

Géométrie Hyperbolique

Devoir Maison du 18 octobre. Retour le 15 novembre.

Les exercices 1 à 4 ne sont pas indépendants mais vous êtes libre d'utiliser les réponses comme vous le souhaitez. L'exercice 5 est indépendant du reste.

Exercice 1

On considère deux rayons géodésiques r_1 , r_2 de l'espace hyperbolique \mathbb{H}^d . On suppose que $r_1(+\infty) = p_1 \in \partial \mathbb{H}^d$ et $r_2(+\infty) = p_2 \in \partial \mathbb{H}^d$.

Toute méthode alternative aux démonstrations suggérées est acceptée.

1. Montrer que si $p_1 \neq p_2$ alors ²:

$$\lim_{t \to +\infty} \operatorname{dist}_{\mathbb{H}^d}(r_1(t), r_2(t)) = +\infty$$

2. On suppose à présent que $p_1 = p_2 = p$ et on suppose de plus qu'il existe une horosphère centrée en p contenant $r_1(0)$ et $r_2(0)$. On veut montrer que :

$$\lim_{t \to +\infty} \operatorname{dist}_{\mathbb{H}^d}(r_1(t), r_2(t)) = 0$$

- (a) On commence par un cas particulier. Supposer que d=2, on se place dans le modèle $\mathbb{H}^2=U^2$, et enfin on suppose que $r_1(t)=e^ti$ et $r_2(t)=1+e^ti$. Montrer le lemme dans ce cas.
- (b) Montrer que le cas général.
- **3.** On retire à présent l'hypothèse "'il existe une horosphère centrée en p contenant $r_1(0)$ et $r_2(0)$ ". Montrer que la fonction $t \mapsto d(r_1(t), r_2(t))$ est bornée.

Exercice 2

Soit $(X, \operatorname{dist}_X)$ un espace métrique. On introduit la relation d'équivalence suivante sur l'ensemble des rayons $\operatorname{Ray}(X)$ de X:

$$r \sim r'$$
 lorsque $\exists R > 0, \forall t \ge 0, \text{ dist}_X(r(t), r'(t)) \le R$

- 1. Vérifier que \sim est bien une relation d'équivalence.
- **2.** Expliquer pourquoi la fonction $\Psi: \text{Ray}(\mathbb{H}^d) \to \partial \mathbb{H}^d, r \mapsto r(+\infty)$ est bien définie.
- 3. On munit $Ray(\mathbb{H}^d)$ de la topologie quotient. Montrer que Ψ est un homéo.
- **4.** Qui joue le rôle de $\partial \mathbb{H}^d$ dans le cas de $X = \mathbb{E}^d$?

Exercice 3

Soit $(X, \operatorname{dist}_X)$ un espace métrique. On fixe un point $x_0 \in X$ et on ne considère que des rayons issus de x_0 , c'est à dire tel que $r(0) = x_0$. Si $r : [0, +\infty[\to X \text{ est un rayon géodésique alors on notera} :$

$$B_r: \mathbb{R}_+ \to \mathbb{R}, t \mapsto \operatorname{dist}_X(x, r(t)) - t$$

^{1.} On rappelle qu'un rayon géodésique est une isométrie $r:[0,+\infty[\to X.$

^{2.} On pourra par exemple commencer par se donner $R, \varepsilon > 0$ tel que $B_{euc}(p_1, \varepsilon) \cap B_{euc}(p_2, \varepsilon) = \emptyset$. Puis montrer qu'il existe alors $t_0 > 0$ tel que pour tout $t > t_0$, pour i = 1, 2, $B_{hyp}(r_i(t), R) \subset B_{euc}(p_i, \varepsilon)$, et conclure... **Ou** Faire un calcul dans une configuration explicite et exploiter ensuite le groupe des isométries pour conclure.

- 1. Montrer que B_r est minorée et décroissante.
- **2.** On suppose que $X = \mathbb{E}^d$ ou \mathbb{H}^d . Montrer que si $r \sim r'$ alors $\lim_{t \to +\infty} B_r(t) = \lim_{t \to +\infty} B_{r'}(t)$. On notera $B_p(x)$ cette limite, où $p = r = (+\infty) = r'(+\infty)$. Faire les cas $X = \mathbb{H}^d$ et \mathbb{E}^d séparement.
- **3.** Dans le cas $X = \mathbb{E}^d$, identifier l'hypersurface $B_p(x) = 0$?
- 4. Dans le cas $X=U^d,\,p=\infty,$ identifier l'hypersurface $B_p(x)=0$?
- **5.** Idem pour p quelconque.
- 6. En déduire une définition alternative des horosphères de l'espace hyperbolique.

Exercice 4

On se place dans l'espace hyperbolique \mathbb{H}^d . Soit \mathcal{H} une horosphère de centre $p \in \mathbb{H}^d$, soit $x \in \mathbb{H}^d$ à l'extérieur de l'horoboule associée à \mathcal{H} . On note $\pi = [x, p] \cap \mathcal{H}$. On veut montrer que

$$\forall y \in \mathcal{H}, \quad d(x,y) \geqslant d(x,\pi)$$
 avec égalité si et seulement si $y=\pi$

Toute méthode alternative à la démonstration suggérée est acceptée.

- 1. On commence par un cas particulier. On suppose que d=2, $\mathbb{H}^2=U^2$, et on suppose que $p=\infty$, $\mathcal{H}=\{z=x_1+ix_2\in U^2\,|\,x_2=1\}$. Faire un dessin.
- 2. Réécrire l'inégalité à démonter en utilisant la formule $d(x,y) = |\ln([u,x,y,v])|$ où $u,v \in \partial \mathbb{H}^2$ sont les extrémités de la géodésique passant par x et y.
- 3. Démontrer l'inégalité.
- 4. Faire le cas général.

Exercice 5

Soit h une similitude de rapport $\lambda < 1$ et de centre a; et g une isométrie de \mathbb{E}^d . On cherche à comprendre quand le groupe Γ engendré par h et g est discret.

- 1. Montrer que $g = R \circ T$ où T est une translation de vecteur u, R une isométrie avec un point fixe et RT = TR.
- **2.** Trouver la limite de la suite $h^n g h^{-n}$, lorsque $n \to +\infty$.
- **3.** En déduire que si Γ est discret alors u=0 et $a\in \mathrm{Fix}(R)$.
- 4. Montrer que Γ est discret si et seulement si hg = gh et g est d'ordre fini.
- 5. Avec des méthodes similaires, soient g, h deux similitudes qui ne sont pas des isométries. Trouver une caractérisation de l'assertion : "le groupe Γ engendré par g et h est discret".