Principal Bundles over Valued Fields

Laurent Moret-Bailly

IRMAR, Université de Rennes 1

The Arithmetic of Fields,
Mathematisches Forschungsinstitut Oberwolfach
June 2013
Joint work with

Ofer Gabber
(CNRS, IHES)

and

Philippe Gille
(CNRS)
Summary

1. Introduction

2. Principal bundles and torsors

3. The main result

4. Admissible valued fields

5. The smooth case and the general strategy
We start with:

- a topological field k,
- an algebraic k-group G,
- a k-variety Y, and
- a G-torsor (principal G-bundle) $f : X \to Y$ over Y.
We start with:

- a topological field \(k \),
- an algebraic \(k \)-group \(G \),
- a \(k \)-variety \(Y \), and
- a \(G \)-torsor (principal \(G \)-bundle) \(f : X \to Y \) over \(Y \).
We start with:

- a topological field k,
- an algebraic k-group G,
- a k-variety Y, and
- a G-torsor (principal G-bundle) $f : X \to Y$ over Y.

Laurent Moret-Bailly (IRMAR)
Principal Bundles over Valued Fields
Oberwolfach, June 2013
Introduction

We start with:

- a topological field k,
- an algebraic k-group G,
- a k-variety Y, and
- a G-torsor (principal G-bundle) $f : X \to Y$ over Y.
Introduction

We start with:

- a topological field k,
- an algebraic k-group G,
- a k-variety Y, and
- a G-torsor (principal G-bundle) $f : X \to Y$ over Y.
Introduction

Taking rational points, we get

- a topological group $G(k)$,
- a continuous free action of $G(k)$ on the space $X(k)$,
- a continuous map $X(k) \rightarrow Y(k)$, invariant for this action.

This map is not surjective in general.

We will consider the following questions, in the case of a henselian valued field:

- What does the image I of this map look like, as a subspace of $Y(k)$?
- Is the induced map $X(k) \rightarrow I$ a principal $G(k)$-bundle?

Remark: the answers are easy and well known in characteristic zero (and more generally if G is smooth).
Introduction

Taking rational points, we get

- a topological group $G(k)$,
- a continuous free action of $G(k)$ on the space $X(k)$,
- a continuous map $X(k) \to Y(k)$, invariant for this action.

This map is not surjective in general.

We will consider the following questions, in the case of a henselian valued field:

- What does the image I of this map look like, as a subspace of $Y(k)$?
- Is the induced map $X(k) \to I$ a principal $G(k)$-bundle?

Remark: the answers are easy and well known in characteristic zero (and more generally if G is smooth).
Introduction

Taking rational points, we get

- a topological group $G(k)$,
- a continuous free action of $G(k)$ on the space $X(k)$,
- a continuous map $X(k) \to Y(k)$, invariant for this action.

This map is not surjective in general.

We will consider the following questions, in the case of a henselian valued field:

- What does the image I of this map look like, as a subspace of $Y(k)$?
- Is the induced map $X(k) \to I$ a principal $G(k)$-bundle?

Remark: the answers are easy and well known in characteristic zero (and more generally if G is smooth).
Introduction

Taking rational points, we get

1. a topological group $G(k)$,
2. a continuous free action of $G(k)$ on the space $X(k)$,
3. a continuous map $X(k) \to Y(k)$, invariant for this action.

This map is not surjective in general.

We will consider the following questions, in the case of a henselian valued field:

1. What does the image I of this map look like, as a subspace of $Y(k)$?
2. Is the induced map $X(k) \to I$ a principal $G(k)$-bundle?

Remark: the answers are easy and well known in characteristic zero (and more generally if G is smooth).
Principal bundles in topology

Let G be a topological group. A (left) G-bundle consists of the following data:

- a continuous map $f : X \to Y$,
- a (left) action $G \times X \to X$ commuting with f (i.e. $f(g \cdot x) = f(x)$).

A G-bundle is trivial if it is isomorphic (in the obvious sense) to $G \times Y \overset{\text{pr}_2}{\to} Y$ with the action of G on itself by left translation.

It is principal if it is locally trivial (on Y), in the obvious sense.
Let G be a topological group. A (left) G-bundle consists of the following data:

- a continuous map $f : X \to Y$,
- a (left) action $G \times X \to X$ commuting with f (i.e. $f(g.x) = f(x)$).

A G-bundle is trivial if it is isomorphic (in the obvious sense) to $G \times Y \xrightarrow{\text{pr}_2} Y$ with the action of G on itself by left translation.

It is principal if it is locally trivial (on Y), in the obvious sense.
Principal bundles in topology

Let G be a topological group. A (left) G-bundle consists of the following data:

- a continuous map $f : X \to Y$,
- a (left) action $G \times X \to X$ commuting with f (i.e. $f(g \cdot x) = f(x)$).

A G-bundle is **trivial** if it is isomorphic (in the obvious sense) to $G \times Y \xrightarrow{\text{pr}_2} Y$ with the action of G on itself by left translation.

It is **principal** if it is locally trivial (on Y), in the obvious sense.
Principal bundles in algebraic geometry: torsors

Let k be a field, G an algebraic group over k, and Y a k-variety.

A (left) G-bundle over Y consists of:
- a k-morphism $f : X \to Y$,
- a (left) action of G on X, compatible with f,

We call it a (left) G-torsor if it is locally trivial for the fppf (or flat) topology, i.e. there is a k-morphism $h : Y' \to Y$ such that:
- h is flat and surjective,
- h trivializes f, i.e. the pullback G-bundle $X \times_Y Y' \to Y'$ is trivial.
Let k be a field, G an algebraic group over k, and Y a k-variety.

A (left) G-bundle over Y consists of:
- a k-morphism $f : X \to Y$,
- a (left) action of G on X, compatible with f,

We call it a (left) G-torsor if it is locally trivial for the fppf (or flat) topology, i.e. there is a k-morphism $h : Y' \to Y$ such that:
- h is flat and surjective,
- h trivializes f, i.e. the pullback G-bundle $X \times_Y Y' \to Y'$ is trivial.
Principal bundles in algebraic geometry: torsors

Let k be a field, G an algebraic group over k, and Y a k-variety.

A (left) G-bundle over Y consists of:

- a k-morphism $f : X \to Y$,
- a (left) action of G on X, compatible with f,

We call it a (left) G-torsor if it is locally trivial for the fppf (or flat) topology, i.e. there is a k-morphism $h : Y' \to Y$ such that:

- h is flat and surjective,
- h trivializes f, i.e. the pullback G-bundle $X \times_Y Y' \to Y'$ is trivial.
Principal bundles in algebraic geometry: torsors

Let k be a field, G an algebraic group over k, and Y a k-variety.

A (left) G-bundle over Y consists of:
- a k-morphism $f : X \to Y$,
- a (left) action of G on X, compatible with f,

We call it a (left) G-torsor if it is locally trivial for the fppf (or flat) topology, i.e. there is a k-morphism $h : Y' \to Y$ such that:
- h is flat and surjective,
- h trivializes f, i.e. the pullback G-bundle $X \times_Y Y' \to Y'$ is trivial.
Principal bundles in algebraic geometry: torsors

Let k be a field, G an algebraic group over k, and Y a k-variety.

