Arithmétique, géométrie et indécidabilité

Laurent Moret-Bailly

IRMAR, Université de Rennes 1

Séminaire Réga, Paris, 15 mai 2013

Laurent Moret-Bailly (IRMAR)

Indécidabilité

15/05/2013 / Réga

1 / 40

Sommaire

- Décidabilité et dixième problème de Hilbert
- Ensembles diophantiens
- Ensembles diophantiens et dixième problème de Hilbert
- Utilisation des courbes elliptiques

Décidabilité existentielle (ou « diophantienne »)

Soient $A_0 \subset A$ deux anneaux.

On dit que A est (existentiellement) décidable relativement à A_0 (en abrégé $Dec(A, A_0)$)

s'il existe un algorithme calculant la fonction suivante :

ENTRÉE:

une famille finie de polynômes $F_i \in A_0[X_1, \dots, X_n]$ $(i = 1, \dots, s)$

SORTIE:

VRAI si le système $F_i(x_1,...,x_n)=0$ (i=1,...,s) a une solution dans A^n , FAUX sinon.

(Dans la suite, on omettra parfois « existentiellement ».)

Laurent Moret-Bailly (IRMAR)

Indécidabilite

15/05/2013 / Réga

3 / 40

Le dixième problème de Hilbert

« Montrer que $\mathbb Z$ est existentiellement décidable »

« On donne une équation diophantienne à un nombre quelconque d'inconnues et à coefficients entiers rationnels : on demande de trouver une méthode par laquelle, au moyen d'un nombre fini d'opérations, on pourra distinguer si l'équation est résoluble en nombres entiers rationnels. »

(D. Hilbert, congrès international de Paris, 1900)

Le théorème de Matiyasevich

Un tel algorithme n'existe pas!

(Yu. Matiyasevich (1970), à la suite de travaux de M. Davis, H. Putnam et J. Robinson).

Julia Robinson et Yuri Matiyasevich (1971?)

Laurent Moret-Bailly (IRMAR)

Indécidabilité

15/05/2013 / Réga

5 / 40

Commentaires

Hilbert pensait probablement que \mathbb{Z} était existentiellement décidable. Ceci aurait immédiatement entraîné la même propriété :

• pour \mathbb{Q} : $F(x_1, \dots, x_n)$ a un zéro dans \mathbb{Q}^n si et seulement si

$$\widetilde{F}(t, y_1, \dots, y_n) := t^{\deg F} F(\frac{y_1}{t}, \dots, \frac{y_n}{t})$$

a un zéro (t, \underline{y}) dans \mathbb{Z}^{n+1} avec t > 0, c'est-à-dire de la forme $1 + a^2 + b^2 + c^2 + d^2$ $(a, b, c, d \in \mathbb{Z})$;

- pour tout corps de nombres (utiliser une Q-base);
- pour tout anneau A qui est un \mathbb{Z} -module libre de rang fini (utiliser une \mathbb{Z} -base), par exemple l'anneau des entiers d'un corps de nombres.

L'indécidabilité existentielle de \mathbb{Q} et des corps de nombres est une question ouverte, ainsi que celle des anneaux d'entiers algébriques, à part certains cas particuliers (entiers des corps quadratiques).

Exemples:

A_0	Α	Décidabilité diophantienne	
Q	\mathbb{C}	oui	th. des zéros de Hilbert
Q	\mathbb{R}	oui	Tarski (1951)
Q	$\mathbb{Q}_{ ho}$	oui	Nerode (1963)
	$\mathbb{F}_{ ho}(\!(t)\!)$?	
\mathbb{Z}	\mathbb{Z}	non	Matyasevich (1970)
\mathbb{Q} (ou \mathbb{Z})	Q	?	
$\mathbb{Q}(t)$	k(t) (k réel)	non	J. Denef (1978)
	k(t) (k p -adique)	non	Kim et Roush (1995)
$\overline{\mathbb{Q}}(t)$	$\mathbb{C}(t)$?	
	$\mathbb{C}(t_1,t_2)$	non	Kim et Roush (1992)

Laurent Moret-Bailly (IRMAR)

ndécidabilité

15/05/2013 / Réga

7 / 40

Parenthèse : indécidabilité au premier ordre

En dehors de cet exposé, « décidable » signifie en général « décidable au premier ordre ».

