Feuille nº 3 : Polynômes et fractions rationnelles

Polynômes

Exercice 1

Trouver les racines complexes des polynômes suivants :

$$P_1 = (X - 2 - i)(X - 3 + i)$$
, $P_2 = 2X^2 - 6X + 5$, $P_3 = X^2 - (3 + 4i)X - 1 + 5i$.

Exercice 2

Factoriser dans $\mathbf{R}[X]$ et dans $\mathbf{C}[X]$ les polynômes suivants :

$$X^3 - 1$$
, $X^3 + X^2 + X + 1$, $X^6 + 1$.

Exercice 3

Sachant que le polynôme $P = X^3 - 12X + 16$ admet une racine d'ordre au moins 2, trouver toutes les racines de P.

Exercice 4

Après avoir vérifié que 2 est racine du polynôme $X^5 - 5X^4 + 7X^3 - 2X^2 + 4X - 8$, trouver sa multiplicité.

Exercice 5

Soient p et q deux nombres complexes. Donner une condition nécessaire et suffisante pour que $X^3 + pX + q$ admette une racine d'ordre au moins 2.

Exercice 6

Trouver un réel a tel que $X^5 - aX^2 - aX + 1$ admet -1 comme racine d'ordre au moins 2. Dans ce cas, quel est l'ordre de -1?

Exercice 7

- 1. Effectuer la division euclidienne de A par B dans les cas suivants :
 - 1. $A = X^4 3X + 7$ et $B = X^2 + 1$,
 - **2.** $A = -2X^5 + X^4 X^3 + 2$ et $B = X^3 + X + 6$.
 - **3.** $A = X^7 X + 2$ et $B = -X^6 + X^4 X^2 + 7$.
- 2. Dans chacun des cas précédents, dire si A et B ont une racine en commun dans C.

Exercice 8

Soit $A \in \mathbf{K}[X]$. Soient $a \in \mathbf{K}$ et $b \in \mathbf{K}$ tels que $a \neq b$. On note λ et μ les restes dans la division euclidienne de A par X - a et X - b respectivement.

Exprimer le reste de la division euclidienne de A par (X-a)(X-b) en fonction de λ et μ .

Exercice 9

$$X^2 + 3X + 2$$
 divise-t-il $X^{27} - X^{17} + 2$?

Exercice 10

Soit $a \in \mathbf{K}$ et $n \in \mathbf{N}^*$. Montrer que X - a divise $X^n - a^n$. Expliciter le quotient.

Exercice 11

1. Soit $P \in \mathbf{K}[X]$. Montrer que P admet une racine $x_0 \in \mathbf{K}$ d'ordre au moins 2 si et seulement si $P(x_0) = P'(x_0) = 0$.

2. Pour quelles valeurs de $a \in \mathbb{C}$ le polynôme $P_a = (X+1)^7 - X^7 - a$ admet-il une racine d'ordre au moins 2?

Exo difficile, Peut-être mettre l'énoncé dans le cours?

Exercice 12

Soit $P \in \mathbf{K}[X]$ un polynôme de degré N qu'on écrit :

$$P = \sum_{k=0}^{N} a_k X^k \,.$$

Pour tout $k \in \mathbb{N}$, on désigne par $P^{(k)}$ le polynôme obtenu en dérivant k fois de suite P.

1. Montrer par récurrence que, pour tout $k \in \{0, ..., N\}$,

$$a_k = \frac{P^{(k)}(0)}{k!} \,.$$

Soit $x_0 \in \mathbf{K}$. On pose $Q(X) = P(X + x_0)$.

- **2.** Montrer par récurrence que, pour tout $k \in \mathbb{N}$, $Q^{(k)}(X) = P^{(k)}(X + x_0)$.
- 3. Déduire de ce qui précède que

$$P = \sum_{k=0}^{N} \frac{P^{(k)}(x_0)}{k!} (X - x_0)^k.$$

- **4.** Montrer que x_0 est racine d'ordre $m+1 \in \mathbb{N}$ de P si et seulement si $P(x_0) = P'(x_0) = \ldots = P^{(m)}(x_0) = 0$ et $P^{(m+1)}(x_0) \neq 0$.
- **5.** En déduire que si x_0 est racine de P d'ordre $m \ge 2$ alors x_0 est racine de P' d'ordre m-1.
- **6.** Trouver un énoncé similaire pour $P^{(k)}$.