A (left) G-bundle over Y consists of:
- a k-morphism $f : X \to Y$,
- a (left) action of G on X, compatible with f,

We call it a (left) G-torsor if it is locally trivial for the fppf (or flat) topology, i.e. there is a k-morphism $h : Y' \to Y$ such that:
- h is flat and surjective,
- h trivializes f, i.e. the pullback G-bundle $X \times_Y Y' \to Y'$ is trivial.
A simple example

Let n be a positive integer. Consider the n-th power map

$$f : \mathbb{G}_{m,k} \rightarrow \mathbb{G}_{m,k}$$

$$x \mapsto x^n.$$

This is a μ_n-torsor (with the obvious action of $\mu_n = \ker(f)$ on $\mathbb{G}_{m,k}$).

If n is invertible in k, then f is even locally trivial for the étale topology, i.e. trivialized by an étale surjective map (e.g. f itself).

More generally, if G is a smooth k-group, any G-torsor $f : X \rightarrow Y$ is a smooth morphism, hence locally trivial for the étale topology. This holds in particular if $\text{char}(k) = 0$.

But in our example, if $n = \text{char}(k) > 0$, then f is just the Frobenius map on $\mathbb{G}_{m,k}$.
A simple example

Let n be a positive integer. Consider the n-th power map

$$f : \mathbb{G}_m,k \longrightarrow \mathbb{G}_m,k$$

$$x \longmapsto x^n.$$

This is a μ_n-torsor (with the obvious action of $\mu_n = \ker(f)$ on \mathbb{G}_m,k).

If n is invertible in k, then f is even locally trivial for the étale topology, i.e. trivialized by an étale surjective map (e.g. f itself).

More generally, if G is a smooth k-group, any G-torsor $f : X \to Y$ is a smooth morphism, hence locally trivial for the étale topology. This holds in particular if $\text{char}(k) = 0$.

But in our example, if $n = \text{char}(k) > 0$, then f is just the Frobenius map on \mathbb{G}_m,k.
A simple example

Let \(n \) be a positive integer. Consider the \(n \)-th power map

\[
f : \mathbb{G}_{m,k} \longrightarrow \mathbb{G}_{m,k}
\]

\[
x \longmapsto x^n.
\]

This is a \(\mu_n \)-torsor (with the obvious action of \(\mu_n = \ker(f) \) on \(\mathbb{G}_{m,k} \)).

If \(n \) is invertible in \(k \), then \(f \) is even locally trivial for the \(\acute{e}tale \) topology, i.e. trivialized by an \(\acute{e}tale \) surjective map (e.g. \(f \) itself).

More generally, if \(G \) is a smooth \(k \)-group, any \(G \)-torsor \(f : X \rightarrow Y \) is a smooth morphism, hence locally trivial for the \(\acute{e}tale \) topology. This holds in particular if \(\text{char}(k) = 0 \).

But in our example, if \(n = \text{char}(k) > 0 \), then \(f \) is just the Frobenius map on \(\mathbb{G}_{m,k} \).
A simple example

Let n be a positive integer. Consider the n-th power map

$$f : \mathbb{G}_{m,k} \rightarrow \mathbb{G}_{m,k}$$

$$x \mapsto x^n.$$

This is a μ_n-torsor (with the obvious action of $\mu_n = \ker(f)$ on $\mathbb{G}_{m,k}$).

If n is invertible in k, then f is even locally trivial for the étale topology, i.e. trivialized by an étale surjective map (e.g. f itself).

More generally, if G is a smooth k-group, any G-torsor $f : X \rightarrow Y$ is a smooth morphism, hence locally trivial for the étale topology. This holds in particular if $\text{char}(k) = 0$.

But in our example, if $n = \text{char}(k) > 0$, then f is just the Frobenius map on $\mathbb{G}_{m,k}$.

Laurent Moret-Bailly (IRMAR) Principal Bundles over Valued Fields Oberwolfach, June 2013 7 / 24
A simple example

Let n be a positive integer. Consider the n-th power map

$$f : \mathbb{G}_{m,k} \longrightarrow \mathbb{G}_{m,k}$$

$$x \longmapsto x^n.$$

This is a μ_n-torsor (with the obvious action of $\mu_n = \ker(f)$ on $\mathbb{G}_{m,k}$).

If n is invertible in k, then f is even locally trivial for the étale topology, i.e. trivialized by an étale surjective map (e.g. f itself).

More generally, if G is a smooth k-group, any G-torsor $f : X \rightarrow Y$ is a smooth morphism, hence locally trivial for the étale topology. This holds in particular if $\text{char}(k) = 0$.

But in our example, if $n = \text{char}(k) > 0$, then f is just the Frobenius map on $\mathbb{G}_{m,k}$.
A simple example

Let n be a positive integer. Consider the n-th power map

$$f : \mathbb{G}_{m,k} \longrightarrow \mathbb{G}_{m,k}$$

$$x \longmapsto x^n.$$

This is a μ_n-torsor (with the obvious action of $\mu_n = \ker(f)$ on $\mathbb{G}_{m,k}$).

If n is invertible in k, then f is even locally trivial for the étale topology, i.e. trivialized by an étale surjective map (e.g. f itself).

More generally, if G is a smooth k-group, any G-torsor $f : X \rightarrow Y$ is a smooth morphism, hence locally trivial for the étale topology. This holds in particular if $\text{char}(k) = 0$.

But in our example, if $n = \text{char}(k) > 0$, then f is just the Frobenius map on $\mathbb{G}_{m,k}$.
Characterization of torsors

A G-bundle $f : X \to Y$ in topology (resp. in algebraic geometry) is a G-torsor if and only if:

- it is “formally principal” (or a “pseudo-torsor”), i.e. the natural morphism
 \[
 G \times X \to X \times_Y X
 \]

 \[\begin{array}{ccc}
 (g, x) & \mapsto & (g \cdot x, x)
 \end{array}\]

 is an isomorphism,

- f has local sections on Y, in the obvious sense (resp. in the flat topology sense).
Characterization of torsors

A G-bundle $f : X \rightarrow Y$ in topology (resp. in algebraic geometry) is a G-torsor if and only if:

- it is “formally principal” (or a “pseudo-torsor”), i.e. the natural morphism
 \[G \times X \rightarrow X \times_Y X \]
 \[(g, x) \mapsto (g.x, x)\]
 is an isomorphism,
- f has local sections on Y, in the obvious sense (resp. in the flat topology sense).
Characterization of torsors

A G-bundle $f : X \rightarrow Y$ in topology (resp. in algebraic geometry) is a G-torsor if and only if:

- it is “formally principal” (or a “pseudo-torsor”), i.e. the natural morphism
 \[
 G \times X \rightarrow X \times_Y X
 \]
 \[
 (g, x) \mapsto (g.x, x)
 \]
 is an isomorphism,

- f has local sections on Y, in the obvious sense (resp. in the flat topology sense).
Characterization of torsors

A G-bundle $f : X \to Y$ in topology (resp. in algebraic geometry) is a G-torsor if and only if:

- it is "formally principal" (or a "pseudo-torsor"), i.e. the natural morphism
 \[
 G \times X \to X \times_Y X \\
 (g, x) \mapsto (g.x, x)
 \]
 is an isomorphism,

- f has local sections on Y, in the obvious sense (resp. in the flat topology sense).
Characterization of torsors

The “pseudo-torsor” property

\[G \times X \sim \rightarrow X \times_Y X \]

is completely “categorical”, and is preserved by any functor on \(k \)-varieties that commutes with fiber products, such as the functor of rational points \(R : Z \rightarrow Z(k) \).

