition (CU)
is not present in the original paper [CM14a] but it should have been, so we seize the oppor-
tunity to give a proof. A proof of the implication (gf) =⇒ (CU) is also given in [BT, Prop. 3.3]

In Section 8, we check that the star domains obtained in the thick-thin decomposition of
Ω also satisfy the above-mentioned convexity condition, and obtain the equivalence (gf) ⇐⇒
(PNC) as a consequence.

In Section 9 we give a counterexample to (GF) ⇒ (HC), and then in Section 10 we prove
that (GF) ⇒ (HC) holds under the additional genericity assumption (Gen).

In Sections 11 and 12 we fill in the gaps in the proofs of respectively (GF) ⇒ (VF)1 and (GF)
⇒ (Hyp).

The only missing implication of Theorem 2.1 is the implication (TF) ⇒ (GF). This implica-
tion is not present in the original paper [CM14a]. Because it was done through the erroneous
implication (PNC) ⇒ (GF). Nevertheless, it is easy to check that (TF) ⇒ (gf) (for instance
using Proposition 6.3 below) and the proof of [CM14a, Prop. 7.21] shows that if (TF) holds
then all bounded parabolic points are in fact uniformly bounded.

4. DIRICHLET DOMAIN AND CONICAL LIMIT POINTS

This section only contains a short independent lemma saying that Dirichlet domains do
not accumulate on conical limit point. The argument is standard, see for instance [Rob03,

Up to extracting γn y → p for any y ∈ ∂Ωà {q}, for some q (see[CM14a, Prop. 4.8]). Since Γ is non-elementary
there is α ∈Γ such that αp0 ̸= q, so γnαp0 → p, so p is in the proximal limit set.
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Prop.1.10]. This lemma, as well as Dirichlet domains and the ideas in [Rob03, Prop.1.10],
will be used to prove that (gf) implies cocompactness properties (see Proposition 6.2).

Let Ω be a round convex subset of RPd, Γ ⊂ Aut(Ω) discrete. If o is a point of Ω, the
Dirichlet domain based at o is

D = {x ∈Ω |∀γ ∈Γ, dΩ(x, o)É dΩ(x,γo)}

Note that D is a closed subset of Ω, and that the translates of D by Γ cover Ω.
Using the fact that Ω is strictly convex, one can check that if Γ is torsion-free then

the translates of D by Γ have disjoint interiors and that those interiors have the form
{x ∈Ω |dΩ(x, o) < dΩ(x,γo), ∀γ ∈ Γà {1}}, but we will not need this fact. Note that the trans-
lates of D by Γ may intersect on their interiors if Ω is not strictly convex: this happens for
instance in the case of a Z-action on a triangle generated by a diagonal 3×3 matrix with
diagonal entries 2,2,1/4.

In the following lemma we check that Dirichlet domains cannot contain conical limit
points at their boundary at infinity. Compare with [CM14a, Lem. 8.2], which has a simi-
lar result for a different kind of fundamental domains.

Lemma 4.1. Let Ω be a round convex subset of RPd, Γ⊂Aut(Ω) discrete. If p ∈ ∂D∩∂Ω then
p is not a conical limit point.

Proof. There exists (xn)n ∈ DN such that xn → p. Assume p is a conical limit point. Then,
there exists also (γm)m ∈ΓN such that γm(o) converges conically to p, i.e. there exists (ym)m ⊂
[o, p) tending to p such that (dΩ(γmo, ym))m is bounded. Since for any m we have

bp(o, ym)= lim
y∈[ym,p)→p

dΩ(o, y)−dΩ(ym, y)= dΩ(o, ym),

thus

bp(o,γm(o))= bp(o, ym)+bp(ym,γm(o))Ê dΩ(o, ym)−dΩ(ym,γm(o)) −→
m→∞+∞

However, for any m, since xn → p, we also have:

bp(o,γm(o))= lim
n→+∞dΩ(o, xn)−dΩ(γm(o), xn).

Since xn ∈D one has:
dΩ(o, xn)−dΩ(γm(o), xn)É 0.

So bp(o,γm(o))É 0 for any m, absurd. □

5. COCOMPACTNESS AT PARABOLIC POINTS

5.1. Strongly star-shaped domains. We will need a class of well-behaved domains of Ω
centered at parabolic points that encompasses both horoballs (see Section 7) and components
of the thin part (see Section 8). Since the components of the thin part are not necessarily
convex, we will use the larger class of star domains. Unfortunately star-shapedness alone
will be too weak for our purposes: we will need an important extra convexity assumption
which will be stated directly inside Lemma 5.3. Roughly, a star domain B satisfies this
condition if it contains the convex hull of a smaller star domain.
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Definition 5.1. Let Ω be a round convex subset of RPd and p ∈ ∂Ω. An open subset B ⊂Ω
is called strongly star-shaped at p if for every x ∈ ∂Ωà {p}, the interval (x, p) intersects ∂B at
exactly one point y ∈Ω, the interval (y, p) is contained in B, and the interval (x, y) is outside
of B.

Observe that this implies that
(i) B is star-shaped at p,

(ii) ∂Bà {p}⊂Ω,
(iii) ∂Ωà {p} maps homeomorphically onto ∂B via the stereographic projection (in a G-

equivariant way if B is invariant under some G ⊂Stab(p)⊂Aut(Ω)), and
(iv) the stereographic projection from Ωà (B ∪ {p}) to ∂B is surjective, continuous, G-

equivariant and proper.

In other words, a strongly star-shaped open subset of Ω at p is the “interior” of a hyper-
surface of Ω that maps homeomorphically onto ∂Ωà {p} via the stereographic projection.

5.2. A key cocompactness lemma about parabolic subgroups. In this section we prove
a cocompactness result for the parabolic subgroups, inspired by the argument in [BZ21,
Prop. 8.12].

First we recall the following more classical properness result about parabolic subgroup.
Note that in the reference we are using there is a typo: they define OΓ :=ΩàΛΓ whereas it
should be OΓ :=ΩàΛΓ.

Fact 5.2 ([CM14a, Lem.4.5]). Let Ω be a round convex subset of RPd and Γ⊂Aut(Ω) discrete.
Then Γ acts properly discontinuously on ΩàΛΓ.

In particular, applying this to a parabolic subgroup Γp fixing p ∈ ΛΓ we get that Γp acts
properly discontinuously on Ωà {p}.

Now comes the key cocompactness lemma. The formulation involving finite-index sub-
groups of the stabiliser of the parabolic point is an unfortunate necessary technicality. It
will be used in Section 8.

Lemma 5.3. Let Ω be a round convex subset of RPd, Γ⊂Aut(Ω) discrete non-elementary, and
p ∈ΛΓ be a bounded parabolic fixed point with stabilizer Γp. Consider G ⊂ Γp a finite index
subgroup and B− ⊂ B+ ⊂Ω two G-invariant strongly star-shaped open subsets at p such that
the convex hull of B− is contained in B+.

Then the action of G on ∂B+∩C (ΛΓ) is cocompact.

Proof. Since p is bounded parabolic and G has finite index in Γp, there exists K ⊂ΛΓà {p}
compact such that G ·K =ΛΓà {p}. Let L be the set of points x ∈Ω such that [x, q] does not
intersect B− for some q ∈ K . To finish this proof, it suffices to check that L′ = L∩∂B+∩C (ΛΓ)
is compact and that G ·L′ = ∂B+∩C (ΛΓ).

