

Théorie des Groupes et Géométrie

TD n°4 : Groupes linéaires (et orthogonaux euclidiens)

Groupes linéaires

Exercice 1 (GL_n n'est pas un produit direct de SL_n)

On suppose qu'il existe un sous-groupe $H \leq \operatorname{GL}_n(k)$ tel que l'application $(g,h) \mapsto gh$ soit un isomorphisme de groupes de $\operatorname{SL}_n(k) \times H$ dans $\operatorname{GL}_n(k)$.

- 1. Montrer que le déterminant induit un isomorphisme de H sur k^{\times} .
- 2. Montrer que $H \subseteq Z := Z(GL_n(k))$.
- 3. En déduire que H = Z.
- 4. Donner une CNS pour qu'il existe un tel H.

Exercice 2 (Décomposition de Bruhat)

Soit k un corps et soit (e_1, \ldots, e_n) une base de k^n . À toute permutation $\sigma \in \mathfrak{S}_n$ on associe l'endomorphisme p_{σ} de k^n donné sur la base précédente par $p_{\sigma}(e_i) := e_{\sigma(i)}$. On note P_{σ} la matrice de p_{σ} dans la base (e_1, \ldots, e_n) .

- 1. Montrer que $P_{\sigma} \in GL_n(k)$.
- 2. Déterminer le coefficient (i, j) de P_{σ} .
- 3. Montrer que \mathfrak{S}_n s'identifie à un sous-groupe de $\mathrm{GL}_n(k)$ via l'application $\sigma \mapsto P_{\sigma}$.

Soit $T_n(k) \leq GL_n(k)$ le sous-groupe des matrices triangulaires supérieures. On considère l'action par équivalence de $T_n(k) \times T_n(k)$ sur $GL_n(k)$, donnée par $(M,N) \cdot A := MAN^{-1}$. On veut montrer que chaque orbite contient une unique matrice P_{σ} .

- 4. Rappeler pourquoi $T_n(k)$ est un sous-groupe de $GL_n(k)$.
- 5. Rappeler pourquoi faire une opération sur les lignes ou les colonnes revient à multiplier par une certaine matrice triangulaire.
- 6. Soit $A \in GL_n(k)$. En considérant le dernier coefficient non nul de la première colonne de A, montrer qu'il existe $T, T' \in T_n(k)$ telles que TAT' soit de la forme

$$\begin{pmatrix} 0 & & & \\ \vdots & & * & \\ 0 & & & \\ 1 & 0 & \cdots & 0 \\ 0 & & & \\ \vdots & & * & \\ 0 & & & \end{pmatrix}$$

- 7. En déduire que chaque orbite possède au moins une matrice de la forme P_{σ} .
- 8. En utilisant l'équivalence de deux certaines matrices triangulaires supérieures, montrer que si P_{σ} et P_{τ} sont dans la même orbite alors $\sigma = \tau$.
- 9. Conclure.

Exercice 3 (Décomposition LU)

En utilisant la question 5 de l'Exercice 2, montrer que toute matrice dont les mineurs principaux sont non nuls peut s'écrire de façon unique comme le produit d'une matrice triangulaire inférieure et d'une matrice unitriangulaire supérieure.

Exercice 4 (Décomposition de Gram-Schmidt, QR ou Iwasawa selon les goûts)

En utilisant l'indice donné par le nom de l'exercice, montrer que toute matrice inversible peut s'écrire comme produit d'une matrice orthogonale et d'une matrice triangulaire supérieure.

1/2 TSVP \rightarrow

Exercice 5

Soient $n \ge 2$ et k un corps. On suppose que $(n,k) \ne (2,\mathbb{F}_2)$ et $(2,\mathbb{F}_3)$

- 1. Soit H un sous-groupe distingué propre de $SL_n(k)$. On va montrer que H est central.
 - (a) Montrer qu'un sous-groupe inclus dans le centre de $\mathrm{SL}_n(k)$ est distingué.
 - (b) Pour $n \ge 3$, à l'aide de commutateurs trouver une transvection dans H.
 - (c) Pour n=2, à l'aide de commutateurs montrer qu'un conjugué de toute transvection élémentaire est dans H.