It follows that if \(f : X \rightarrow Y \) is a \(G \)-torsor over \(k \), then the induced map of sets (or discrete spaces)

\[R(f) : X(k) \rightarrow Y(k) \]

(which may not be surjective) induces a principal \(G(k) \)-bundle over its image.
Characterization of torsors

The “pseudo-torsor” property

\[G \times X \xrightarrow{\sim} X \times_Y X \]

is completely “categorical”, and is preserved by any functor on \(k \)-varieties that commutes with fiber products, such as the functor of rational points \(R : Z \xrightarrow{-} Z(k) \).

It follows that if \(f : X \to Y \) is a \(G \)-torsor over \(k \), then the induced map of sets (or discrete spaces)

\[R(f) : X(k) \to Y(k) \]

(which may not be surjective) induces a principal \(G(k) \)-bundle over its image.
Characterization of torsors

The “pseudo-torsor” property

\[G \times X \xrightarrow{\sim} X \times_Y X \]

is completely “categorical”, and is preserved by any functor on \(k \)-varieties that commutes with fiber products, such as the functor of rational points \(R : Z \mapsto Z(k) \).

It follows that if \(f : X \to Y \) is a \(G \)-torsor over \(k \), then the induced map of sets (or discrete spaces)

\[R(f) : X(k) \to Y(k) \]

(which may not be surjective) induces a principal \(G(k) \)-bundle over its image.
Characterization of torsors

The “pseudo-torsor” property

\[G \times X \sim \rightarrow X \times_Y X \]

is completely “categorical”, and is preserved by any functor on \(k \)-varieties that commutes with fiber products, such as the functor of rational points \(R : Z \hookrightarrow Z(k) \).

It follows that if \(f : X \rightarrow Y \) is a \(G \)-torsor over \(k \), then the induced map of sets (or discrete spaces)

\[R(f) : X(k) \rightarrow Y(k) \]

(which may not be surjective) induces a principal \(G(k) \)-bundle over its image.
Torsors over topological fields

From now assume that k is a topological field, e.g. a valued field.
For every k-variety Z, the set $Z(k)$ has a natural topology. The resulting topological space will be denoted by Z_{top} (or $Z(k)_{\text{top}}$).

In particular, for a G-torsor $f : X \rightarrow Y$:

- G_{top} is a topological group, and
- $f_{\text{top}} : X_{\text{top}} \rightarrow Y_{\text{top}}$ is a G_{top}-bundle, in fact automatically a pseudo-torsor.
Torsors over topological fields

From now assume that k is a topological field, e.g. a valued field. For every k-variety Z, the set $Z(k)$ has a natural topology. The resulting topological space will be denoted by Z_{top} (or $Z(k)_{\text{top}}$).

In particular, for a G-torsor $f : X \to Y$:

- G_{top} is a topological group, and
- $f_{\text{top}} : X_{\text{top}} \to Y_{\text{top}}$ is a G_{top}-bundle, in fact automatically a pseudo-torsor.
Torsors over topological fields

From now assume that k is a topological field, e.g. a valued field. For every k-variety Z, the set $Z(k)$ has a natural topology. The resulting topological space will be denoted by Z_{top} (or $Z(k)_{\text{top}}$).

In particular, for a G-torsor $f : X \to Y$:

- G_{top} is a topological group, and
- $f_{\text{top}} : X_{\text{top}} \to Y_{\text{top}}$ is a G_{top}-bundle, in fact automatically a pseudo-torsor.
Torsors over topological fields

From now assume that k is a topological field, e.g. a valued field. For every k-variety Z, the set $Z(k)$ has a natural topology. The resulting topological space will be denoted by Z_{top} (or $Z(k)_{\text{top}}$).

In particular, for a G-torsor $f : X \to Y$:

- G_{top} is a topological group, and
- $f_{\text{top}} : X_{\text{top}} \to Y_{\text{top}}$ is a G_{top}-bundle, in fact automatically a pseudo-torsor.
Torsors over topological fields

Example of the squaring map:

\[f : \mathbb{G}_m,k \longrightarrow \mathbb{G}_m,k \]

\[x \longmapsto x^2. \]

If \(k = \mathbb{R} \), the image of \(f_{\text{top}} \) is \(\mathbb{R}_{>0} \) (open and closed in \(\mathbb{R}^\times \)), and \(f_{\text{top}} \) induces a trivial \(\{\pm 1\} \)-bundle over this image.

If \(k = \mathbb{C} \), then \(f_{\text{top}} \) is surjective and induces a nontrivial principal \(\{\pm 1\} \)-bundle over \(\mathbb{C}^\times \).

If \(k = \mathbb{F}_2((t)) \), then \(f_{\text{top}} \) is a homeomorphism onto its image, which is closed in \(k^\times \).
Torsors over topological fields

Example of the squaring map:

\[f : \mathbb{G}_m, k \rightarrow \mathbb{G}_m, k \]
\[x \mapsto x^2. \]

If \(k = \mathbb{R} \), the image of \(f_{\text{top}} \) is \(\mathbb{R}_{>0} \) (open and closed in \(\mathbb{R}^\times \)), and \(f_{\text{top}} \) induces a trivial \(\{\pm 1\} \)-bundle over this image.

If \(k = \mathbb{C} \), then \(f_{\text{top}} \) is surjective and induces a nontrivial principal \(\{\pm 1\} \)-bundle over \(\mathbb{C}^\times \).

If \(k = \mathbb{F}_2((t)) \), then \(f_{\text{top}} \) is a homeomorphism onto its image, which is closed in \(k^\times \).
Torsors over topological fields

Example of the squaring map:

\[f : \mathbb{G}_m, k \rightarrow \mathbb{G}_m, k \]
\[x \mapsto x^2. \]

If \(k = \mathbb{R} \), the image of \(f_{\text{top}} \) is \(\mathbb{R}_{>0} \) (open and closed in \(\mathbb{R}^\times \)), and \(f_{\text{top}} \) induces a trivial \(\{\pm 1\} \)-bundle over this image.

If \(k = \mathbb{C} \), then \(f_{\text{top}} \) is surjective and induces a nontrivial principal \(\{\pm 1\} \)-bundle over \(\mathbb{C}^\times \).

If \(k = \mathbb{F}_2((t)) \), then \(f_{\text{top}} \) is a homeomorphism onto its image, which is closed in \(k^\times \).
Torsors over topological fields

Example of the squaring map:

\[f : \mathbb{G}_m, k \rightarrow \mathbb{G}_m, k \]
\[x \mapsto x^2. \]

If \(k = \mathbb{R} \), the image of \(f_{\text{top}} \) is \(\mathbb{R}_{>0} \) (open and closed in \(\mathbb{R}^\times \)), and \(f_{\text{top}} \) induces a trivial \(\{\pm 1\} \)-bundle over this image.

