Contrôle continu 3 Durée : 20 min

L'usage de la calculatrice est interdit.

La clarté de la rédaction constitue une part essentielle de l'évaluation.

Les réponses aux exercices doivent être justifiées.

Question de cours

- 1. Soient $(u_n)_{n \in \mathbb{N}}$ une suite de nombres réels et ℓ un réel. Rappeler la définition (avec des quantificateurs) de l'assertion « la suite $(u_n)_{n \in \mathbb{N}}$ tend vers ℓ ».
- 2. Montrer, uniquement à l'aide de la définition énoncée précédemment, que la suite $(u_n)_{n \in \mathbb{N}}$ de terme général $u_n = \frac{\sin(n)}{\sqrt{n+1}}$ tend vers un certain ℓ que l'on explicitera.

Exercice 1

Déterminer, si elle existe, la limite de chacune des suites de terme général :

1.

$$u_n = \frac{4n + \sqrt{n^2 + 1}}{n + 3}$$

2.

$$v_n = \left(1 + \frac{1}{n}\right)^n$$

Exercice 2

Soit $(u_n)_{n \in \mathbb{N}}$ la suite définie par $u_0 = \overline{1 \text{ et } u_{n+1} = \frac{1}{4}u_n^2 + 1}$.

- 1. Montrer que $(u_n)_{n\in\mathbb{N}}$ est croissante.
- **2.** Montrer que $(u_n)_{n \in \mathbb{N}}$ est majorée.
- 3. La suite $(u_n)_{n\in\mathbb{N}}$ est-elle convergente? Si oui, exhiber la limite.