Si A est un sous-groupe de k^* . On note $SL_n^A(k) = \{g \in GL_n(k) \mid \det(g) \in A\}$.

2. Montrer qu'un sous-groupe distingué de $GL_n(k)$ est central ou un $SL_n^A(k)$.

Exercice 6

Soit k un corps. On considère le groupe :

$$Aff(k) = \{x \mapsto ax + b \mid a \in k^*, b \in k\}$$

Il s'agit du groupe des transformations affines de la droite affine k.

- 1. Montrer que $\mathrm{Aff}(k)$ est un produit semi-direct, calculer son ordre.
- 2. (a) Remarquer que $\sharp \mathrm{Aff}(\mathbb{F}_4) = \sharp \mathfrak{A}_4$. Montrer que $\mathrm{Aff}(\mathbb{F}_4) \simeq \mathfrak{A}_4$.
 - (b) En (re)déduire l'existence d'un sous-groupe distingué de \mathfrak{A}_4 .
 - (c) Trouver un cousin de $Aff(\mathbb{F}_4)$ isomorphe à \mathfrak{S}_4 .
- 3. Soit p, q deux nombres premiers avec $p \mid q 1$.
 - (a) Montrer que l'unique groupe non-abélien d'ordre pq est un sous-groupe de $\mathrm{Aff}(\mathbb{F}_q)$.
 - (b) Montrer que deux sous-groupes d'ordre pq de $Aff(\mathbb{F}_q)$ sont conjugués.

Exercice 7

- 1. Montrer que $\sharp PSL_3(\mathbb{F}_4) = \sharp PSL_4(\mathbb{F}_2) = 8!/2 = 2^6 \cdot 3^2 \cdot 5 \cdot 7 = \sharp \mathfrak{A}_8$.
- 2. Montrer que $PSL_4(\mathbb{F}_2) = SL_4(\mathbb{F}_2)$ contient deux classes de conjugaisons d'éléments d'ordre 2.
- 3. Montrer que tout élément d'ordre 2 de $PSL_3(\mathbb{F}_4)$ est l'image d'une transvection de $SL_3(\mathbb{F}_4)$.
- 4. En déduire que $PSL_3(\mathbb{F}_4) \not\simeq PSL_4(\mathbb{F}_2)$.
- 5. À qui \mathfrak{A}_8 a-t-il une chance d'être isomorphe? On ne demande pas de le montrer mais \mathfrak{A}_8 est bien isomorphe à ce candidat.

Groupes de réflexions

Exercice 8

Soit v dans \mathbb{R}^n euclidien. Donner l'expression de la réflexion d'hyperplan v^{\perp} .

Exercice 9

Montrer que le groupe diédral est engendré par deux réflexions.

Exercice 10

Pour $i \in \{1, ..., n-1\}$, on note $s_i := (i, i+1) \in \mathfrak{S}_n$.

- 1. Rappeler pourquoi $\mathfrak{S}_n = \langle s_1, \dots, s_{n-1} \rangle$.
- $2.\ Vérifier que les relations suivantes sont vérifiées :$

$$s_i^2 = 1,$$
 $s_i s_j = s_j s_i,$ si $|i - j| > 1,$ $s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}.$

3. Soit (e_1, \ldots, e_n) la base canonique de \mathbb{R}^n . Pour chaque $i \in \{1, \ldots, n-1\}$, on note r_i la réflexion d'hyperplan $(e_i - e_j)^{\perp}$. Montrer que r_1, \ldots, r_{n-1} vérifient les relations précédentes.

Divers

Exercice 11

Montrer que \mathfrak{A}_5 est simple à l'aide du lemme d'Iwasawa. On imagine que \mathfrak{A}_5 est parfait a déjà été montré...