First we check L′ is compact. It is clear that L is closed in Ω, and hence compact: Let
(xn)n ∈ LN such that xn → x, hence [xn, qn]∩B− =; for some qn ∈ K . Up to extracting, we can
assume qn → q ∈ K , and to conclude that x ∈ L, we note that [x, q] cannot intersect the open
set B−, otherwise the segments [xn, qn] would also intersect it for n large enough.
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p

γ(η1)
x

η1

η2

γ(η2)

γ(x)

FIGURE 3. Illustration of the proof of Lemma 5.3
(For simplicity, x is here in the convex hull of only two points of the limit set)

Note that ∂B+ ∩C (ΛΓ) = ∂B+ ∩C (ΛΓ)∪ {p} since B+ is strongly star-shaped (see (ii) in
Definition 5.1), and p is not in L since B− is strongly star-shaped. Thus

L′ = L∩∂B+∩C (ΛΓ)= L∩∂B+∩C (ΛΓ)

is compact.
It remains to check that for any x ∈ ∂B+∩C (ΛΓ) there exists g ∈G such that gx ∈ L′. Since

x ∈C (ΛΓ), there exists (ηi)i=1,...,d+1 in ΛΓà {p} such that x is in the convex hull of p and the
(ηi)i=1,...,d+1. We claim that there exists i such that [x,ηi]∩B− =∅. By contradiction, if this is
not the case, then for each i, there exists xi ∈ [x,ηi]∩B−. Since B− is strongly star-shaped at
p, there also exists y ∈ [x, p]∩B−. One can then check that x is in the convex hull of {xi}i∪{y},
and hence that x lies in B+ by our assumption that the convex hull of B− is contained in B+.
This contradicts x ∈ ∂B+.

Since G ·K =ΛΓà {p}, there is g ∈ G such that gηi ∈ K . Then [gx, gηi] does not intersect
B−, so gx ∈ L′, which concludes the proof. □

Lemma 5.4. Let Ω be a round convex subset of RPd, Γ⊂Aut(Ω) discrete non-elementary, and
p ∈ΛΓ be a bounded parabolic fixed point with stabilizer Γp. Consider G ⊂ Γp a finite index
subgroup and B ⊂Ω a G-invariant strongly star-shaped open subset at p such that the action
of G on ∂B∩C (ΛΓ) is cocompact.

Then the action of G on C (ΛΓ)à (B∪ {p}) is cocompact.

Proof. This is an immediate consequence of (iv) and the fact that the image of C (ΛΓ)à (B∪
{p}) under the stereographic map from Ωà (B∪ {p}) to ∂B is exactly ∂B∩C (ΛΓ). □
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6. THE GENERAL RESULT

In this section we prove a general result that (gf) is equivalent to a whole family of prop-
erties which encompasses (CU) and (PNC). As a consequence, the equivalences (gf)⇔(CU)
and (gf)⇔(PNC) will be particular cases of the results of this section.

Let us recall the definition of (Γ, (Γp)p)-precisely equivariant.

Definition 6.1. Let Ω⊂ RPd be a round convex subset, Γ⊂ Aut(Ω) a discrete subgroup and
P ⊂ ∂Ω a Γ-invariant subset. A (Γ, (Γp)p)-equivariant family (Bp)p∈P of domains of Ω is a
family of domains such that γBp = Bγp for all p ∈P and γ ∈Γ.

It is called (Γ, (Γp)p)-precisely equivariant if moreover Bp∩Bq =∅ for all distinct p ̸= q ∈P .

6.1. Cocompactness consequences of (gf). We can now state and prove one of the two
main results of this section. The proof is standard, see for instance [Rob03, Prop. 1.10].

Proposition 6.2. Let Ω be a round convex subset of RPd and Γ ⊂ Aut(Ω) discrete, non-
elementary, and geometrically finite on ∂Ω (Assumption (gf)). Let P ⊂ ΛΓ be the set of
parabolic points, and denote by Γp ⊂ Γ the stabilizer of each p ∈ P . Consider a (Γ, (Γp)p)-
equivariant family (Bp)p∈P of domains. Suppose that Γp acts cocompactly on C (ΛΓ)à (Bp ∪
{p}) for every p ∈P . Then the action of Γ on C (ΛΓ)à⋃

p Bp is cocompact.

Proof. We fix a point o ∈Ω and consider the (Dirichlet) domain:

D = {x ∈Ω |∀γ ∈Γ, dΩ(x, o)É dΩ(x,γo)}.

Recall that it is a closed subset of Ω, and that the translates of D by Γ cover Ω. Consider the
closed subset X =D∩C (ΛΓ)à⋃

p Bp of Ω. Let us show that X is bounded.
Assume it is not, then there exists a sequence (xn)n∈N ∈ XN such that xn → p ∈ΛΓ. Lemma 4.1

shows that p is not a conical limit point. Hence, p is a bounded parabolic point since Γæ ∂Ω

is geometrically finite.

By our assumption, up to extracting a subsequence, there exists γn ∈Γp such that γn(xn)→
z ∈Ωà {p}, see Figure 4. In particular γn →+∞ and so γn(o)→ p, by Fact 5.2.

Pick any y in the interval (z, p), which is contained in Ω since it is strictly convex. Since
γn[xn, o]→ [z, p], we can find yn ∈ γn(xn, o)⊂Ω that converge to y.

dΩ(xn, o)= dΩ(γn(xn),γn(o)))

= dΩ(γn(xn), yn)+dΩ(yn,γn(o))

Ê dΩ(γn(xn), o)−dΩ(o, yn)+dΩ(γn(o), o)−dΩ(o, yn)

So:

dΩ(xn, o)−dΩ(γn(xn), o)︸ ︷︷ ︸
É0 since xn∈D

Ê−2dΩ(o, yn)︸ ︷︷ ︸
→dΩ(o,y)

+dΩ(γn(o), o)︸ ︷︷ ︸
→+∞

.

Absurd. □
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FIGURE 4. Illustration of the proof of Proposition 6.2

6.2. (gf) as a consequence of cocompactness. We now state the second main result of
this section, which can be described as a converse to the first main result Proposition 6.2.

Proposition 6.3. Let Ω be a round convex subset of RPd and Γ ⊂ Aut(Ω) discrete non-
elementary. Consider a Γ-invariant subset P ⊂ΛΓ and denote by Γp ⊂ Γ the stabilizer of any
p ∈ P . Consider a (Γ,Γp)-precisely equivariant family (Bp)p∈P of domains with Bp strongly
star-shaped at p.

Suppose that the action of Γ on C (ΛΓ)à⋃
p Bp is cocompact.

Then Γ acts geometrically finitely on ∂Ω (Assumption (gf)), P is the set of bounded para-
bolic points in ΛΓ, and Γp acts cocompactly on ∂Bp ∩C (ΛΓ) for every p ∈P .

Proof. Let q ∈P . Since (Bp)p∈P is (Γ, (Γp)p)-precisely equivariant,(
∂Bq ∩C (ΛΓ)

)
/Γq ,→

(
C (ΛΓ)à⋃

p
Bp

)
/Γ

is an embedding with closed image. In particular, (∂Bq∩C (ΛΓ))/Γq is compact, in other words
the action of Γq on ∂Bq ∩C (ΛΓ) is cocompact.