Dans le cas des anneaux :

A est décidable au premier ordre relativement à A_0 s'il existe un algorithme calculant la fonction suivante :

ENTRÉE:

une formule φ du langage des anneaux, sans variable libre, avec constantes dans A_0

SORTIE:

VRAI FAUX si φ est vraie dans \emph{A}

AUX sinon.

Parenthèse : indécidabilité au premier ordre

Une « formule φ du langage des anneaux, sans variable libre, avec constantes dans A_0 » s'écrit avec :

- l'attirail logique habituel : variables, parenthèses, symboles logiques \lor , \land , \neg , \rightarrow , \exists , \forall ;
- les opérations : + et \times ;
- les constantes : $0, 1, \text{ éléments de } A_0.$

Important : les variables parcourent A : « $\forall x$ » signifie toujours « $\forall x \in A$ » (interdiction de quantifier sur les parties de A, les polynômes,...).

On retrouve la décidabilité existentielle en interdisant \forall et \neg .

Laurent Moret-Bailly (IRMAR)

Indécidabilité

15/05/2013 / Réga

9 / 40

Parenthèse : indécidabilité au premier ordre

Exemples: pour les formules du premier ordre,

- ■ Z est indécidable (Gödel, 1931);
- Q est indécidable (J. Robinson, 1949);
- ■ R est décidable (Tarski, 1951);
- ℚ_p est décidable (Eršov, 1965; Ax et Kochen, 1966);
- pour $\mathbb{C}(t)$, on ne sait pas.

Ensembles diophantiens : définition

Soient $A_0 \subset A$ deux anneaux.

Un sous-ensemble V de A^n est dit :

- A₀-algébrique élémentaire s'il est défini par un système (fini) d'équations polynômes à coefficients dans A₀;
- A₀-algébrique s'il est réunion finie d'ensembles algébriques élémentaires;
- A_0 -diophantien (ou existentiellement définissable) s'il est l'image d'un sous-ensemble A_0 -algébrique de A^{m+n} par l'une des projections évidentes $A^{n+m} \rightarrow A^n$.

Laurent Moret-Bailly (IRMAR)

Indécidabilité

15/05/2013 / Réga

11 / 40

Remarques

• Si A est intègre, les ensembles algébriques sont algébriques élémentaires. Un ensemble diophantien est alors de la forme

$$V = \left\{ \underline{x} \in A^n \mid \exists \underline{z} \in A^m, \ F_1(\underline{x},\underline{z}) = \dots = F_r(\underline{x},\underline{z}) = 0 \right\}$$

pour $F_1, \ldots, F_r \in A_0[\underline{X}, \underline{Z}]$ convenables.

- La classe des ensembles diophantiens est stable par :
 - réunions et intersections finies ;
 - produits finis;
 - ▶ images et images réciproques par des applications $A^m \to A^n$, polynomiales à coefficients dans A_0 .

Exemples (avec n = 1):

 \bullet \mathbb{R}_+ est-il diophantien dans \mathbb{R} ?

Oui : c'est l'ensemble des carrés.

 $oldsymbol{2} \,\,\mathbb{N}$ est-il diophantien dans \mathbb{Z} ?

Oui : c'est l'ensemble des sommes de 4 carrés.

3 $\mathbb{Z} \setminus \{0\}$ est-il diophantien dans \mathbb{Z} ?

Oui : $n \neq 0 \iff (\exists u)(\exists v) \ n^2 = (2u+1)(3v+1).$

ullet $\mathbb{Z}_p \setminus \{0\}$ est-il diophantien dans \mathbb{Z}_p ?

Non : sur \mathbb{Z}_p , les ensembles diophantiens sont compacts.

 $lackbox{0} \ \mathbb{Z}$ est-il diophantien dans \mathbb{R} ?

Non : les ensembles diophantiens réels n'ont qu'un nombre fini de composantes connexes.

