Examen Terminal Durée : 2 heures Jeudi 21 décembre 2017

L'usage de la calculatrice est interdit.

La clarté de la rédaction constitue une part essentielle de l'évaluation.

Les réponses aux exercices doivent être justifiées.

Questions de cours

1. Soient $(u_n)_{n \in \mathbb{N}}$ une suite de nombres réels et ℓ un réel. Rappeler la définition (avec des quantificateurs) de l'assertion « la suite $(u_n)_{n \in \mathbb{N}}$ tend vers ℓ ».

 $5\min$ - 1pt

2. Montrer, uniquement à l'aide de la définition énoncée précédemment, que la suite $(u_n)_{n\in\mathbb{N}}$ de terme général $u_n = \frac{\cos(n)}{n+1}$ tend vers un certain ℓ que l'on explicitera.

5min - 1pt

3. Énoncer le théorème de dérivation des fonctions composées. Dériver la fonction $x \mapsto e^{x^3}$.

5min - 1pt

4. Énoncer le théorème de l'intégration par parties. Calculer $\int_0^1 (t-1)^2 e^t dt$.

5min - 1pt

Exercice 1

Résoudre dans \mathbb{R} , l'inégalité :

$$|x^2 - 1| + |x| \le 2.$$

10min - 2pt

Exercice 2

Déterminer, si elle existe, la limite de chacune des suites de terme général :

1.
$$v_n = \sqrt{n+1} - \sqrt{n}$$

5min - 1pt

2.
$$w_n = \frac{3n^2 + 1}{n^2 + n + 3}$$

5min - 1pt

Exercice 3

1. Décomposer en éléments simples sur $\mathbb{R}[X]$ la fraction

$$F(X) = \frac{X^2}{(X+2)(X^2+1)}.$$

2. Déterminer une primitive, notée G, de $x \mapsto \frac{x^2}{(x+2)(x^2+1)}$ sur l'intervalle $]-2,+\infty[$.

5min - 1pt

15min 1.5pts

3. Dresser le tableau de variations de tan sur l'intervalle $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$. On précisera les valeurs de tan en $-\frac{\pi}{4}$ et $\frac{\pi}{4}$.

5min - 0.5pt

4. Justifier que l'intégrale suivante est bien définie :

$$J = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\tan^2 x}{\tan x + 2} \mathrm{d}x.$$

5. Calculer J en remarquant que, pour tout $x \in \left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$,

10min 1.5pt

10min 1.5pt

$$\frac{\tan^2 x}{\tan x + 2} = G'(\tan x)(1 + \tan^2 x).$$

Exercice 4

On considère $f: \mathbb{R} \to \mathbb{R}$, la fonction définie par $f(x) = \frac{x}{\frac{1}{2} + x^2}$

1. Montrer que f est impaire.

2. Calculer les limites de f en $-\infty$ et $+\infty$.

3. Dresser le tableau de variations de f.

4. Tracer f. $\begin{array}{c}
1.5pt \\
5min - 1pt
\end{array}$

5. Quelle est l'image $F = f(\mathbb{R})$ de f?

6. Est-ce que $g: \mathbb{R} \to F$ définie par : $\forall x \in \mathbb{R}, g(x) = f(x)$ est une bijection?

7. Résoudre sur \mathbb{R} , l'équation (E): f(z)=z. En particulier, on montrera qu'il existe un unique réel strictement positif solution de (E). Ce réel sera dorénavant noté C.

Soit $u_0 > 0$. On définit la suite $(u_n)_{n \in \mathbb{N}}$ par $u_{n+1} = f(u_n)$.

8. Montrer que $u_1 \in]0, C]$.

9. Montrer que la suite $(u_n)_{n \in \mathbb{N}}$ est majorée.

10. Montrer que $(u_n)_{n \in \mathbb{N}}$ est croissante. 5min - 1pt

11. La suite $(u_n)_{n \in \mathbb{N}}$ est-elle convergente? Si oui, exhiber la limite.