Moreover,ΛΓà{q} embeds Γq-equivariantly in ∂Bq∩C (ΛΓ) since Bq is strongly star-shaped
at q (see (iii)), so the action of Γq on ΛΓà {q} is proper and cocompact. This implies that q is
bounded parabolic.

Let q ∈ ΛΓàP . Consider o ∈ C (ΛΓ). Note that the geodesic ray [o, q[ is not eventually
contained in any Bp, for any p ∈ P , since Bp ∩∂Ω = {p} as Bp is star-shaped at p (see (ii)).
Hence there exists xn ∈ [o, q[ such that xn → q and xn ∈C (ΛΓ)à⋃

p Bp. So, by cocompactness
of the action, up to extracting a subsequence, there exists γn ∈ Γ such that γn(xn) → z ∈Ω,
which implies that q is conical ((γ−1

n z)n converge to q while remaining at bounded distance
from [o, q)). □
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7. (gf)⇐⇒ (CU)

Let Ω be a round convex subset of RPd. In this section we recall the definition of horoballs
and some basic facts, e.g. that horoballs are the images of Ω under a projective transforma-
tion, and hence are round convex subsets of RPd. We then use Section 5 to prove (gf)⇐⇒
(CU).

7.1. Horoballs. We first give a very algebraic definition of horoballs, and then describe
them more geometrically via Busemann functions, using a result of Benoist. See also [CM14a,
§2.2] and [CLT15, p.16]

Definition 7.1. Let p ∈ ∂Ω and x ∈Ω. Let q ∈ ∂Ω be such that x ∈ [p, q]. Consider a basis
v1, . . . ,vd+1 ∈ Rd+1 such that p = [v1], q = [v2], x = [v1 + v2], and [vi] ∈ Tp∂Ω for each i Ê 3.
Then the horosphere W ⊂Ω centered at p passing through x is the image g∂Ωà{p} of ∂Ωà{p}
under the projective transformation

g =
1 1 0

0 1 0
0 0 Id−1

 .

Note that g fixes any affine chart not containing Tp∂Ω, in which it acts as a translation in
the direction of the line through p and q, sending q to x.

The open horoball H with boundary W∪ {p} is gΩ, which is a round convex subset of Ω; in
particular it is strongly star-shaped at p. Note that Tp∂H = Tp∂Ω.

This does not depend on the choice of v1, . . . ,vd+1. Indeed, one can check that ∂H à {p} is
the set of x′ ∈Ω such that, if x′ ∈ [p, q′] for q′ ∈ ∂Ω, then the two lines qq′ and xx′ intersect in
the hyperplane Tp∂Ω.

Fact 7.2 ([Ben04, §3.2.3-4 & Fig.7]). For all p ∈ ∂Ω and x, y ∈Ω,

bp(x, y) := lim
z→p

dΩ(x, z)−dΩ(y, z)

is well defined.
Moreover, the horosphere centered at p through any given x ∈Ω is {y ∈Ω : bp(x, y)= 0}. The

associated open horoball is {y ∈Ω : bp(x, y)> 0}.

It is clear that projective transformations map horoballs to horoballs. The following states
that parabolic groups preserve each horoball centered at the point they fix.

Fact 7.3 ([CM14a, Th. 3.3], [CLT15, Prop. 3.3]). For all p ∈ ∂Ω, x ∈Ω and γ ∈Aut(Ω) preserv-
ing p, the translation length of γ is exactly |bp(x,γx)|.

In particular, if γ is parabolic (or elliptic) then it preserves each horoball centered at p.

Proof. Note that for every y ∈Ω we have

bp(y,γy)= bp(y, x)+bp(x,γx)+bp(γx,γy)= bp(x,γx)+bp(y, x)+bp(x, y)= bp(x,γx).

Morever, by the triangle inequality |bp(y,γy)| É dΩ(y,γy) for every y ∈Ω.
As a consequence, |bp(x,γx)| is bounded from above by the translation length.
If the translation length is zero then we are done. Otherwise, γ is hyperbolic and fixes

exactly two points of p, q ∈ ∂Ω (see [CM14b, §3.1]). Then one can check that if x ∈ [p, q] then
|bp(x,γx)| equals dΩ(x,γx), and hence equals the translation length of γ. □
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Finally, the following result says that geometrically finite groups always admit precisely
equivariant families of horoballs. The result is not stated the same way in the reference, but
the link is not hard to make.

Fact 7.4 ([BZ21, Lem. 8.11]). Let Ω be a round convex subset of RPd. Let Γ ⊂ Aut(Ω) be
discrete non-elementary and act geometrically finitely on ∂Ω. Then there exists a (Γ, (Γp)p)-
precisely equivariant family of horoballs centered at the parabolic points of ΛΓ.

7.2. Applications of Sections 5 and 6.

Lemma 7.5. LetΩ be a round convex subset of RPd. Let Γ⊂Aut(Ω) be discrete non-elementary.
Let p ∈ΛΓ be a bounded parabolic fixed point. For any open horoball Hp centered at p, the
action of Γp on C (ΛΓ)à (Hp ∪ {p}) is cocompact.

Proof. This is an immediate corollary of Lemmas 5.3 and 5.4, using the fact that horoballs
are round convex with their center in their boundary (Definition 7.1) and invariant under
the associated parabolic subgroups. □

Proof of (gf)⇔ (CU). This is an immediate corollary of Lemma 7.5, Propositions 6.2 and 6.3,
and Fact 7.4. □

8. (gf) ⇐⇒ (PNC)

In this section we recall the definition of the thin part of convex projective manifolds
and some basic facts, e.g. that the components of the thin part in Ω are star-shaped. We
then prove that they also satisfy the extra convexity condition of Lemma 5.3. We then use
Sections 5 and 6 to prove (gf) ⇐⇒ (PNC).

8.1. Thick-thin decomposition. Let Ω be a convex domain of RPd, Γ ⊂ Aut(Ω) discrete
and ε> 0. We use the following notation.

1. Sε(x) := {γ ∈Γ |dΩ(x,γx)< ε} for x ∈Ω;
2. Γε(x) := 〈Sε(x)〉 (the subgroup generated by Sε(x)) for x ∈Ω;
3. Ωε(Γ) := {x ∈Ω |Γε(x) is infinite} is the ε-thin part of Ω, its complement is the ε-thick

part;
4. Oϵ(A) := {x ∈Ω |dΩ(x,γx)< ϵ, ∀γ ∈ A} for A ⊂Γ;

Let us recall the Margulis lemma for convex projective geometry.

Fact 8.1 ([CM13] & [CLT15]). There exists ε0 > 0 which only depends on the dimension d,
such that for every convex domain Ω of RPd, any Γ⊂Aut(Ω) discrete, any 0< εÉ ε0, any x ∈Ω,
the group Γε(x) is virtually nilpotent.

AssumingΩ is a round convex domain, one can use the previous Margulis lemma to obtain
a thick-thin decomposition, and more precisely a nice decomposition of the thin part (see
[CM14a, Lem. 6.2]).

If ε < ε0, then the thin part Ωε(Γ) is the disjoint union of (Ωε(G))G (in fact the closures
are pairwise disjoint), where G runs over the maximal parabolic subgroups of Γ and the
centralizers of hyperbolic elements of translation length less than ε.