② Z est-il diophantien dans Q?
On ne sait pas! (non, d'après une conjecture de Mazur).

Laurent Moret-Bailly (IRMAR)

Indécidabilité

15/05/2013 / Réga

13 / 40

Un exemple instructif (et utilisé plus tard)

Proposition

Posons $K = \mathbb{R}(t)$, $\mathscr{O} := \mathbb{R}[t]_{(t)} \subset K$ (l'anneau local de l'origine dans $\mathbb{P}^1_{\mathbb{R}}$), $\mathscr{M} := \{ f \in K \mid f(0) = 0 \}$ (idéal maximal de \mathscr{O}).

- La relation $f \ge 0$ est diophantienne dans K.
- M et ∅ sont diophantiens dans K.

Démonstration :

(1) en effet on a dans $\mathbb{R}(t)$ (exercice)

 $f \ge 0 \iff f$ est somme de deux carrés.

Un exemple instructif

Proposition

Posons $K = \mathbb{R}(t)$, $\mathscr{O} := \mathbb{R}[t]_{(t)} \subset K$ (l'anneau local de l'origine dans $\mathbb{P}^1_{\mathbb{R}}$), $\mathscr{M} := \{ f \in K \mid f(0) = 0 \}$ (idéal maximal de \mathscr{O}).

- **1** La relation $f \ge 0$ est diophantienne dans K.
- M et ℰ sont diophantiens dans K.
- (2) Si $g \in \mathbb{R}(t)$, alors :

$$g$$
 est constante \iff $(\exists h \in \mathbb{R}(t)) \left(g^2 = h^3 + 1\right)$:

- si g est constante, prendre $h = \sqrt[3]{g^2 1}$;
- si $g^2 = h^3 + 1$, alors (h, g) est un $\mathbb{R}(t)$ -point de la courbe elliptique réelle $E: y^2 = x^3 + 1$, donc une application rationnelle $\mathbb{P}^1_{\mathbb{R}} \cdots \to E$, nécessairement constante.

Laurent Moret-Bailly (IRMAR)

Indécidabilité

15/05/2013 / Réga

15 / 40

Un exemple instructif

Proposition

Posons $K = \mathbb{R}(t)$, $\mathscr{O} := \mathbb{R}[t]_{(t)} \subset K$ (l'anneau local de l'origine dans $\mathbb{P}^1_{\mathbb{R}}$), $\mathscr{M} := \{ f \in K \mid f(0) = 0 \}$ (idéal maximal de \mathscr{O}).

- La relation $f \ge 0$ est diophantienne dans K.
- M et ∅ sont diophantiens dans K.

Conséquence de (1) et (2) : la relation « f est minorée » (comme fonction sur \mathbb{R}) est diophantienne.

(3) Pour $f \in \mathbb{R}(t)$, on a l'équivalence (exercice) :

$$f(0) = 0 \iff f = 0$$
, ou $\frac{1}{f^2} + \frac{1}{t}$ est minorée.

Donc \mathcal{M} est diophantien, et $\mathcal{O} = t^{-1} \mathcal{M}$ aussi.

Ensembles diophantiens et décidabilité

Proposition

Soient $A_0 \subset A \subset B$ trois anneaux.

Hypothèses:

- Dec (B, A₀);
- A est diophantien dans B (relativement à A₀).

Alors on a $Dec(A, A_0)$.

(Démonstration immédiate)

D'où l'intérêt des questions suivantes :

- si A est l'anneau des entiers d'un corps de nombres, est-ce que \mathbb{Z} est diophantien dans A? (Si oui, on a \neg Dec (A, \mathbb{Z})).
- Est-ce que \mathbb{Z} est diophantien dans \mathbb{Q} ? (Si oui, on a \neg Dec (\mathbb{Q}, \mathbb{Z})).

Laurent Moret-Bailly (IRMAR)

Indécidabilité

15/05/2013 / Réga

17 / 40

La conjecture de Mazur

Conjecture (B. Mazur)

Soit V une variété quasi-projective sur \mathbb{Q} . Alors l'adhérence de $V(\mathbb{Q})$ dans $V(\mathbb{R})$ n'a qu'un nombre fini de composantes connexes.