If \(k = \mathbb{C} \), then \(f_{\text{top}} \) is surjective and induces a nontrivial principal \(\{\pm 1\} \)-bundle over \(\mathbb{C}^\times \).

If \(k = \mathbb{F}_2((t)) \), then \(f_{\text{top}} \) is a homeomorphism onto its image, which is closed in \(k^\times \).
Torsors over topological fields

Example of the squaring map:

\[f : \mathbb{G}_m, k \longrightarrow \mathbb{G}_m, k \]
\[x \longmapsto x^2. \]

If \(k = \mathbb{R} \), the image of \(f_{\text{top}} \) is \(\mathbb{R}_{>0} \) (open and closed in \(\mathbb{R}^\times \)), and \(f_{\text{top}} \) induces a trivial \(\{\pm 1\} \)-bundle over this image.

If \(k = \mathbb{C} \), then \(f_{\text{top}} \) is surjective and induces a nontrivial principal \(\{\pm 1\} \)-bundle over \(\mathbb{C}^\times \).

If \(k = \mathbb{F}_2((t)) \), then \(f_{\text{top}} \) is a homeomorphism onto its image, which is closed in \(k^\times \).
Torsors over topological fields

Back to a general G-torsor $f: X \to Y$ over a topological field k:

We can factor $f_{\text{top}}: X_{\text{top}} \to Y_{\text{top}}$ as

$$
X_{\text{top}} \quad \to \quad X_{\text{top}}/G_{\text{top}} \quad \to \quad \text{Im}(f_{\text{top}}) \quad \to \quad Y_{\text{top}}
$$

which gives rise to natural questions:
Torsors over topological fields

Back to a general G-torsor $f : X \rightarrow Y$ over a topological field k

We can factor $f_{\text{top}} : X_{\text{top}} \rightarrow Y_{\text{top}}$ as

$X_{\text{top}} \rightarrow X_{\text{top}}/G_{\text{top}} \rightarrow \text{Im}(f_{\text{top}}) \rightarrow Y_{\text{top}}$

which gives rise to natural questions:
Back to a general \(G \)-torsor \(f : X \rightarrow Y \) over a topological field \(k \):

We can factor \(f_{\text{top}} : X_{\text{top}} \rightarrow Y_{\text{top}} \) as

\[
\begin{array}{c}
X_{\text{top}} \quad \rightarrow \\
\text{quotient map} \\
(\text{open})
\end{array}
\begin{array}{c}
X_{\text{top}}/G_{\text{top}} \quad \rightarrow \\
\text{continuous} \\
\text{bijection}
\end{array}
\begin{array}{c}
\text{Im}(f_{\text{top}}) \quad \rightarrow \\
\text{topological} \\
\text{embedding}
\end{array}
\rightarrow \ Y_{\text{top}}
\]

which gives rise to natural questions:
Torsors over topological fields

Back to a general G-torsor $f : X \to Y$ over a topological field k:

We can factor $f_{\text{top}} : X_{\text{top}} \to Y_{\text{top}}$ as

\[
X_{\text{top}} \quad \longrightarrow \quad X_{\text{top}}/G_{\text{top}} \quad \longrightarrow \quad \text{Im}(f_{\text{top}}) \quad \longrightarrow \quad Y_{\text{top}}
\]

quotient map (open) \hspace{2cm} continuous bijection \hspace{2cm} topological embedding

which gives rise to natural questions:
Torsors over topological fields

\[X_{\text{top}} \rightarrow X_{\text{top}}/G_{\text{top}} \rightarrow \text{Im}(f_{\text{top}}) \rightarrow Y_{\text{top}} \]

- Is the image of \(f_{\text{top}} \) closed (open, locally closed) in \(Y_{\text{top}} \)?
- Is the middle bijection a homeomorphism? (In other words, is \(f_{\text{top}} \) a strict map?)
- Is \(X_{\text{top}} \rightarrow X_{\text{top}}/G_{\text{top}} \) a principal \(G_{\text{top}} \)-bundle?
Torsors over topological fields

\[X_{\text{top}} \xrightarrow{\text{quotient}} X_{\text{top}}/G_{\text{top}} \xrightarrow{\text{bijection}} \text{Im}(f_{\text{top}}) \xrightarrow{\text{embedding}} Y_{\text{top}} \]

1. Is the image of f_{top} closed (open, locally closed) in Y_{top}?

2. Is the middle bijection a homeomorphism? (In other words, is f_{top} a strict map?)

3. Is $X_{\text{top}} \to X_{\text{top}}/G_{\text{top}}$ a principal G_{top}-bundle?
Torsors over topological fields

\[X_{\text{top}} \quad \rightarrow \quad X_{\text{top}}/G_{\text{top}} \quad \rightarrow \quad \text{Im}(f_{\text{top}}) \quad \rightarrow \quad Y_{\text{top}} \]

1. Is the image of \(f_{\text{top}} \) closed (open, locally closed) in \(Y_{\text{top}} \)?

2. Is the middle bijection a homeomorphism? (In other words, is \(f_{\text{top}} \) a strict map?)

3. Is \(X_{\text{top}} \rightarrow X_{\text{top}}/G_{\text{top}} \) a principal \(G_{\text{top}} \)-bundle?
Torsors over topological fields

\[X_{\text{top}} \rightarrow X_{\text{top}}/G_{\text{top}} \rightarrow \text{Im}(f_{\text{top}}) \rightarrow Y_{\text{top}} \]

1. Is the image of \(f_{\text{top}} \) closed (open, locally closed) in \(Y_{\text{top}} \)?
2. Is the middle bijection a homeomorphism? (In other words, is \(f_{\text{top}} \) a strict map?)
3. Is \(X_{\text{top}} \rightarrow X_{\text{top}}/G_{\text{top}} \) a principal \(G_{\text{top}} \)-bundle?
Torsors over topological fields

$X_{\text{top}} \rightarrow X_{\text{top}}/G_{\text{top}} \rightarrow \text{Im}(f_{\text{top}}) \rightarrow Y_{\text{top}}$

1. Is the image of f_{top} closed (open, locally closed) in Y_{top}?

2. Is the middle bijection a homeomorphism? (In other words, is f_{top} a strict map?)

3. Is $X_{\text{top}} \rightarrow X_{\text{top}}/G_{\text{top}}$ a principal G_{top}-bundle?
 Equivalently, does this map have continuous local sections everywhere?
Torsors over topological fields

\[X_{\text{top}} \rightarrow X_{\text{top}}/G_{\text{top}} \rightarrow \text{Im}(f_{\text{top}}) \rightarrow Y_{\text{top}} \]

1. Is the image of \(f_{\text{top}} \) closed (open, locally closed) in \(Y_{\text{top}} \)?

2. Is the middle bijection a homeomorphism? (In other words, is \(f_{\text{top}} \) a strict map?)

3. Is \(X_{\text{top}} \rightarrow X_{\text{top}}/G_{\text{top}} \) a principal \(G_{\text{top}} \)-bundle?
 Equivalently, does this map have continuous local sections everywhere?