The ε-noncuspidal part is the complement of the union of (Ωε(G))G , where G runs over the
parabolic subgroups of Γ.
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Fact 8.2 ([CM14a, Lem. 6.2.1 & Cor. 3.16]). If ε< ε0 and P ⊂ΛΓ is the set of parabolic points,
then (Ωε(Γp))p∈P is (Γ, (Γp)p)-precisely equivariant.

8.2. Star-shapedness and the weak convexity condition. Here we check that the com-
ponents of the thin part, as well as the domains of the form Oε(A) defined in the previous sec-
tion, are strongly star-shaped and satisfy the extra weak convexity condition in Lemma 5.3.

Fact 8.3. Let Ω be a round convex subset of RPd and Γp ⊂Aut(Ω) a discrete infinite parabolic
subgroup fixing p ∈ ∂Ω.

Then Ωε(Γp) is strongly star-shaped at p for any ε (see Definition 5.1).
Moreover, Oε(A) is also strongly star-shaped at p for any finite A ⊂ Γp that generates an

infinite group.

Note also that (∂Ωε(Γp))ε and (∂Oε(A))ε foliate Ω.
The above fact is a consequence of the following elementary result (which uses the fact

that Ω is round).

Fact 8.4 ([Ben04, Lem. 3.4]). Let Ω be a round convex subset of RPd and γ ∈ Aut(Ω) a para-
bolic or elliptic transformation fixing p ∈ ∂Ω. Consider a straight geodesic (pt)t∈R ⊂Ω going
to p as t →∞.

Then either γ fixes the geodesic or t 7→ dΩ(pt,γpt) is decreasing from ∞ to 0.

Before we discuss the weak convexity condition needed in Lemma 5.3, let us discuss briefly
the link between Ωε(Γp) and Oε(A), where Ω⊂ RPd is round convex, Γp ⊂ Aut(Ω) is discrete
infinite parabolic and fix p ∈ ∂Ω, the subset A ⊂ Γp is finite and generates an infinite group,
and ε> 0.

1. Oε(A)⊂Ωε(Γp).
2. Oε(A) is not necessarily Γp-invariant; it is if A is invariant under conjugacy.
3. Γp being virtually nilpotent, it admits a torsion-free nilpotent finite-index subgroup

G ⊂Γp, whose center has a nontrivial element g ∈G; then Oε(g) is G-invariant.
Let us now turn to the weak convexity condition needed in Lemma 5.3. We will need the

following estimate on the Hilbert metric, which gives control on the distance between two
segments via the distance between the endpoints.

Fact 8.5 ([Cra09, Lem. 8.3] & [Bla, Lem. 5.2]). Let Ω be a convex domain. Consider two
segments [x, y], [x′, y′] ⊂Ω and two points z ∈ [x, y] and z′ ∈ [x′, y′] such that dΩ(x,z)

dΩ(x,y) = dΩ(x′,z′)
dΩ(x′,y′) .

Then
dΩ(z, z′)É dΩ(x, x′)+dΩ(y, y′).

Corollary 8.6. Let Ω be a convex domain and y ∈ ∂Ω. Consider two segments [x, y), [x′, y)⊂Ω
and two points z ∈ [x, y) and z′ ∈ [x′, y) such that dΩ(x, z)= dΩ(x′, z′). Then

dΩ(z, z′)É dΩ(x, x′).

Proof. Let (yn)n a sequence of points of the segment (z, y) converging to y. Let (z′n)n be the
sequence of points of (yn, x′) such that: dΩ(x,z)

dΩ(x,yn) =
dΩ(x′,z′n)
dΩ(x′,yn) . By Fact 8.5, dΩ(z, z′n) É dΩ(x, x′).

Hence, it is enough to show that (z′n)n converges to z′.
The ratio dΩ(x,yn)

dΩ(x′,yn) converges to 1 since |dΩ(x, yn)− dΩ(x′, yn)| É dΩ(x, x′). So, dΩ(x′, z′n)
converges to dΩ(x, z)= dΩ(x′, z′), giving that z′n → z′ since z′n is on the segment (yn, x′) which
converges to the segment (y, x′). □
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Corollary 8.7. Let Ω be a convex domain of RPd. For all ϵ > 0 and A ⊂ Aut(Ω), the convex
hull of Oε(A) is contained in O(d+1)ε(A).

Proof. It suffices to prove by induction on k Ê 1 that any convex combination of k points of
Oε(A) is in Okε(A).

If k = 1 then this is obvious.
Suppose k Ê 2 and the property we want to prove for convex combinations of fewer than

k points. Let z be a convex combination of k points of Oε(A). Then z ∈ [x, y] where x ∈Oε(A)
and y is a convex combination of k−1 points of Oε(A). By the inductive hypothesis we have
y ∈O(k−1)ε(A).

Consider γ ∈ A, and let us check that dΩ(z,γz) < kε. We have γz ∈ [γx,γy] and dΩ(x,z)
dΩ(x,y) =

dΩ(γx,γz)
dΩ(γx,γy) , so by Fact 8.5

dΩ(z,γz)É dΩ(x,γx)+dΩ(y,γy)< ε+ (k−1)ε= kε. □

8.3. Applications of Sections 5 and 6 bis. We now apply the results from previous sec-
tions to establish (gf) ⇔ (PNC).

Lemma 8.8. Let Ω be a round convex subset of RPd, Γ ⊂ Aut(Ω) discrete non-elementary,
and p ∈ ΛΓ be a bounded parabolic fixed point with stabilizer Γp. Consider G ⊂ Γp a finite
index subgroup and A ⊂ G finite, that generates an infinite subgroup, and invariant under
conjugation by elements of G. Then the action of G on C (ΛΓ)à (Oϵ(A)∪ {p}) is cocompact for
any ϵ.

Note that G preserves Oϵ(A) because A is invariant under conjugation.

Proof. This is an immediate corollary of Fact 8.3, Corollary 8.7 and Lemmas 5.3 and 5.4. □

Corollary 8.9. Let Ω be a round convex subset of RPd, Γ ⊂ Aut(Ω) discrete non-elementary,
and p ∈ΛΓ be a bounded parabolic fixed point with stabilizer Γp. Then the action of Γp on
C (ΛΓ)à (Ωϵ(Γp)∪ {p}) is cocompact for any ϵ.

Proof. By Fact 8.1, we can find a finite-index torsion-free nilpotent subgroup G ⊂ Γp. Since
G is nilpotent it has a nontrivial element g in the center. By definition, Oε(g) ⊂Ωε(Γp) and
hence

C (ΛΓ)à (Ωϵ(Γp)∪ {p})⊂C (ΛΓ)à (Oϵ(g)∪ {p}).

We conclude using Lemma 8.8. □

Proof of (gf) ⇔ (PNC). This is a corollary of Corollary 8.9, Fact 8.2 and Propositions 6.2 and
6.3. □

9. COUNTEREXAMPLE TO (GF) ⇒ (HC)

In this section we use a reducible representation of SL2(R) to construct an example of
group Γ satisfying (GF) but not (HC). Let τ : SL2(R)→SL3(R) be an irreducible representation.
Consider the reducible semisimple representation ρ : SL2(R) → SL5(R) such that for any g ∈
SL2(R) we have

ρ(g)=
(
τ(g) 0

0 g

)
.
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Note that by definition ρ(SL2(R)) preserves the supplementary subspaces R3×{0} and {0}×
R2 of R5. Moreover in R3×{0} it preserves a properly convex (relatively) open cone C = C×{0},
and of course it also preserves the open convex cone C×R2 which is not properly convex.