Cette conjecture impliquerait que \mathbb{Z} n'est pas diophantien dans \mathbb{Q} .

Variante: modèles diophantiens

Un modèle diophantien de \mathbb{Z} sur A (relativement à $A_0 \subset A$) est une injection

$$\varphi: \mathbb{Z} \hookrightarrow A^n$$

avec les propriétés suivantes :

- **1** l'image D de φ est A_0 -diophantienne dans A^n ;
- 2 la structure d'anneau sur D déduite de φ est diophantienne.

Proposition

S'il existe un tel modèle, A est existentiellement indécidable relativement à A_0 .

Laurent Moret-Bailly (IRMAR)

ndécidabilité

15/05/2013 / Réga

19 / 40

Exemples

Corps de fractions rationnelles (J. Denef, H.K. Kim, F.W. Roush) : soient k un corps de caractéristique nulle, et K = k(t). Alors il existe un modèle diophantien de \mathbb{Z} sur K dans les cas suivants :

- k est réel (Denef);
- k est un sous-corps d'un corps p-adique, avec p ≠ 2 (Kim-Roush);
- $k = \mathbb{C}(z)$ (Kim-Roush).

La méthode sera expliquée dans la suite.

Sous-anneaux de $\mathbb Q$ (Poonen, 2003) : il existe un ensemble S de nombres premiers, de densité 1, tel que $\mathbb Z$ ait un modèle diophantien sur $\mathbb Z[S^{-1}]$.

Théorème (Cornelissen-Zahidi, 1999)

L'existence d'un modèle diophantien de \mathbb{Z} sur \mathbb{Q} contredirait la conjecture de Mazur.

Laurent Moret-Bailly (IRMAR)

Indécidabilité

15/05/2013 / Réga

21 / 40

Une stratégie

Soit K un corps, dont on veut montrer l'indécidabilité existentielle. On construit un modèle diophantien de \mathbb{Z} sur K comme suit :

- on trouve une K-courbe elliptique E telle que $E(K) \cong \mathbb{Z}$ (comme groupe).
 - Possible sur certains corps; nous aurons plutôt un certain sous-groupe diophantien $\Delta \subset E(K)$, d'indice fini et $\cong \mathbb{Z}$.
- ② Fixant un isomorphisme $E(K) \cong \mathbb{Z}$, on obtient une multiplication (saugrenue) sur E(K).
- On montre que cette multiplication est diophantienne. C'est l'étape difficile.
- Oomme l'addition l'est automatiquement, on a bien un modèle diophantien de \mathbb{Z} .

Dans toute la suite on prend

$$K = k(t)$$

où k est un corps de caractéristique nulle.

On verra K comme le corps des fonctions de \mathbb{P}^1_k .

On fixe une courbe elliptique E, d'équation affine (centrée à l'origine de la courbe)

E:
$$z = x^3 + ax^2z + bxz^2 + cz^3 =: F(x, z),$$

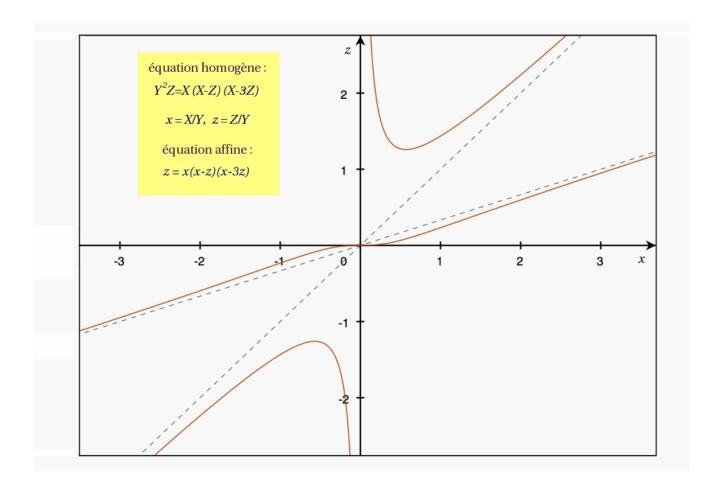
avec a, b, c dans \mathbb{Q} . On suppose E sans multiplication complexe (pour plus tard).