Note that a positive answer to both Questions 2 and 3 is equivalent to a positive answer to

4. Is \(X_{\text{top}} \rightarrow \text{Im}(f_{\text{top}}) \) a principal \(G_{\text{top}} \)-bundle?
The main result

Definition

A valued field \((K, v)\) is admissible if

- \((K, v)\) is henselian;
- the completion \(\hat{K}\) of \(K\) is a separable extension of \(K\).

Main Theorem

Let \((K, v)\) be an admissible valued field, \(G\) an algebraic \(K\)-group, and \(f : X \to Y\) a \(G\)-torsor. Then:

1. \(\text{Im}(f_{\text{top}})\) is locally closed in \(Y_{\text{top}}\).
2. The induced map \(X_{\text{top}} \to \text{Im}(f_{\text{top}})\) is a principal \(G_{\text{top}}\)-bundle.
The main result

Definition

A valued field \((K, v)\) is **admissible** if

- \((K, v)\) is henselian;
- the completion \(\hat{K}\) of \(K\) is a separable extension of \(K\).

Main Theorem

Let \((K, v)\) be an admissible valued field, \(G\) an algebraic \(K\)-group, and \(f : X \to Y\) a \(G\)-torsor. Then:

1. \(\text{Im}(f_{top})\) is locally closed in \(Y_{top}\).
2. The induced map \(X_{top} \to \text{Im}(f_{top})\) is a principal \(G_{top}\)-bundle.

Remark. In some cases, we can say more about \(\text{Im}(f_{top})\):
- it is open and closed in \(Y_{top}\) if \(G\) is smooth, or if \(K\) is perfect;
- it is closed in \(Y_{top}\) if \(G \circ \text{red}\) is smooth, or if \(G\) is commutative.
The main result

Definition

A valued field \((K, v)\) is admissible if

- \((K, v)\) is henselian;
- the completion \(\hat{K}\) of \(K\) is a separable extension of \(K\).

Main Theorem

Let \((K, v)\) be an admissible valued field, \(G\) an algebraic \(K\)-group, and \(f : X \to Y\) a \(G\)-torsor. Then:

1. \(\text{Im}(f_{\text{top}})\) is locally closed in \(Y_{\text{top}}\).
2. The induced map \(X_{\text{top}} \to \text{Im}(f_{\text{top}})\) is a principal \(G_{\text{top}}\)-bundle.
The main result

Definition

A valued field \((K, \nu)\) is \textit{admissible} if

- \((K, \nu)\) is henselian;
- the completion \(\hat{K}\) of \(K\) is a separable extension of \(K\).

Main Theorem

Let \((K, \nu)\) be an admissible valued field, \(G\) an algebraic \(K\)-group, and \(f : X \to Y\) a \(G\)-torsor. Then:

1. \(\text{Im}(f_{\text{top}})\) is locally closed in \(Y_{\text{top}}\).
2. The induced map \(X_{\text{top}} \to \text{Im}(f_{\text{top}})\) is a principal \(G_{\text{top}}\)-bundle.

Remark. In some cases, we can say more about \(\text{Im}(f_{\text{top}})\):

- it is open and closed in \(Y_{\text{top}}\) if \(G\) is smooth, or if \(K\) is perfect;
- it is closed in \(Y_{\text{top}}\) if \(G_{\text{red}}^\circ\) is smooth, or if \(G\) is commutative.

Laurent Moret-Bailly (IRMAR) Principal Bundles over Valued Fields Oberwolfach, June 2013 14 / 24
The case of homogeneous spaces

As an example, we can take for X an algebraic group and for G a subgroup of X, and consider $f : X \rightarrow Y := X/G$.

Then the image of f_{top} is the orbit $X_{top}.y$ ($y =$ origin of Y). The theorem says that

- this orbit is locally closed in Y_{top}, and
- the induced map $X_{top} \rightarrow X_{top}.y$ is a principal G_{top}-bundle (in particular, $X_{top}/G_{top} \rightarrow X_{top}.y$ is a homeomorphism).

When K is a local field, this is due to Bernstein and Zelevinsky (1976).
The case of homogeneous spaces

As an example, we can take for X an algebraic group and for G a subgroup of X, and consider $f : X \to Y := X/G$.

Then the image of f_{top} is the orbit $X_{\text{top}}.y$ ($y=$origin of Y). The theorem says that

- this orbit is locally closed in Y_{top}, and
- the induced map $X_{\text{top}} \to X_{\text{top}}.y$ is a principal G_{top}-bundle (in particular, $X_{\text{top}}/G_{\text{top}} \to X_{\text{top}}.y$ is a homeomorphism).

When K is a local field, this is due to Bernstein and Zelevinsky (1976).
The case of homogeneous spaces

As an example, we can take for X an algebraic group and for G a subgroup of X, and consider $f : X \to Y := X/G$.

Then the image of f_{top} is the orbit $X_{\text{top}}.y$ ($y=$origin of Y). The theorem says that

- this orbit is locally closed in Y_{top}, and
- the induced map $X_{\text{top}} \to X_{\text{top}}.y$ is a principal G_{top}-bundle (in particular, $X_{\text{top}}/G_{\text{top}} \to X_{\text{top}}.y$ is a homeomorphism).

When K is a local field, this is due to Bernstein and Zelevinsky (1976).
An example of a non-closed orbit

Assume char \((K) = p > 0\). Let \(S = \mathbb{G}_a \times \mathbb{G}_m\) be the affine group in dimension 1, acting on \(X = \mathbb{A}^1_K\) transitively “via Frobenius on \(S\)":

\[
S \times \mathbb{A}^1 \longrightarrow \mathbb{A}^1 \\
((x, y), u) \longmapsto (x, y).u := x^p + y^p u
\]

For \(u \in K\), consider the orbit morphism

\[
f_u : S \rightarrow \mathbb{A}^1, \quad s \mapsto s.u.
\]

This is a torsor under the stabilizer \(S_u\) of \(u\).

The image of \(f_{u,\text{top}}\) is the orbit \(S(K).u = K^p + (K^\times)^p u \subset K\). In particular:

- if \(u \in K^p\), the orbit is \(K^p\), which is closed in \(K\) if \(K\) is admissible;
- for any choice of \(u\), the orbit has 0 in its closure (consider the action of \(\mathbb{G}_m\)).

Hence, if \(u \notin K^p\), then \(\text{Im}(f_{u,\text{top}})\) is not closed in \(K\).
An example of a non-closed orbit

Assume $\text{char}(K) = p > 0$. Let $S = \mathbb{G}_a \times \mathbb{G}_m$ be the affine group in dimension 1, acting on $X = \mathbb{A}^1_K$ transitively “via Frobenius on S”:

$$S \times \mathbb{A}^1 \longrightarrow \mathbb{A}^1$$

$$((x, y), u) \mapsto (x, y).u := x^p + y^p u$$

For $u \in K$, consider the orbit morphism

$$f_u : S \rightarrow \mathbb{A}^1, \quad s \mapsto s.u.$$

This is a torsor under the stabilizer S_u of u.