The projectivisation D =P(C) is a 2-dimensional properly convex disc and Ωmax =P(C×R2)
is an open convex subset of RP4 which is contained in some affine chart, where it is D ×R2.
Their relative boundaries are denoted by ∂D and ∂Ωmax.

The following result describes all ρ(SL2(R))-invariant convex domains.

Fact 9.1. We have the following.
1. The proximal limit set of ρ(SL2(R)) is ∂D.
2. ρ(SL2(R)) acts properly discontinuously on Ωmax; more precisely the orbit of any com-

pact set accumulates on all of ∂D (and only there).
3. For any x ∈Ωmax àD, the stabilizer is trivial.
4. For any x ∈Ωmax àD, the disjoint union ∂D ⊔ρ(SL2(R)) · x is the boundary of an in-

variant round convex domain Ω⊂Ωmax. Moreover, every invariant convex domain Ω′

is obtained in this way.

Proof. 1. Let g ∈ SL2(R) be proximal whose (real) eigenvalues have norm λ > 1/λ. Then
the norms of the eigenvalues of τ(g) are λ2 > 1> 1/λ2. Thus the biggest norm of eigen-
values of ρ(g) is λ2, and the corresponding eigenline is exactly the eigenline of τ(g),
embedded in R5 via R3 →R3× {0}. This concludes the proof since it is well known that
the proximal limit set of τ(SL2(R)) in RP2 is ∂D.

2. Let x ∈Ωmax and (gn)n a sequence of element of SL2(R) such that gn →∞. Let ∥ ·∥ be
the induced norm on the space of m×m real matrix, by the canonical scalar product
on Rm, there exists C > 1 such that:

∀g ∈SL2(R), C−1∥g∥2 É ∥τ(g)∥ É C∥g∥2

For another constant C2 > 1, one has:

∀g ∈SL2(R), C−1
2 ∥g∥2 É ∥ρ(g)∥ É C2∥g∥2

Hence, up to extraction, we may assume that τ(gn)/∥τ(gn)∥ converge to a rank-one
matrix T ∈M3(R) such that Im(T)⊂ ∂D and ker(T)∩∂D is a singleton. Thanks to the
estimate, the matrix ρ(gn)/∥ρ(gn)∥ converges to the matrix:(T

0 0
0 0

)
Hence, ρ(gn) · x converges to T(x) ∈ ∂D.

3. Let [(x, y)] ∈Ωmax àD with x ∈ R3 and y ∈ R2 and consider g ∈ SL2(R) such that ρ(g) ·
[(x, y)] = [(x, y)]. We may assume that Stabτ(SL2(R)([x]) = τ(SO2(R)), hence we get that
g ∈ SO2(R). The only two rotations of R2 that preserves a line are Id and −Id, so we
get that g = ±Id. But, the fixed point set of ρ(−Id) is P(R3 × {0})∪P({0}×R2), hence
g = Id.

4. Take x ∈ Ωmax à D. The interior of the convex hull of ρ(SL2(R)) · x in Ωmax is an
invariant convex domain Ω. The orbit ρ(SL2(R)) · x of x accumulates on ∂D and only
there (by (2.)), which implies ρ(SL2(R)) · x⊔∂D is compact and Ω is the convex hull of
ρ(SL2(R)) · x⊔∂D and is properly convex.
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Thus the extremal points of Ω are in ρ(SL2(R)) · x⊔∂D. They cannot be all in ∂D,
otherwise Ω⊂ D which contradicts x ̸∈ D. Thus at least one point of ρ(SL2(R)) ·x must
be extremal, and then all points of ρ(SL2(R)) · x are extremal since ρ(SL2(R)) maps
extremal points to extremal points. Moreover one can also check that any point p ∈
∂D is extremal. (Otherwise there would be a,b ∈ ∂Ω such that p ∈ (a,b): if a,b ∈ ∂D
then p ∈ D, absurd, and if one of a,b is in ρ(SL2(R)) · x then p ∈Ωmax, absurd too.)

We proved that the set of extremal points is exactly ρ(SL2(R)) · x⊔∂D, which is in
particular contained in ∂Ω. The orbit ρ(SL2(R)) · x of x is open in ∂Ω by Brouwer’s
invariance of the domain theorem, thanks to (3.). The orbit accumulates on ∂D and
only there (by (2.)), hence is closed in ∂Ωà∂D. A classical result of topology shows that
∂Ωà∂D is connected (see e.g. [Hat02, Prop. 2.B.1.b]). Hence, ∂Ω= ρ(SL2(R)) · x⊔∂D,
and Ω is strictly convex since all points of the boundary are extremal.

Let Ω′ ⊂ RP4 be an invariant properly convex open set. Then ∂Ω′ contains the
proximal limit set of ρ(SL2(R)), i.e. ∂D. By convexity Ω

′
must then contain D, and Ω′

intersects Ωmax. However, Ω
′
cannot intersect ∂Ωmax à∂D. If it did then by applying

powers of a suitable element of ρ(SL2(R)) there would be a point of P({0}×R2) in
Ω

′
, and hence there would in fact be the whole P({0}×R2) inside Ω

′
, which would

compromise Ω′’s proper convexity. As a consequence, ∂Ω′ intersects Ωmax at some
point, say at the point x. ThenΩ⊂Ω′, and by our results above we get ∂Ω= ρ(SL2(R))·
x⊔∂D ⊂ ∂Ω′, which implies at once that Ω′ =Ω.

Finally, the dual representation ρ∗ is conjugated to ρ, hence the dual convex of Ω
is strictly convex too, hence Ω has C 1-boundary. □

Next we prove that the image under ρ of a geometrically finite subgroup of SL2(R) satisfies
(GF) but not (HC).

Proposition 9.2. For any ρ(SL2(R))-invariant round convex domain Ω⊂Ωmax, for any dis-
crete subgroup Γ ⊂ SL2(R), if Γ is finitely generated (which means geometrically finite in the
classical sense), then ρ(Γ) acts geometrically finitely on Ω, but no parabolic subgroup is con-
jugate into O4,1(R) (even though all parabolic points are uniformly bounded).

Proof. By Fact 9.1, the proximal limit set ΛΓ of ρ(Γ) is contained in ∂D, and the convex hull
C (ΛΓ) is contained in D, which is, we recall, isometric to the Poincaré disc. This implies Γ
acts geometrically finitely on Ω.

Indeed every point p of ΛΓ corresponds to a point q of the limit set of Γ acting on H2. If
q is conical (there is (γn)n ⊂ Γ such that (γno)n converges to q while remaining at bounded
distance from [o, q), for o ∈H2) then p is conical too. If q is bounded parabolic for the action
of Γ on H2 then the stabiliser Γq acts cocompactly on ∂H2 à {q}, hence ρ(Γq), which is the
stabiliser of p, acts cocompactly on ∂D à {p}, which contains the stereographic projection of
C (ΛΓ), hence p is uniformly bounded parabolic.