Laurent Moret-Bailly (IRMAR)

ndécidabilité

15/05/2013 / Réga

23 / 40



Torsion quadratique

Soit $\widetilde{K} = K(\sqrt{D})$ une extension quadratique de K. Elle correspond à un revêtement double

$$\pi:\Gamma\to\mathbb{P}^1_k$$

où Γ est la k-courbe projective lisse de corps de fonctions \widetilde{K} .

La tordue de E (ou plutôt de E_K) par \widetilde{K}/K est la courbe elliptique $\mathscr E$ sur K d'équation affine

$$\mathscr{E}: Dz = F(x,z).$$

Noter que l'on peut voir $\mathscr E$:

- soit comme une courbe sur K (géométrie sur le corps K),
- soit comme une surface elliptique sur *k* (géométrie sur le corps *k*).

Laurent Moret-Bailly (IRMAR)

Indécidabilité

15/05/2013 / Réga

25 / 40

Propriétés de la tordue :

- **1** \mathscr{E} a mauvaise réduction additive aux points de ramification de $\pi: \Gamma \to \mathbb{P}^1$;
- on « connaît » le groupe de Mordell-Weil de &, en termes de géométrie sur k :

$$\mathscr{E}(K) \cong \operatorname{Mor}_{k}^{\operatorname{odd}}(\Gamma, E)$$

= $\{k\text{-morphismes }\Gamma \to E$
commutant aux involutions naturelles $\}$.

La tordue de Manin-Denef

E:
$$z = x^3 + ax^2z + bxz^2 + cz^3 =: F(x, z),$$

On prend pour $\pi:\Gamma\to\mathbb{P}^1_k$ le revêtement double standard $E\to\mathbb{P}^1_k$, normalisé pour envoyer l'origine (0,0) de E sur $0\in\mathbb{P}^1(k)$; explicitement :

- π est la fonction rationnelle z/x sur E;
- l'extension quadratique \widetilde{K} est $K\left(\sqrt{\frac{F(1,t)}{t}}\right)$ (ici $\sqrt{\frac{F(1,t)}{t}}$ correspond à la fonction $\frac{1}{x}$);
- l'équation affine de & peut donc s'écrire

$$\mathscr{E}: \qquad z = \frac{t}{F(1,t)} F(x,z).$$

Laurent Moret-Bailly (IRMAR)

Indécidabilité

15/05/2013 / Réga

27 / 40

La tordue de Manin-Denef

$$\mathscr{E}: \qquad z = \frac{t}{F(1,t)} F(x,z)$$

On voit que \mathscr{E} est définie sur $\mathbb{Q}(t)$, et l'on trouve immédiatement

$$\mathscr{E}(K) \cong \operatorname{End}_k(E) \times E[2](k) \cong \mathbb{Z} \times E[2](k)$$

pour E sans multiplication complexe (en particulier, le point $\gamma := (1, t)$ correspond à $(Id_E, 0)$).

Le sous-groupe $\Delta := \mathbb{Z}\gamma$ de $\mathscr{E}(K)$ est égal à $2\mathscr{E}(K) \cup (\gamma + 2\mathscr{E}(K))$ et en particulier diophantien : ce sera notre modèle de \mathbb{Z} .

Quelques figures pour faire joli...

