Feuille nº 4 : Calcul de Primitives

Intégration par parties

Exercice 1

Calculer une primitive des fonctions suivantes

- 1. $\ln x$
- 2. $x \ln x$
- **3.** $\arctan x$
- 4. x^2e^{-x}
- 5. $e^x \cos(x)$
- **6.** $x^3e^{-x^2}$
- 7. $x^3 \sin x$
- 8. $\ln^2 x$
- **9.** $\cos x \ln(1 + \cos x)$
- **10.** $\ln(x + \sqrt{x^2 1})$
- **11.** $\arctan\left(\frac{x+1}{x-1}\right) + x$.

Exercice 2

- 1. Soit n un entier naturel. Intégrer par parties $I_n = \int_0^{\pi} x(\pi x) \cos(nx) dx$.
- 2. Calculer, en intégrant par parties, $I = \int \exp(\alpha x) \cos(\beta x) dx$ en fonction de $J = \int \exp(\alpha x) \sin(\beta x) dx$. Calculer J en fonction de I. En déduire les valeurs de I et J.

Changement de variable

Exercice 3

Calculer l'intégrale suivante en utilisant le changement de variables $t = \frac{1}{x}$.

$$I = \int_2^4 \frac{dx}{x\sqrt{x(x-1)}}.$$

Exercice 4

Calculer une primitive des fonctions suivantes en faisant un changement de variable :

1.
$$\frac{1}{x^2 + 25}$$

2.
$$\frac{1}{(1+x)\sqrt{x}}$$

3.
$$x\sqrt{1+x^2}$$

3.
$$x\sqrt{1+x^2}$$
4. $\frac{x}{\sqrt{1-x^4}}$

Exercice 5

Calculer une primitive des fonctions suivantes en les mettant sous la forme $\varphi'f'(\varphi)$

1.
$$\frac{e^x}{e^{2x}+1}$$

2.
$$\frac{\sin x}{\sqrt{4 - \cos^2 x}}$$
3.
$$\frac{\arcsin x}{\sqrt{1 - x^2}}$$

$$3. \ \frac{\arcsin x}{\sqrt{1-x^2}}$$

Exercice 6

Calculer une primitive des fonctions suivantes

1.
$$\frac{1}{\cos x}$$

$$2. \ \frac{1}{\operatorname{ch} x}$$

Fractions rationnelles 3

Exercice 7

Calculer une primitive des fractions rationnelles suivantes :

1. a. Trouver trois réels
$$a$$
, b et c tels que $\frac{1}{X^3 - X} = \frac{a}{X} + \frac{b}{X - 1} + \frac{c}{X + 1}$.

b. Calculer une primitive de
$$x \mapsto \frac{1}{x^3 - x}$$
.

2. a. Trouver trois réels
$$a$$
, b et c tels que $\frac{X^2 + 2X + 5}{X^2 - 3X + 2} = a + \frac{b}{X - 1} + \frac{c}{X - 2}$.

b. Calculer une primitive de
$$x \mapsto \frac{x^2 + 2x + 5}{x^2 - 3x + 2}$$

3. a. Trouver trois réels
$$a$$
, b et c tels que $\frac{X^2+2}{X^2+1}=a+\frac{bX+c}{X^2+1}$.

b. Calculer une primitive de
$$x \mapsto \frac{x^2 + 2}{x^2 + 1}$$
.

4. a. Trouver quatres réels
$$a$$
, b , c et d tels que $\frac{X^3+1}{X^2+4}=aX+b+\frac{cX+d}{X^2+4}$.

b. Calculer une primitive de
$$x \mapsto \frac{x^3 + 1}{x^2 + 4}$$
.

Exercice 8

Calculer les intégrales suivantes :

1.
$$\int_0^{\frac{1}{2}} \frac{t^3}{1-t} dt$$

$$2. \int_0^1 \frac{t}{t^2 - t + 1} \ dt$$

Par parties ou par changement de variables?

Exercice 9

Déterminer une primitive des fonctions suivantes

1.
$$\sin(\cos x)\sin x$$

2.
$$x^3e^{-x^2}$$

3.
$$2x(x^2+1)\exp(x^2)$$
.

4.
$$x^{\frac{1}{2}} \ln x$$

4.
$$x^{\frac{1}{2}} \ln x$$
5. $\frac{\sin x}{e^x}$

Exercice 10

Soit $f: \mathbb{R} \to \mathbb{R}$ une application continue et $F: \mathbb{R} \to \mathbb{R}$ l'application définie par $F(x) = \int_0^x f(t) dt$.

Répondre (en le justifiant) aux affirmations suivantes :

- **1.** F est dérivable sur \mathbb{R} de dérivée f.
- **2.** Si f est positive sur \mathbb{R} alors F est positive sur \mathbb{R} .
- **3.** Si f est croissante sur \mathbb{R} alors F est croissante sur \mathbb{R} .
- **4.** Si f est négative sur \mathbb{R} alors F est décroissante sur \mathbb{R} .
- **5.** Si f est paire alors F est impaire.
- **6.** Si f est T-périodique sur \mathbb{R} alors F est T-périodique sur \mathbb{R} .

Exercice 11

1. Montrer que si $f:[a,b]\to\mathbb{R}$ est continue, alors

$$\int_a^b f(x) dx = \int_a^b f(a+b-x) dx.$$

2. Calculer, en utilisant 1), les intégrales suivantes :

a)
$$\int_0^{\pi} \frac{x \sin(x)}{1 + \cos^2(x)} dx$$
 b) $\int_0^{\frac{\pi}{4}} \ln(1 + \tan(x)) dx$.

On pourra utiliser librement la formule :

$$\tan(\alpha + \beta) = \frac{\tan(\alpha) + \tan(\beta)}{1 - \tan(\alpha)\tan(\beta)}$$

Pour aller plus loin

Exercice 12

On pose $I_n = \int_0^{\frac{n}{2}} (\sin x)^n dx$.

- **1.** Calculer I_0 et I_1 .
- **2.** Établir une formule de récurrence entre I_n et I_{n-2} .
- **3.** Montrer que le produit $(n + 1)I_nI_{n+1}$ est constant.
- **4.** Calculer $\lim_{n\to\infty} I_n$, $\lim_{n\to\infty} \frac{I_n}{I_{n+1}}$ et $\lim_{n\to\infty} \sqrt{n}I_n$.
- **5.** Montrer que $I_{2n} = \frac{(2n)!}{2^{2n}(n!)^2} \frac{\pi}{2}$ et $I_{2n+1} = \frac{2^{2n}(n!)^2}{(2n+1)!}$ et en déduire une suite de rationnels convergeant vers π .

Exercice 13

Déterminer toutes les fonctions continues $f:[a, b] \to \mathbb{R}$ telles que :

$$\int_a^b f(t)dt = (b-a) \sup_{t \in [a,b]} f(t).$$

Exercice 14

Soit $f:[0,1]\to\mathbb{R}$ une application strictement croissante telle que f(0)=0 et f(1)=1.

Calculer la limite de la suite $u_n = \int_0^1 (f(x))^n dx$.