Parabolic subgroups of ρ(Γ) are virtually conjugate to the group generated by the following
matrix, which is not conjugate into O4,1(R)(1 1 1/2

1 1
1

1 1
1

)
. □
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10. UNDER (Gen), UNIFORMLY BOUNDED CUSP GROUPS ARE CONJUGATE INTO Od,1(R)

In this section, we prove that under the genericity assumption (Gen), the stabilisers of
uniformly parabolic points are conjugate into Od,1(R). In particular, this establish the impli-
cation ((GF)&(Gen))⇒(HC).

Proposition 10.1. LetΩ be a round convex subset of RPd, Γ⊂Aut(Ω) discrete non-elementary,
and p ∈ΛΓ be a uniformly bounded parabolic fixed point with stabilizer Γp.

Suppose that the limit set ΛΓ spans the whole RPd, or that its dual spans the dual of RPd.
Then Γp is conjugate to a parabolic subgroup of Od,1(R).
Moreover it preserves a projective subspace RPr+1 ⊂ RPd where r is the rank of Γp, that

contains p and intersects Ω, and preserves ellipsoids E int ⊂ E ext such that

E int ∩Cone(p,C (ΛΓ))⊂Ω∩Cone(p,C (ΛΓ))⊂ E ext ∩Cone(p,C (ΛΓ)),

where Cone(p,C (ΛΓ)) is the union of the lines through p and a point of C (ΛΓ).

Proof. We can assume that ΛΓ spans RPd since the other case is dual.
Let Ad−1 be the affine chart of P(Rd+1/p)àP(Tp∂Ω/p), on which Γp acts properly discon-

tinuously by affine transformation (see Fact 5.2), and preserves and acts cocompactly on the
closed convex projection K of C (ΛΓ) (since p is uniformly bounded).

Let Ar ⊂Ad−1 be a maximal affine subspace contained in K and K ′ ⊂Ad−1/Ar the projec-
tion of K , which can be thought as the set of maximal affine subspaces contained in K . Note
that K ′ ⊂Ad−1/Ar does not contain any line, and that K is isomorphic to Ar ×K ′.

Observe that Γp acting cocompactly on K implies that K ′ must be compact: indeed if
it were not then K ′ would be homeomorphic to a halfspace, and so would be K , but no
halfspace can be acted on properly discontinuously and cocompactly by a discrete group. (If
a group G acts properly discontinuously and cocompactly on Rn ×RÊ0 then it acts properly
discontinuously and cocompactly on both the boundary Rn × {0} and the double Rn+1, which
is impossible.)

Moreover, K ′ has nonempty interior by our assumption that ΛΓ spans RPd.
The group Γp acts on Ad−1/Ar by affine transformations and preserves the compact convex

subset K ′ with nonempty interior, so Γp must fix the barycenter of K ′ which is in its interior,
and Γp must preserve some Euclidean structure on Ad−1/Ar.

This barycenter lifts to a Γp-invariant maximal affine subspace of K , which we assume to
be Ar without loss of generality, and on which the action of Γp is cocompact. Then Ar lifts to
a (r+1)-dimensional Γp-invariant subspace of RPd which contains p and intersects Ω. Up to
changing basis we assume that this subspace is RPr+1 =P(Rr+2 × {0})⊂RPd =P(Rd+1).

The intersection Ω′ =Ω∩RPr+1 is Γp-invariant, and Γp acts properly discontinuously and
cocompactly on ∂Ω′à {p} since we have an equivariant identification with Ar via the stereo-
graphic projection.

By [CM14a, Th. 7.14] this implies that the restriction of Γp to Rr+2 = Rr+2 × {0} ⊂ Rd+1

is conjugate to a parabolic subgroup of Or+1,1(R) of rank r; up to conjugating everything
we assume that this restriction is contained in Or+1,1(R). By Bieberbach’s Theorem (see e.g.
[Rat19, Th. 5.4.4]), up to changing the basis B of Rr+2, the group Γp has a finite-index normal
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subgroup isomorphic to Zr such that the restriction of any k ∈Zr to Rr+2 acts by

1 kt ||k||2
2

0 Ir−1 k
0 0 1

 .

The fact that Γp preserves an Euclidean structure on Ad−1/Ar means that its action on
Rd−r−1 =Rd+1/Rr+2 preserves an inner product, say the standard one.

To prove that Γp is conjugate to a parabolic subgroup of Od,1(R) it suffices to find a Γp-
invariant subspace of Rd+1 which is supplementary to Rr+2. The set E of subspaces sup-
plementary to Rr+2 is an affine space on which Γp acts by affine transformations. Thus it
suffices to check that Zr ⊂Γp preserves such a subspace, i.e. fixes a point of E. Indeed, since
Zr is a normal subgroup of Γp, the subspace E′ ⊂ E of Zr-fixed points is Γp-invariant. As
Zr acts trivially on E′, the Γp-action descends to an affine action of Γp/Zr which is a finite
group, and hence has a fixed point.

To write the matrices, we first choose B for the (r+2) first elements of our basis. Then we
choose the remaining (d− r−1) elements of the basis of Rd+1 in a lift of Tp∂Ω in such a way
that: an element k ∈Zr acts on Rd+2 by


1 kt ||k||2

2 Dk
0 Ir−1 k Ck
0 0 1 Bk
0 0 0 Ak

 ,

where Ak is an orthogonal matrix. Since those last (d− r−1) elements were chosen in a lift
of Tp∂Ω, we get that Bk = 0.

Now if we put the (r+2)-th element of the basis of Rd+1 into last position, then the first d
vectors form a basis of the lift Rd of Tp∂Ω, and the new action of k ∈Zr will be given by


1 kt Dk

||k||2
2

0 Ir−1 Ck k
0 0 Ak 0
0 0 0 1

 ,

and our goal is to arrange the elements of the basis from (r+2)-th to d-th so that Ck = 0 and
Dk = 0 (and so that those vectors are still in Rd, which is the lift of Tp∂Ω).

We can diagonalise simultaneously all Ak for k ∈Zr, in the complex field. This gives us
• v1, . . . ,vα ∈Rd/Rr+1 which are real-eigenvectors for all Ak’s with eigenvalue 1,
• w1, . . . ,wβ ∈ Rd/Rr+1 eigenvectors such that the eigenvalue of Ak for w j is (−1)k·ϵ j for

some ϵ j ∈Zr à2Zr,
• and P1, . . . ,Pγ ⊂ Rd/Rr+1 invariant planes such that each Ak acts as a rotation on P j

with angle k ·θ j for some θ j ∈Rr àπZr.
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Using this basis, the new action of k ∈Zr is given by

1 kt d1
k · · · dα

k d̄1
k · · · d̄β

k d̃1
k · · · d̃γ

k
||k||2

2
Ir−1 c1

k · · · cαk c̄1
k · · · c̄βk c̃1

k · · · c̃γk k
1

. . .
1

(−1)k·ϵ1

. . .
(−1)k·ϵβ

Rk·θ1
. . .

Rk·θγ
1



,

By dealing with each column (of width 1 or 2) independently, we can assume that we are
in one of the three following elementary cases:

1. Ak = 1 for every k;
2. Ak = (−1)k·ϵ for every k, where ϵ ∈Zr à2Zr;
3. Ak = Rk·θ for every k, where θ ∈Rr à2πZr.

Case 2. Since ϵ ̸∈ 2Zr we can find k such that (−1)k·ϵ =−1, and the action of k has a unique
−1-eigenvector, which is invariant under the whole group Zr, and which makes Cℓ and Dℓ

zero for every ℓ ∈Zr.
Case 3. Since θ ̸∈πZr we can find k such that Rk·θ is a nontrivial rotation, and the action

of k has a unique invariant plane in Rd+1 where it acts as this rotation, which is invariant
under the whole group Zr, and which hence makes Cℓ and Dℓ zero for every ℓ ∈Zr.