The image of $f_{u,\text{top}}$ is the orbit $S(K).u = K^p + (K^\times)^p u \subset K$. In particular:

- if $u \in K^p$, the orbit is K^p, which is closed in K if K is admissible;
- for any choice of u, the orbit has 0 in its closure (consider the action of \mathbb{G}_m).

Hence, if $u \not\in K^p$, then $\text{Im}(f_{u,\text{top}})$ is not closed in K.

Laurent Moret-Bailly (IRMAR) Principal Bundles over Valued Fields Oberwolfach, June 2013 16 / 24
An example of a non-closed orbit

Assume $\text{char}(K) = p > 0$. Let $S = \mathbb{G}_a \times \mathbb{G}_m$ be the affine group in dimension 1, acting on $X = \mathbb{A}_K^1$ transitively “via Frobenius on S”:

$$S \times \mathbb{A}_K^1 \rightarrow \mathbb{A}_K^1$$

$$((x, y), u) \mapsto (x, y) \cdot u := x^p + y^p u$$

For $u \in K$, consider the orbit morphism

$$f_u : S \rightarrow \mathbb{A}_K^1, \quad s \mapsto s \cdot u.$$

This is a torsor under the stabilizer S_u of u.

The image of $f_{u,\text{top}}$ is the orbit $S(K) \cdot u = K^p + (K^\times)^p u \subset K$. In particular:

- if $u \in K^p$, the orbit is K^p, which is closed in K if K is admissible;
- for any choice of u, the orbit has 0 in its closure (consider the action of \mathbb{G}_m).

Hence, if $u \notin K^p$, then $\text{Im}(f_{u,\text{top}})$ is not closed in K.

An example of a non-closed orbit

Assume $\text{char}(K) = p > 0$. Let $S = \mathbb{G}_a \times \mathbb{G}_m$ be the affine group in dimension 1, acting on $X = \mathbb{A}^1_K$ transitively “via Frobenius on S”:

$$S \times \mathbb{A}^1 \rightarrow \mathbb{A}^1$$

$$((x, y), u) \mapsto (x, y).u := x^p + y^p u$$

For $u \in K$, consider the orbit morphism

$$f_u : S \rightarrow \mathbb{A}^1, \quad s \mapsto s.u.$$

This is a torsor under the stabilizer S_u of u.

The image of $f_{u,\text{top}}$ is the orbit $S(K).u = K^p + (K^\times)^p u \subset K$. In particular:

- if $u \in K^p$, the orbit is K^p, which is closed in K if K is admissible;
- for any choice of u, the orbit has 0 in its closure (consider the action of \mathbb{G}_m).

Hence, if $u \notin K^p$, then $\text{Im}(f_{u,\text{top}})$ is not closed in K.

Laurent Moret-Bailly (IRMAR) Principal Bundles over Valued Fields Oberwolfach, June 2013 16 / 24
An example of a non-closed orbit

Assume $\text{char} (K) = p > 0$. Let $S = \mathbb{G}_a \times \mathbb{G}_m$ be the affine group in dimension 1, acting on $X = \mathbb{A}^1_K$ transitively “via Frobenius on S”:

$$S \times \mathbb{A}^1 \longrightarrow \mathbb{A}^1$$

$$((x, y), u) \longmapsto (x, y).u := x^p + y^p u$$

For $u \in K$, consider the orbit morphism

$$f_u : S \rightarrow \mathbb{A}^1, \quad s \mapsto s.u.$$

This is a torsor under the stabilizer S_u of u.

The image of $f_{u,\text{top}}$ is the orbit $S(K).u = K^p + (K^\times)^p u \subset K$. In particular:

- if $u \in K^p$, the orbit is K^p, which is closed in K if K is admissible;
- for any choice of u, the orbit has 0 in its closure (consider the action of \mathbb{G}_m).

Hence, if $u \notin K^p$, then $\text{Im}(f_{u,\text{top}})$ is not closed in K.
An example of a non-closed orbit

Assume char \((K) = p > 0\). Let \(S = \mathbb{G}_a \times \mathbb{G}_m\) be the affine group in dimension 1, acting on \(X = \mathbb{A}^1_K\) transitively “via Frobenius on \(S\)”: \[
S \times \mathbb{A}^1 \longrightarrow \mathbb{A}^1\\
((x, y), u) \longmapsto (x, y).u := x^p + y^pu
\]

For \(u \in K\), consider the orbit morphism \(f_u : S \to \mathbb{A}^1, \ s \mapsto s.u\).

This is a torsor under the stabilizer \(S_u\) of \(u\).

The image of \(f_{u,\text{top}}\) is the orbit \(S(K).u = K^p + (K^\times)^p u \subset K\). In particular:
- if \(u \in K^p\), the orbit is \(K^p\), which is closed in \(K\) if \(K\) is admissible;
- for any choice of \(u\), the orbit has 0 in its closure (consider the action of \(\mathbb{G}_m\)).

Hence, if \(u \not\in K^p\), then \(\text{Im}(f_{u,\text{top}})\) is not closed in \(K\).
An example of a non-closed orbit

Assume \(\text{char}(K) = p > 0 \). Let \(S = \mathbb{G}_a \times \mathbb{G}_m \) be the affine group in dimension 1, acting on \(X = \mathbb{A}^1_K \) transitively “via Frobenius on \(S \)“:

\[
\begin{align*}
S \times \mathbb{A}^1 & \longrightarrow \mathbb{A}^1 \\
((x, y), u) & \longmapsto (x, y).u := x^p + y^p u
\end{align*}
\]

For \(u \in K \), consider the orbit morphism

\[
f_u : S \rightarrow \mathbb{A}^1, \quad s \mapsto s.u.
\]

This is a torsor under the stabilizer \(S_u \) of \(u \).

The image of \(f_{u,\text{top}} \) is the orbit \(S(K).u = K^p + (K^\times)^p u \subset K \). In particular:

- if \(u \in K^p \), the orbit is \(K^p \), which is closed in \(K \) if \(K \) is admissible;
- for any choice of \(u \), the orbit has 0 in its closure (consider the action of \(\mathbb{G}_m \)).

Hence, if \(u \notin K^p \), then \(\text{Im}(f_{u,\text{top}}) \) is not closed in \(K \).
An example of a non-closed orbit

Assume \(\text{char} (K) = p > 0 \). Let \(S = \mathbb{G}_a \times \mathbb{G}_m \) be the affine group in dimension 1, acting on \(X = \mathbb{A}^1_K \) transitively “via Frobenius on \(S \)”: \[
S \times \mathbb{A}^1 \longrightarrow \mathbb{A}^1 \\
((x, y), u) \longmapsto (x, y).u := x^p + y^p u
\]

For \(u \in K \), consider the orbit morphism \(f_u : S \to \mathbb{A}^1, \ s \mapsto s.u \).

This is a torsor under the stabilizer \(S_u \) of \(u \).

