

AR 4 TD 5

Exercice 1

- 1. On fait agir $G = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} | a \neq 0, b \neq 0 \right\}$ sur \mathbb{R}^2 de manière naturelle. Décrire les orbites de l'action.
- 2. On considère l'action du groupe $U=\{u\in\mathbb{C}\,|\,|u|=1\}$ sur \mathbb{C} par $u\cdot z=uz$. Décrire les orbites de cette action.

Exercice 2

Soit k un corps, on considère le groupe $G = GL_n(k)$.

- 1. Décrire les orbites de l'action de G sur k^n .
- 2. Montrer que l'action de G sur les droites vectorielles de k^n est transitive.
- 3. Soit i = 0...n. Montrer que l'action de G sur les sous-espaces vectoriels de dimension i de k^n est transitive.

Exercice 3

Montrer que toute action d'un groupe d'ordre $143 = 11 \cdot 13$ sur un ensemble de cardinal 25 possède un point fixe.

Exercice 4

Soit G un groupe agissant sur un ensemble X.

- 1. Montrer que si x et y sont dans la même orbite alors les stabilisateurs sont conjugués.
- 2. Soit E un ensemble et $Y = \{f : X \to E\}$ l'ensemble des applications de X vers E. Montrer que les formules suivantes $(g * f)(x) = f(g \cdot x)$ et $(g \odot f)(x) = f(g^{-1} \cdot x)$ définissent une action à droite et une action à gauche.

Exercice 5

Soit G un groupe, on étudie l'action de G sur G par translation à gauche. On obtient ainsi un morphisme $\theta: G \to \mathfrak{S}(G)$. On note n l'ordre de G.

- 1. Soit $g \in G$. On note ω l'ordre de g. Montrer que $\theta(g)$ est un produit de $\frac{n}{\omega}$ cycles de longueur w. En déduire que la signature de $\theta(g)$ est $(-1)^{(\omega+1)\frac{n}{\omega}}$.
- 2. Il existe un unique entier $k \ge 0$ et un unique nombre impair l tel que $n = 2^k l$. Montrer qu'il existe un unique entier u et un unique nombre impair v tel que $\omega = 2^u v$ et il vérifie $0 \le u \le k$ et $v \mid l$.
- 3. Montrer que $\varepsilon(\theta(g)) = 1$ si et seulement si u < k. En déduire que, $\theta(G) \subset \mathfrak{A}(G)$ si et seulement si aucun élément de G n'est d'ordre 2^k .

Exercice 6

Soit G un groupe fini opérant sur un ensemble fini X. On pose

$$X^g = \{x \in X | gx = x \}$$
 pour tout $g \in G$.

1. En comptant de deux manières différentes le cardinal de l'ensemble $\{(g,x)\in G\times X|\ gx=x\ \}$. Montrer l'égalité

$$\sum_{x \in X} |\mathrm{Stab}_G(x)| = \sum_{g \in G} |X^g|.$$

2. Démontrer la formule de Burnside :

$$|G|\times (\text{nombre d'orbites}) = \sum_{g\in G} |X^g|.$$

3. On considère une roulette circulaire partagée en n secteurs égaux et chaque secteur possède l'une des couleurs d'une palette de c couleurs. Dénombrer les roulettes, étant entendu qu'on identifie les roulettes qui se correspondent par une rotation. On pourra se limiter au cas n=5,10 et c=c.

Exercice 7

Soit k un corps fini.

- 1. Calculer le cardinal de $GL_n(k)$. Simplifier la formule pour n=1,2,3.
- 2. En déduire le cardinal de $SL_n(k)$. Simplifier la formule pour n=1,2,3.
- 3. En déduire le cardinal de $\operatorname{PGL}_n(k)$. Simplifier la formule pour n=1,2,3. Le groupe $\operatorname{PGL}_n(k)$ est le quotient du groupe $\operatorname{GL}_n(k)$ par le groupe des homothéties.

Exercice 8 Soient $G \curvearrowright X$ une action et k un entier. On dit qu'une action est k-transitive lorsque pour tout $x_1, ..., x_k \in X$ distincts et tout $y_1, ..., y_k \in X$ distincts, il existe un $g \in G$ tel que $g \cdot x_i = y_i$ pour i = 1, ..., k.

On rappelle que l'on a vu dans la feuille de TD précédente que si deux points sont dans la même orbite alors leurs stabilisateurs sont conjugués.

1. Soit $k \ge 2$. Montrer qu'une action est k-transitive si et seulement si elle est transitive et que l'action du stabilisateur <u>de tout point</u> $x \in X$ sur $X \setminus \{x\}$ est (k-1)-transitive si et seulement si elle est transitive et que <u>l'action d'un</u> stabilisateur d'un point $x \in X$ sur $X \setminus \{x\}$ est (k-1)-transitive.

Exercice 9

Soit k un corps et $E = k^n$. On note $\mathbb{P}(E)$ l'ensemble des droites de E.

- 1. Montrer que $SL_n(k)$ agit transitivement sur $\mathbb{P}(E)$.
- 2. Montrer que $SL_n(k)$ agit 2-transitivement sur $\mathbb{P}(E)$.
- 3. Montrer que $GL_n(k)$ n'agit pas 3-transitivement sur $\mathbb{P}(E)$ si $n \geq 3$.
- 4. Montrer que $GL_2(k)$ agit 3-transitivement sur $\mathbb{P}(E)$.
- 5. Montrer que les actions de $GL_n(k)$ et de $SL_n(k)$ ne sont pas fidèles en général. Déterminer leurs noyaux.

Exercice 10

On note \mathbb{F}_p le corps $\mathbb{Z}/_{p\mathbb{Z}}$.

- 1. En utilisant l'exercice précédent trouver un morphisme de $\mathrm{GL}_2(\mathbb{F}_q)$ vers \mathfrak{S}_{q+1} . Quel est le noyau de ce morphisme ?
- 2. En déduire que $GL_2(\mathbb{F}_2) = PSL_2(\mathbb{F}_2) \simeq \mathfrak{S}_3$. Le groupe $PSL_n(k)$ est le quotient du groupe $SL_n(k)$ par le groupe des homothéties (de rapport une racine n-ième de l'unité).
- 3. En déduire que $\operatorname{PGL}_2(\mathbb{F}_3) \simeq \mathfrak{S}_4$ et $\operatorname{PSL}_2(\mathbb{F}_3) \simeq \mathfrak{A}_4$.