Case 1. Let us show that Ck has to be zero for any k, no matter what choices for the basis
have been made before.

The action of k is given by 
1 kt Dk

||k||2
2

0 Ir−1 Ck k
0 0 1 0
0 0 0 1

 .

The fact that we have a group action implies that for all k,ℓ ∈Zr we have Ck+ℓ = Ck+Cℓ and
Dk+ℓ = Dk +Dℓ+kt ·Cℓ.

Hence there is a matrix C such that Ck = C ·k for every k.
Since Dk+ℓ = Dℓ+k we have ktCℓ = ℓtCk for all k,ℓ and hence C is symmetric. Set D′

k :=
Dk − 1

2 ktCk and note that D′
k+ℓ = D′

k +D′
ℓ

for all k,ℓ, so there is a row vector D such that
Dk = Dk+ 1

2 ktCk for any k.
The affine action of k on the affine horizontal hyperplane with height 1 is given by

v 7→ k ·v =
1 kt Dk+ 1

2 ktCk
0 Ir−1 Ck
0 0 1

v+

 ||k||2
2
k
0
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We know that for every v the first entry of k ·v must go to +∞ as k leaves every compact set.
This implies that C has to be zero. Indeed, if xtCx ̸= 0 for some unit vector x then we can find
a diverging sequence (kn)n with direction converging to x such that 1

2 kt
nCkn ∼ 1

2 xtCx||kn||2
and taking v with last entry −2/xtCx and all other entries zero, the first entry of kn ·v is

O(||kn||)+ 1
2

xtCx||kn||2 · (−2/xtCx)+ 1
2
||kn||2 =O(||kn||)− 1

2
||kn||2 →−∞,

which is absurd.
The action of k on Rd+1 is now given by

1 kt Dk ||k||2
2

0 Ir−1 0 k
0 0 1 0
0 0 0 1

 .

Replacing the (r+2)-th vector of the basis by
0

−D t

1
0


yields a new action of the form 

1 kt 0 ||k||2
2

0 Ir−1 0 k
0 0 1 0
0 0 0 1

 ,

which is what we needed to conclude the proof. □

11. A CORRECTION ON THE PROOF OF (GF) ⇒ (VF)1

The implication (GF) ⇒ (VF)1 is a consequence of (GF) ⇒(CU) and the following lemma.
We adopt here a slightly different strategy than in [CM14a]. There the crucial ingredient

were estimates on the Hilbert volumes of cones in convex domains, with apex in the bound-
ary, obtained in collaboration with Vernicos, using the Busemann volumes. We think it is
possible to adapt this strategy to prove (VF)1 (instead of just (VF)0), but it would be much
more complicated. Here upper estimates on volumes are obtained by covering our set with a
well chosen collection of balls with the same radius.

Lemma 11.1 ([CM14a, p. 48]). Let Γ be a discrete group preserving a round convex open
subset Ω, and p ∈ ΛΓ a uniformly bounded parabolic point with stabiliser Γp. Fix a closed
horoball H ⊂Ω at p and let N be the 1-neighborhood of H∩C (ΛΓ) in Ω. Then N/Γp has finite
Hilbert volume.

Proof. Since p is uniformly bounded parabolic, Γp acts cocompactly on Cone(p,C (ΛΓ))∩∂Hà
{p}. Fixing a point x0 in this set, there exists R > 0 such that all the other points are at
Hilbert distance at most R from the Γp-orbit of x0.

For each t > 0 let xt be the point of [x0, p) at distance t from x0 and Ht the horoball
with xt in its boundary. Note that Cone(p,C (ΛΓ))∩∂Ht à {p} is contained in Γp ·BΩ(xt,R).
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Indeed if zt ∈ Cone(p,C (ΛΓ))∩∂Ht à {p} then the line through p and zt crosses ∂H at some
point z0. Then there is γ ∈ Γp such that γz0 ∈ BΩ(x0,R), and dΩ(γzt, xt) É dΩ(γz0, x0) < R by
Corollary 8.6.

This implies that N is contained in

N ⊂ ⋃
n∈N

⋃
γ∈Γp

γBΩ(xn,R+2)= ⋃
n∈N

BΩ(Γp · xn,R+2).

Let π :Ω→Ω/Γp be the projection map and Vol the quotient measure on Ω/Γp. Then

Vol(π(N))É ∑
n∈N

Vol(π(BΩ(xn,R+2)))

By definition of the quotient measure on Ω/Γp, to compute the volume of the quotient of
BΩ(xn,R+2) one can either find a fundamental region for the action of Γp or one can consider
all the points of BΩ(xn,R+2) and then divide by the number of orbit points in BΩ(xn,R+2):

Vol(π(BΩ(xn,R+2)))=
∫

x∈BΩ(xn,R+2))

1
#{γ ∈Γp : γx ∈ BΩ(xn,R+2)}

dVolΩ(x).

Here we use this second idea, except that we apply it to V = BΩ(Γp · xn,R+2)∩BΩ(xn,R+3)
instead of BΩ(xn,R+2), both have the same projection under π. Note that if x ∈V then γ0x ∈
BΩ(xn,R+2) for some γ0, and then for each γ′ ∈Γ, if γ′xn ∈ BΩ(xn,1) then γ′γ0x ∈ BΩ(xn,R+3).
Using this we observe the following.

Vol(π(BΩ(xn,R+2)))=Vol(π(V ))=
∫

x∈V

1
#{γ ∈Γp : γx ∈V }

dVolΩ(x)

É
∫

x∈V

1
#{γ ∈Γp : γx ∈ BΩ(xn,R+3)}

dVolΩ(x)

É VolΩ(BΩ(xn,R+3))
#{γ′ ∈Γp : γ′xn ∈ BΩ(xn,1)}

É C
#{γ ∈Γp : γxn ∈ BΩ(xn,1)}

,

where C is a constant that depends on R (see for instance [CV06, Th. 12]).
From Proposition 10.1 we know there is a Γp-invariant ellipsoid E ⊂C (ΛΓ) of dimension 1

plus the rank of Γp tangent to p.
Up to shrinking H and making a different choice of x0, we can assume that x0 ∈ E . Then

the Hilbert distance in E from xt to x0 is t plus some constant. With this it is classical to
deduce that that #{γ ∈ Γp : γxn ∈ BE (xn,1)} increases exponentially fast with n, and hence
so does the bigger number #{γ ∈ Γp : γxn ∈ BΩ(xn,1)} (recall that distances in Ω are smaller
than in E since E ⊂Ω, see e.g. [CM14a, §2.1]). This makes

∑
n∈NVol(π(N ∩BΩ(Γp · xn,R+2)))

summable and concludes the proof. □

12. A CORRECTION ON THE PROOF OF (GF) ⇒ ((gf)&(Hyp))

Lemma 12.1 ([CM14a, Lem. 9.3]). Let Γ be a discrete group preserving a round convex open
subset Ω. If Γ acts (GF) on Ω then the metric space (C (ΛΓ),dΩ) is Gromov-hyperbolic.