The image of \(f_{u,\text{top}} \) is the orbit \(S(K).u = K^p + (K^\times)^p u \subset K \). In particular:

- if \(u \in K^p \), the orbit is \(K^p \), which is closed in \(K \) if \(K \) is admissible;
- for any choice of \(u \), the orbit has 0 in its closure (consider the action of \(\mathbb{G}_m \)).

Hence, if \(u \notin K^p \), then \(\text{Im}(f_{u,\text{top}}) \) is not closed in \(K \).
An example of a non-closed orbit

Assume $\text{char}(K) = p > 0$. Let $S = \mathbb{G}_a \times \mathbb{G}_m$ be the affine group in dimension 1, acting on $X = \mathbb{A}^1_K$ transitively “via Frobenius on S”:

$$S \times \mathbb{A}^1 \longrightarrow \mathbb{A}^1$$

$$((x, y), u) \longmapsto (x, y).u := x^p + y^p u$$

For $u \in K$, consider the orbit morphism

$$f_u : S \rightarrow \mathbb{A}^1, \quad s \mapsto s.u.$$

This is a torsor under the stabilizer S_u of u.

The image of $f_{u,\text{top}}$ is the orbit $S(K).u = K^p + (K^\times)^p u \subset K$. In particular:

- if $u \in K^p$, the orbit is K^p, which is closed in K if K is admissible;
- for any choice of u, the orbit has 0 in its closure (consider the action of \mathbb{G}_m).

Hence, if $u \notin K^p$, then $\text{Im}(f_{u,\text{top}})$ is not closed in K.

Laurent Moret-Bailly (IRMAR) Principal Bundles over Valued Fields Oberwolfach, June 2013 16 / 24
An example of a non-closed orbit

Assume $\text{char}(K) = p > 0$. Let $S = \mathbb{G}_a \times \mathbb{G}_m$ be the affine group in dimension 1, acting on $X = \mathbb{A}_K^1$ transitively “via Frobenius on S”:

$$S \times \mathbb{A}^1 \longrightarrow \mathbb{A}^1$$

$$((x, y), u) \longmapsto (x, y).u := x^p + y^p u$$

For $u \in K$, consider the orbit morphism

$$f_u : S \rightarrow \mathbb{A}^1, \quad s \mapsto s.u.$$

This is a torsor under the stabilizer S_u of u.

The image of $f_{u,\text{top}}$ is the orbit $S(K).u = K^p + (K^\times)^p u \subset K$. In particular:

- if $u \in K^p$, the orbit is K^p, which is closed in K if K is admissible;
- for any choice of u, the orbit has 0 in its closure (consider the action of \mathbb{G}_m).

Hence, if $u \notin K^p$, then $\text{Im}(f_{u,\text{top}})$ is not closed in K.

Laurent Moret-Bailly (IRMAR)
Principal Bundles over Valued Fields
Oberwolfach, June 2013
16 / 24
Notation and conventions

- R: a valuation ring,
- $K = \text{Frac}(R)$,
- ν: the valuation,
- \hat{K}: completion of K,
- K-variety $= K$-scheme of finite type,
- algebraic K-group $= K$-group scheme of finite type,
- R (or (K, ν)) is admissible if R is henselian and the extension \hat{K}/K is separable.
Notation and conventions

- R: a valuation ring,
- $K = \text{Frac}(R)$,
- ν: the valuation,
- \hat{K}: completion of K,
- K-variety = K-scheme of finite type,
- algebraic K-group = K-group scheme of finite type,
- R (or (K, ν)) is admissible if R is henselian and the extension \hat{K}/K is separable.
Notation and conventions

- R: a valuation ring,
- $K = \text{Frac}(R)$,
- ν: the valuation,
- \hat{K}: completion of K,
- K-variety = K-scheme of finite type,
- algebraic K-group = K-group scheme of finite type,
- R (or (K, ν)) is admissible if R is henselian and the extension \hat{K}/K is separable.
Notation and conventions

- R: a valuation ring,
- $K = \text{Frac}(R)$,
- v: the valuation,
- \hat{K}: completion of K,
- K-variety = K-scheme of finite type,
- algebraic K-group = K-group scheme of finite type,
- R (or (K, v)) is admissible if R is henselian and the extension \hat{K}/K is separable.
Properties of admissible valued fields

Assume (K, ν) is admissible. Then:

- K is algebraically closed in \hat{K}.
- If L is a finite extension of K, then:
 - L is admissible (for the unique extension of ν),
 - as a topological K-vector space, L is free (isomorphic to $K^{[L:K]}$),
 - $\hat{K} \otimes_K L \sim \hat{L}$.
- If $\text{char}(K) > 0$, the Frobenius map $K \to K$ is a closed topological embedding.
- R has the strong approximation property (à la Greenberg).
Properties of admissible valued fields

Assume \((K, \nu)\) is admissible. Then:

- \(K\) is algebraically closed in \(\hat{K}\).

- If \(L\) is a finite extension of \(K\), then:
 - \(L\) is admissible (for the unique extension of \(\nu\)),
 - as a topological \(K\)-vector space, \(L\) is free (isomorphic to \(K^{[L:K]}\)),
 - \(\hat{K} \otimes_K L \sim \hat{L}\).

- If \(\text{char}(K) > 0\), the Frobenius map \(K \to K\) is a closed topological embedding.

- \(R\) has the strong approximation property (à la Greenberg).
Properties of admissible valued fields

Assume \((K, v)\) is admissible. Then:

1. \(K\) is algebraically closed in \(\hat{K}\).

2. If \(L\) is a finite extension of \(K\), then:
 - \(L\) is admissible (for the unique extension of \(v\)),
 - as a topological \(K\)-vector space, \(L\) is free (isomorphic to \(K^{[L:K]}\)),
 - \(\hat{K} \otimes_K L \overset{\sim}{\longrightarrow} \hat{L}\).

3. If \(\text{char}(K) > 0\), the Frobenius map \(K \rightarrow K\) is a closed topological embedding.

4. \(R\) has the strong approximation property (à la Greenberg).
Properties of admissible valued fields

Assume \((K, \nu)\) is admissible. Then:

- \(K\) is algebraically closed in \(\hat{K}\).
- If \(L\) is a finite extension of \(K\), then:
 - \(L\) is admissible (for the unique extension of \(\nu\)),
 - as a topological \(K\)-vector space, \(L\) is free (isomorphic to \(K^{[L:K]}\)),
 - \(\hat{K} \otimes_K L \sim \hat{L}\).
- If \(\text{char}(K) > 0\), the Frobenius map \(K \to K\) is a closed topological embedding.
- \(R\) has the strong approximation property (à la Greenberg).
Properties of admissible valued fields

Assume \((K, v)\) is admissible. Then:

- \(K\) is algebraically closed in \(\hat{K}\).

- If \(L\) is a finite extension of \(K\), then:
 - \(L\) is admissible (for the unique extension of \(v\)),
 - as a topological \(K\)-vector space, \(L\) is free (isomorphic to \(K[L:K]\)),
 - \(\hat{K} \otimes_K L \sim \hat{L}\).

- If \(\text{char}(K) > 0\), the Frobenius map \(K \rightarrow K\) is a closed topological embedding.