Exercice 13

Trouver les polynômes dans $\mathbb{C}[X]$ tels que P' divise P.

Exo difficile, virer?

Exercice 14

Soit $n \in \mathbb{N}$. On cherche les polynômes $P \in \mathbb{C}[X]$ qui vérifie :

$$\forall z \in \mathbf{C} \setminus \{0\}, \quad P\left(z + \frac{1}{z}\right) = z^n + \frac{1}{z^n} \tag{\bigstar}$$

- 1. Montrer qu'il existe au plus un polynôme $P_n \in \mathbf{C}[X]$ qui vérifie (\bigstar) .
- **2.** Montrer par récurrence qu'il existe un polynôme $P_n \in \mathbf{C}[X]$ qui vérifie (\bigstar) .
- **3.** Montrer que les racines de P_n sont réelles, simples et appartiennent à l'intervalle [-2,2].

Fractions rationnelles

A cause du PC1 de l'année dernière, on ajoute l'exo suivant...

Exercice 15

Donner les racines et les pôles ainsi que leurs multiplicités, des fractions rationnelles suivantes :

•••

Exercice 16

Décomposer en éléments simples dans ${f C}$ les fractions suivantes

$$F_1 = \frac{1}{X^2 - 1}$$
, $F_2 = \frac{1}{2X^2 - 6X + 5}$, $F_3 = \frac{4X - 1}{X(X + 2)}$, $F_4 = \frac{X^4}{(X^2 - 1)(X + 3)^2}$.

Exercice 17

Décomposer en éléments simples dans ${\bf R}$ les fractions suivantes

$$F_1 = \frac{1}{X^4 - 1}$$
, $F_2 = \frac{X^2 + X + 3}{(X - 2)^2 (X^2 + 1)^2}$.

Exercice 18

Pour $\alpha \in \mathbf{R}$, on pose $F_{\alpha}(x) = \frac{x^2}{x^4 - 2\cos(2\alpha)x^2 + 1}$. Décomposer F_{α} en éléments simples sur \mathbf{R} . On étudiera séparément les cas $\alpha \in \frac{\pi}{2}\mathbf{Z}$ et $\alpha \notin \frac{\pi}{2}\mathbf{Z}$.

Exercice 19

Soit $n \in \mathbb{N}$. Décomposer en éléments simples la fraction

$$F = \frac{1}{X(X-1)\dots(X-n)}.$$

Exercice 20

Calculer les sommes suivantes :

$$\sum_{n=1}^{N} \frac{1}{n(n+1)}, \quad \sum_{n=1}^{N} \frac{1}{n(n+1)(n+2)}.$$

Exercice 21

Pour $n \geqslant 1$, on pose $F_n = \frac{1}{X^n - 1}$.

- 1. Décomposer F_n en éléments simples sur \mathbb{C} .
- **2.** En déduire la décomposition en éléments simples de F_n sur **R**. On distinguera les cas n pair et n impair.

Exercice 22

Décomposer en éléments simples la fraction $\frac{1}{P}$ quand P est un polynôme à racines simples.

Exercice 23

Soit P un polynôme complexe.

1. Rappeler pourquoi il existe des complexes $(a_i)_{i=1...r}$, un complex c et des entiers naturels $(m_i)_{i=1...r}$ tels que :

$$P = c \prod_{i=1}^{r} (X - a_i)^{m_i}.$$

- 2. Décomposer en éléments simples la fraction $\frac{P'}{P}$.
- 3. Montrer que si z est une racine de P' qui n'est pas une racine de P alors :

$$\sum_{i=1}^r \frac{m_i}{z - a_i} = 0.$$

- 4. En déduire que z est un barycentre à coefficients positifs des racines de P.
- 5. Interpréter par un dessin le résultat démontré (Théorème de Gauss-Lucas, 1874).