The lemma is correct but there is a mistake at the end of the proof in [CM14a, Lem. 9.3].
Let us reproduce the proof, with some minor modifications, to exhibit the mistake and ex-
plain how to fix it. One can assume that ΛΓ spans RPd (up to restricting to the span). The
proof works by contradiction: one assumes there is a sequence of fatter and fatter triangles
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in the convex core C =C (ΛΓ), with vertices xn, yn, zn and a point un on the side [xn, yn] whose
Hilbert distance to the other sides goes to infinity.

If the projection of un in C/Γ stayed in a compact set, then up to translating the sequence
of triangles and extracting a subsequence we could assume un converges to a point u ∈ Ω
while xn, yn, zn converge to points x, y, z ∈ ∂Ω, but then by strict convexity of Ω, the point u
would be at finite distance from one of the sides of the (possibly degenerate) triangle (x, y, z).
Thus the projection of un in C/Γ does not stay in a compact set, and up to extraction we may
assume it is contained in a single cusp and leaves every compact set (using that the action
is geometrically finite).

Up to translating the triangles we can then assume that un lies in a fixed horoball H
of Ω about a uniformly bounded parabolic point u ∈ ∂Ω. Then un → u. Up to translating
again with elements of Γu, we may also assume that the intersection point hn ∈ ∂H ∩ (u un)
converges to a point h ∈Ω (here (u un) denotes the line spanned by u and un).

Letting Co be the cone at u spanned by C, by Proposition 10.1 there are Γu-invariant
osculating ellipsoids E int ⊂ E ext such that Co∩E int ⊂ Co∩Ω ⊂ Co∩E ext, and there is a Γu-
invariant subspace S ⊂ RPd of dimension one plus the rank of Γu, such that it intersects Ω
and S∩Ω⊂Co (see Proposition 10.1 and its proof). One can check that the Hilbert distance
from un to S∩Ω tends to zero: fix o ∈ S∩C and recall that, because u is a C 1 point of ∂Ω,
the Hilbert distance between the rays [hn,u) and [o,u) tends to zero as we get closer to u,
so there is on ∈ [o,u) ⊂ S ∩C whose distance to un tends to zero (see for instance [Ben04,
Lem. 3.4]).

Now we fix a one-parameter subgroup (γt)t of hyperbolic automorphisms of E ext that pre-
serve S, u and the line (o u) and use it to recenter the whole picture: we select times kn such
that γkn on = o.

Now comes the small error: The sentence “Comme γknΩ∩E ext est coincé entre γkn(E int)
et E ext” is incorrect (only when restricting to Co does the inclusion γkn(Co∩E int) ⊂ γkn(Ω)
become true), hence the conclusion “la suite de convexes (γkn(Ω)∩E ext) tend, tout comme
(γkn(E int)), vers E ext” is incorrect too, and there are examples where γkn(Ω) can converge to
a convex with empty interior. To make the proof work we must recenter the picture via a
sequence slightly different than (γkn)n.

By [Ben03, Lem. 2.8] of Benoist (following Benzécri), and up to extracting a subsequence,
there exists a sequence (gn)n of projective transformations such that Ωn := gn(Ω)→Ω∞ and
gn equal to γkn in restriction to S, and also such that Ω∞ intersects S. Note that gn(Ω∩S)
converges to Eext∩S and also to Ω∞∩S, which is therefore an ellipsoid. Note also that since
dΩ(un, on)→ 0 and gn(on)= o, we have gn(un)→ o.

Suppose, up to extracting again, that the closures of the images of the convex core Cn =
gn(C) converge to a closed convex set C∞. To conclude, it suffices to show that C∞ ⊂ S.
Indeed we can then conclude as earlier: we know u′

n := gn(un) → o and up to extracting we
also have x′n := gn(xn)→ x′ and y′n := gn(yn)→ y′ and z′n := gn(zn)→ z′, all three contained in
C∞∩∂Ω∞, hence S∩∂Ω∞ which is an ellipsoid. By strict convexity of ellipsoids this means u′

is at finite Hilbert distance from [x′, z′] or [y′, z′], which contradicts that the Hilbert distance
from u′

n to [x′n, z′n]∪ [y′n, z′n] goes to infinity.
Assume that there exists (v′

n)n in Cn such that v′
n → v′∞ ∈ C∞ but v′∞ ∉ S. In particular,

dΩn(v′
n,u′

n) is bounded from below by some constant ϵ > 0 (since u′
n → o ∈ S). Let v′′

n be the
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intersection point of [v′
n,u′

n] with the Hilbert sphere of radius ϵ around u′
n. Then (v′′

n)n is a
sequence in Cn converging to a point of [o,v′∞]⊂ C∞, which is not o, so this limit point is not
in S (otherwise v′∞ would be too). To simplify the notations we can assume that v′

n = v′′
n, so

that dΩn(v′
n,u′

n)= ϵ for all n.
Let vn = g−1

n (v′
n), which remains at bounded Hilbert distance from un, and hence like un

converges to u. Denote by an the intersection point of the line (uvn) with ∂Ω, which is not
u. Using that u is uniformly bounded parabolic we can find πn ∈Γu such that bn :=πn(an)→
b∞ ̸= u after possibly extracting.

Let vvn :=πn(vn), and observe it also converges to u. Recall o ∈ S∩Ω. Since u is a C 1-point
of the boundary of Ω, there exists a vvvn ∈ [o,u) such that dΩ(vvn,vvvn)→ 0 (see again [Ben04,
Lem. 3.4]).

Hence, the Hilbert distance dΩn(gn ◦π−1
n (vvvn),v′

n) tends to zero, whereas gn ◦π−1
n (vvvn) is

in S. Contradiction.

13. COUNTEREXAMPLE TO (VF)1 ⇒ (GF) AND ((gf)&(Hyp)) ⇒ (GF): AN OVERVIEW

The counterexamples to the implications (VF)1 ⇒ (GF) and ((gf)&(Hyp)) ⇒ (GF) are sim-
ilar to the example in Section 9, in the sense that they also come from a representation ρ

of SL2(R) into SL5(R) that preserves round convex domains of RP4, except that this time we
use an irreducible representation of SL2(R), following [CM14a, §10.3].

As in Section 9, these ρ(SL2(R))-invariant domainsΩ can be described explicitly, as well as
the convex hull C of the proximal limit set, and SL2(R) acts cocompactly (but not transitively)
on C .

If Γ ⊂ SL2(R) is a noncocompact lattice, then ρ(Γ) does not act geometrically finitely on
Ω, because the maximal parabolic subgroups are not conjugate into O4,1(R) and the limit
set spans the whole RP4 (see Proposition 10.1). However, that SL2(R) acts cocompactly on
C implies that C is quasi-isometric to SL2(R), and hence is Gromov-hyperbolic. Moreover,
using the ideas from the proof of Lemma 11.1, one can further prove that the quotient under
ρ(Γ) of the 1-neighborhood of C has finite volume.

All the above will be written in a forthcoming paper [BM]. We will also include other
kinds of counterexamples, to (gf) ⇒ (VF)1 and (gf) ⇒ (Hyp). In fact these examples will
involve the same groups ρ(Γ) (where ρ is the irreducible representation of SL2(R) in SL5(R)
and Γ a noncocompact lattice of SL2(R)), but with different more subtle ρ(Γ)-invariant round
domains, which are not invariant under the whole ρ(SL2(R)).
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