On prend $k = \mathbb{R}$, et

E: z = x(x-z)(x-3z)

 \mathscr{E}_t : $z = \frac{t}{(1-t)(1-3t)} x(x-z)(x-3z).$

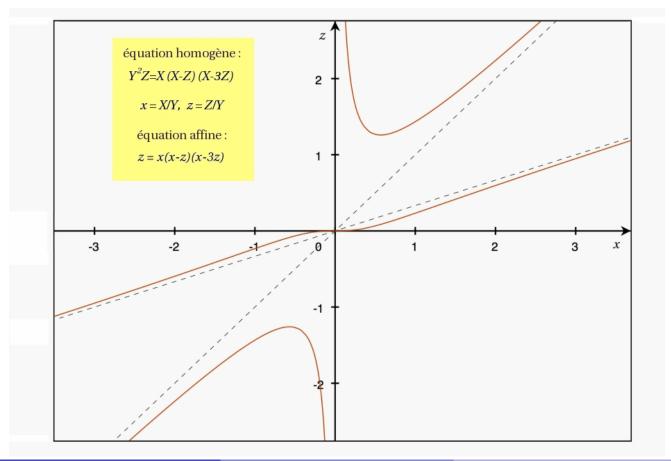
Laurent Moret-Bailly (IRMAR)

Indécidabilité

15/05/2013 / Réga

29 / 40

La courbe E

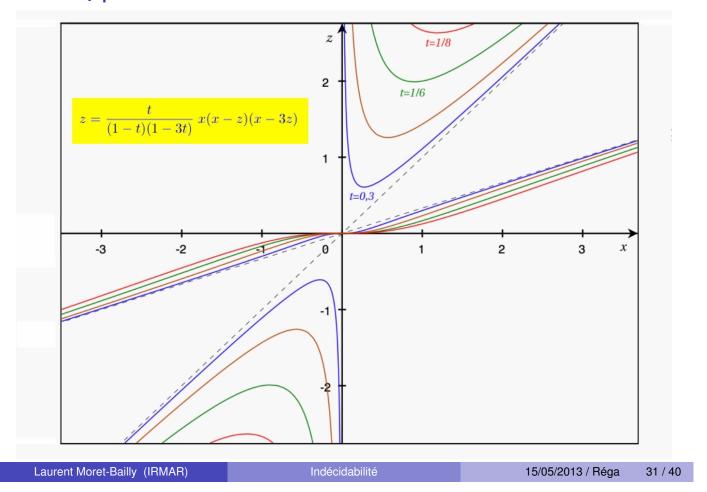


Laurent Moret-Bailly (IRMAR)

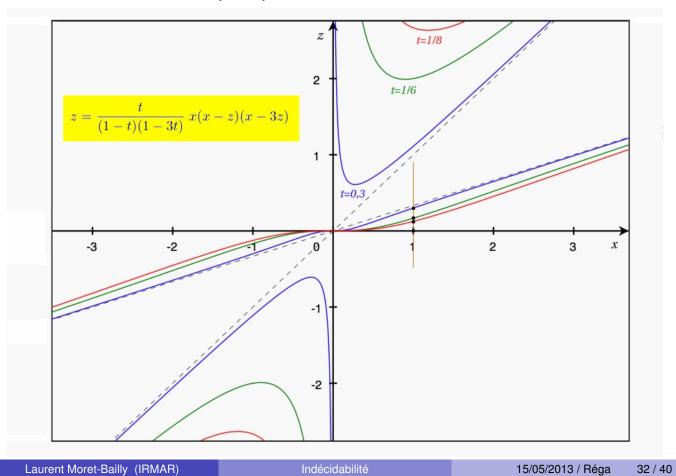
Indécidabilit

15/05/2013 / Réga

E et \mathcal{E}_t pour trois valeurs de t



\mathscr{E}_t et le point $\gamma = (1, t)$



Dans la figure suivante, la courbe violette est le lieu de $2\gamma(t)$ (le double de $\gamma=(1,t)$ pour la loi de groupe de \mathscr{E}):

$$2\gamma(t) \begin{cases} x = -2 \frac{(t-1)(3t-1)(3t^2-1)}{(3t^2-6t+1)(3t^2-2t+1)} \\ z = -8 t \frac{(t-1)^2 (3t-1)^2}{(3t^2-1)(3t^2-6t+1)(3t^2-2t+1)} \end{cases}$$

Équation cartésienne :

