Contrôle continu du lundi 14 décembre 2020 Durée: 1h30

L'usage de la calculatrice est interdit. La clarté de la rédaction constitue une part essentielle de l'évaluation. Les réponses aux exercices doivent être justifiées.

Questions de cours

- 1. Calculer la dérivée de l'application $f: x \in \mathbb{R} \mapsto (\ln(x^2 + 2))^{\frac{1}{2}} \in \mathbb{R}$.
- **2.** Déterminer les dérivées partielles de l'application $f: \mathbb{R}^2 \to \mathbb{R}$ définie par $f(x,y) = x^2y + \arctan(x-y)$. (on ne demande pas le domaine de dérivabilité).
- **3.** À l'aide d'une intégration par parties, déterminer une primitive sur $]0,+\infty[$ de la fonction $f(x)=\ln(x)$.
- **4. a.** Donner, avec des quantificateurs, la définition de la convergence d'une suite $(u_n)_{n\in\mathbb{N}}$.
 - b. Montrer en utilisant la définition donnée précédemment que la suite définie, pour tout entier n, par $u_n = \frac{n+2}{n+1}$ converge vers 1.
- 5. Donner, avec des quantificateurs, la définition d'une suite $(u_n)_{n\in\mathbb{N}}$ décroissante minorée par L. Préciser si la suite converge, ne converge pas, converge vers L.

Exercice 1

On considère la fonction f définie sur $\mathbb R$ par

$$\forall x \in \mathbb{R}, f(x) = e^{-x^2}$$

- a. Donner son domaine de définition D_f et son domaine de dérivabilité E_f .
 - **b.** Calculer sa dérivée sur E_f .
- **2.** Dresser le tableau de variations de f sur D_f .
- **3.** Montrer que la restriction de la fonction f à l'intervalle $[0, +\infty[$ définit une bijection de $[0, +\infty[$ sur]0, 1].
- 4. Déterminer son application réciproque.

Exercice 2

Soit $f: [1, \infty[\to \mathbb{R} \text{ l'application définie par } f(x) = \frac{\sqrt{x-1}}{x}$.

Calculer l'intégrale définie $\int_{1}^{5} f(x) dx$ en utilisant le changement de variable $t = \sqrt{x-1}$.

Exercice 3

On considère la fonction $f: x \mapsto \frac{x+4}{(2x+3)(1-x)}$ définie sur $D = \mathbb{R} \setminus \{-\frac{3}{2}; 1\}$.

1. Trouver deux réels a et b tels que, pour tout $x \in D$, on ait

$$\frac{x+4}{(2x+3)(1-x)} = \frac{a}{2x+3} + \frac{b}{1-x}.$$

2. Calculer une primitive de f.

Exercice 4

Déterminer, si elle existe, la limite de chacune des suites de terme général :

1.
$$u_n = \sqrt{n+1} - \sqrt{n}$$

$$2. \ v_n = \frac{3n^2 + \sin(n)}{2^n + 3}$$