

Probabilités

Contrôle Continu 2 Mercredi 16 novembre Durée : 1 heure

Sur votre copie doit figurer de façon LISIBLE votre PRÉNOM, votre NOM, et votre groupe. Vous devez rendre votre copie dans le tas de copies correspondants à votre groupe.

- Groupe 1 (Le lundi avec Ludovic Marquis)
- Groupe 2 (Le vendredi avec Rémi Danain-Bertoncini)
- Groupe 3 (Le lundi avec Lisa Balsollier)
- Groupe 4 (Le lundi avec Ludovic Marquis)
- Groupe 5 (Le vendredi avec Lisa Balsollier)

Tous les documents sont interdits.

Questions de cours

- 1. Rappeler la définition de la loi exponentielle.
- 2. Calculer l'espérance et la variance de loi de Bernoulli.
- **3.** Soit X une variable aléatoire et $a \neq 0$, b deux réels. On suppose que X suit la loi normale de paramètre (0,1), quelle est la loi de Y=aX+b?

Exercice 1

On lance deux fois un dé normal à 6 faces. Les 6 faces sont numérotés de 1 à 6. On note X le numéro obtenu lors du premier lancer et Y le numéro obtenu lors du second lancer. On note Z la variable aléatoire Z = X + Y.

- 1. Donner la loi de X et calculer son espérance. On donnera le résultat sous la forme d'une fraction simplifiée.
- 2. Donner la loi de Z, c'est à dire donner l'ensemble des valeurs possibles pour Z et la probabilité de chacune de ses valeurs.
- 3. Calculer l'espérance de Z. On donnera le résultat sous la forme d'une fraction simplifiée.
- **4.** Calculer la variance de Z. Il n'est pas nécessaire de donner le résultat sous la forme d'une fraction simplifiée, une somme de fractions suffit.

Exercice 2

Soit 0 . Soit <math>X une variable aléatoire qui suit la loi géométrique $\mathcal{G}(p)$. On rappelle que $\mathbb{E}(X) = \frac{1}{p}$ et $\mathbb{V}(X) = \frac{1-p}{p^2}$.

- 1. Rappeler la définition de la loi géométrique.
- 2. Soit Y = 4X + 7. Calculer l'espérance de Y et la variance de Y.
- **3.** Calculer l'espérance de X^2 .
- 4. Soit $Z = 5X^2 + 3X + 1$. Calculer l'espérance de Z.

Exercice 3

Tous les jours, Léo fait le trajet entre son domicile et son travail. Un jour sur deux, il dépasse la vitesse autorisée. Un jour sur dix, un contrôle radar est effectué. On suppose que ces deux événements (dépassement de la vitesse autorisée et contrôle radar) sont indépendants.

Si le radar enregistre un excès de vitesse, Léo perd un point sur son permis de conduire. On note X_i le nombre de points perdus par Léo le jour i.

- 1. En vous servant des événements :
 - E: "Léo a commis un excès de vitesse" et C: "un contrôle radar a lieu"

donner la loi de X_i .

- **2.** On note S_n le nombre de points perdus après n jours.
 - **a.** Exprimer S_n en fonction des X_i .
 - **b.** Quelle est la loi de S_n ?
 - c. Donner son espérance et sa variance.
- **3.** On suppose $n \ge 6$. Léo est un jeune conducteur, il ne possède donc que 6 points sur son permis. Quelle est la probabilité qu'au bout de n jours, Léo n'ait plus de points sur son permis? On pourra donner le résultat sous forme d'une formule.