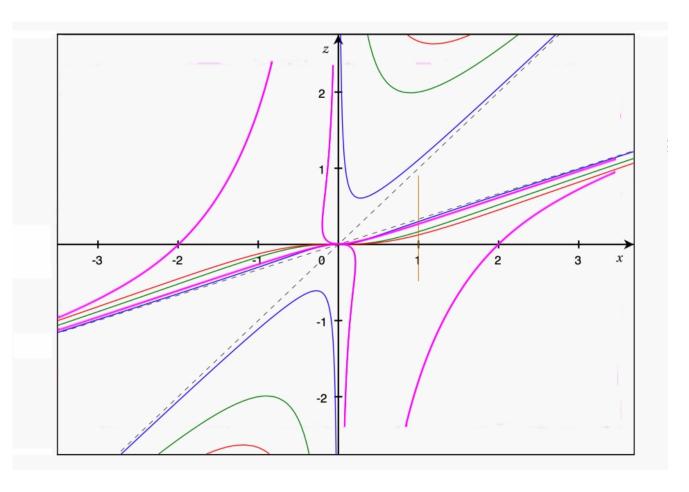
$$x^{6} - 8x^{5}z + 22x^{4}z^{2} - 24x^{3}z^{3} + 9x^{2}z^{4}$$
$$-4x^{4} + 24x^{3}z - 44x^{2}z^{2} + 24xz^{3} + 4z^{2} = 0$$

Laurent Moret-Bailly (IRMAR)

Indécidabilite

15/05/2013 / Réga

33 / 40



Spécialisation

La courbe $\mathscr E$ a mauvaise réduction additive en t=0 d'où un homomorphisme de spécialisation

$$\mathbb{Z}\cong\Delta\stackrel{\mathsf{sp}}{\longrightarrow}(k,+).$$

Avec les équations données, on a

$$\operatorname{sp}(x(t), z(t)) = x(0)$$

 $\operatorname{sp}(n.\gamma) = n \quad (n \in \mathbb{Z})$

En particulier, on peut calculer la multiplication * sur Δ comme suit :

étant donnés $A = a.\gamma = (x_A, z_A)$ et $B = b.\gamma = (x_B, z_B)$, le point $A * B = ab.\gamma$ est l'unique point $M = (x_M, z_M)$ vérifiant :

- \bullet $M \in \Delta$;
- $x_M(0) = x_A(0) x_B(0)$.

Laurent Moret-Bailly (IRMAR)

ndécidabilité

15/05/2013 / Réga

35 / 40

- \bullet $M \in \Delta$;
- $x_M(0) = x_A(0) x_B(0)$.

La première condition est bien diophantienne.

Si l'on note $\mathcal{M} \subset K$ l'idéal maximal de l'origine dans \mathbb{P}^1_k (autrement dit, $\mathcal{M} = t \, k[t]_{(t)}$), la deuxième condition s'écrit

$$X_M - X_A X_B \in \mathscr{M}$$

qui est aussi diophantienne si \mathcal{M} est diophantien dans K.

On a donc montré:

Théorème

Si \mathcal{M} est diophantien dans k(t), alors k(t) est existentiellement indécidable.

Corollaire

 $\mathbb{R}(t)$ est existentiellement indécidable.

Grâce au fait que \mathbb{R} est diophantien dans $\mathbb{R}(t)$, on a même un peu mieux :

Théorème

 \mathbb{Z} est diophantien dans $\mathbb{R}(t)$ (relativement à $\mathbb{Q}(t)$).

Démonstration : si $f \in \mathbb{R}(t)$, alors

$$f \in \mathbb{Z} \iff \begin{cases} f \in \mathbb{R} \\ \exists M = (x, z) \in \Delta, \quad f(0) = x(0) \end{cases}$$

et la deuxième condition équivaut à $x - f \in \mathcal{M}$.

Laurent Moret-Bailly (IRMAR)

ndécidabilité

15/05/2013 / Réga

37 / 40

En général il est difficile de prouver que \mathcal{M} est diophantien dans k(t).

On peut remplacer cette condition par une autre plus faible, et satisfaite si k est réel ou p-adique.

Jan Denef (2011)

Laurent Moret-Bailly (IRMAR)

Indécidabilite

15/05/2013 / Réga

39 / 40

Merci de

votre

attention!