- \(R\) has the strong approximation property (à la Greenberg).
Properties of admissible valued fields

Assume \((K, \nu)\) is admissible. Then:

- \(K\) is algebraically closed in \(\hat{K}\).
- If \(L\) is a finite extension of \(K\), then:
 - \(L\) is admissible (for the unique extension of \(\nu\)),
 - as a topological \(K\)-vector space, \(L\) is free (isomorphic to \(K[L:K]\)),
 - \(\hat{K} \otimes_K L \sim \hat{L}\).
- If \(\text{char}(K) > 0\), the Frobenius map \(K \rightarrow K\) is a closed topological embedding.
- \(R\) has the strong approximation property (à la Greenberg).
Properties of admissible valued fields

Assume \((K, \nu)\) is admissible. Then:

- \(K\) is algebraically closed in \(\hat{K}\).

- If \(L\) is a finite extension of \(K\), then:
 - \(L\) is admissible (for the unique extension of \(\nu\)),
 - as a topological \(K\)-vector space, \(L\) is free (isomorphic to \(K[L:K]\)),
 - \(\hat{K} \otimes_K L \xrightarrow{\sim} \hat{L}\).

- If \(\text{char}(K) > 0\), the Frobenius map \(K \rightarrow K\) is a closed topological embedding.

- \(R\) has the strong approximation property (à la Greenberg).
Admissible valuations: topological properties of morphisms

Proposition 1

Assume \((K, v)\) is admissible, and let \(f : X \rightarrow Y\) be a morphism of \(K\)-varieties. Consider the induced continuous map \(f_{\text{top}} : X_{\text{top}} \rightarrow Y_{\text{top}}\).

1. “Implicit function theorem”: If \(f\) is étale, then \(f_{\text{top}}\) is a local homeomorphism.
2. If \(f\) is smooth, then \(f_{\text{top}}\) has local sections at each point of \(X_{\text{top}}\). (In particular, it is an open map).
3. “Continuity of roots”: If \(f\) is finite, then \(f_{\text{top}}\) is a closed map (hence proper, since it has finite fibers).

Warning! If \(f\) is proper, \(f_{\text{top}}\) is not a closed map in general. But its image is closed in \(Y_{\text{top}}\).
Proposition 1

Assume (K, v) is admissible, and let $f : X \to Y$ be a morphism of K-varieties. Consider the induced continuous map $f_{\text{top}} : X_{\text{top}} \to Y_{\text{top}}$.

1. “Implicit function theorem”: If f is étale, then f_{top} is a local homeomorphism.

2. If f is smooth, then f_{top} has local sections at each point of X_{top}. (In particular, it is an open map).

3. “Continuity of roots”: If f is finite, then f_{top} is a closed map (hence proper, since it has finite fibers).

Warning! If f is proper, f_{top} is not a closed map in general. But its image is closed in Y_{top}.
Proposition 1

Assume \((K, v)\) is admissible, and let \(f : X \to Y\) be a morphism of \(K\)-varieties. Consider the induced continuous map \(f_{\text{top}} : X_{\text{top}} \to Y_{\text{top}}\).

1. “Implicit function theorem”: If \(f\) is étale, then \(f_{\text{top}}\) is a local homeomorphism.

2. If \(f\) is smooth, then \(f_{\text{top}}\) has local sections at each point of \(X_{\text{top}}\). (In particular, it is an open map).

3. “Continuity of roots”: If \(f\) is finite, then \(f_{\text{top}}\) is a closed map (hence proper, since it has finite fibers).

Warning! If \(f\) is proper, \(f_{\text{top}}\) is not a closed map in general. But its image is closed in \(Y_{\text{top}}\).
Proposition 1

Assume \((K, v)\) is admissible, and let \(f : X \to Y\) be a morphism of \(K\)-varieties. Consider the induced continuous map \(f_{\text{top}} : X_{\text{top}} \to Y_{\text{top}}\).

1. “Implicit function theorem”: If \(f\) is étale, then \(f_{\text{top}}\) is a local homeomorphism.

2. If \(f\) is smooth, then \(f_{\text{top}}\) has local sections at each point of \(X_{\text{top}}\). (In particular, it is an open map).

3. “Continuity of roots”: If \(f\) is finite, then \(f_{\text{top}}\) is a closed map (hence proper, since it has finite fibers).

Warning! If \(f\) is proper, \(f_{\text{top}}\) is not a closed map in general. But its image is closed in \(Y_{\text{top}}\).
Admissible valuations: topological properties of morphisms

Proposition 1

Assume (K, v) is admissible, and let $f : X \rightarrow Y$ be a morphism of K-varieties. Consider the induced continuous map $f_{\text{top}} : X_{\text{top}} \rightarrow Y_{\text{top}}$.

1. “Implicit function theorem”: If f is étale, then f_{top} is a local homeomorphism.

2. If f is smooth, then f_{top} has local sections at each point of X_{top}. (In particular, it is an open map).

3. “Continuity of roots”: If f is finite, then f_{top} is a closed map (hence proper, since it has finite fibers).

Warning! If f is proper, f_{top} is not a closed map in general. But its image is closed in Y_{top}.

Proposition 1

Assume \((K, v)\) is admissible, and let \(f : X \to Y\) be a morphism of \(K\)-varieties. Consider the induced continuous map \(f_{\text{top}} : X_{\text{top}} \to Y_{\text{top}}\).

1. “Implicit function theorem”: If \(f\) is étale, then \(f_{\text{top}}\) is a local homeomorphism.

2. If \(f\) is smooth, then \(f_{\text{top}}\) has local sections at each point of \(X_{\text{top}}\). (In particular, it is an open map).

3. “Continuity of roots”: If \(f\) is finite, then \(f_{\text{top}}\) is a closed map (hence proper, since it has finite fibers).

Warning! If \(f\) is proper, \(f_{\text{top}}\) is not a closed map in general. But its image is closed in \(Y_{\text{top}}\).
Admissible valuations: topological properties of morphisms

Proposition 1

Assume \((K, v)\) is admissible, and let \(f : X \to Y\) be a morphism of \(K\)-varieties. Consider the induced continuous map \(f_{\text{top}} : X_{\text{top}} \to Y_{\text{top}}\).

1. “Implicit function theorem”: If \(f\) is étale, then \(f_{\text{top}}\) is a local homeomorphism.

2. If \(f\) is smooth, then \(f_{\text{top}}\) has local sections at each point of \(X_{\text{top}}\). (In particular, it is an open map).

3. “Continuity of roots”: If \(f\) is finite, then \(f_{\text{top}}\) is a closed map (hence proper, since it has finite fibers).

Warning! If \(f\) is proper, \(f_{\text{top}}\) is not a closed map in general. But its image is closed in \(Y_{\text{top}}\).
Proposition 1

Assume \((K, v)\) is admissible, and let \(f : X \to Y\) be a morphism of \(K\)-varieties. Consider the induced continuous map \(f_{\text{top}} : X_{\text{top}} \to Y_{\text{top}}\).

1. “Implicit function theorem”: If \(f\) is étale, then \(f_{\text{top}}\) is a local homeomorphism.

2. If \(f\) is smooth, then \(f_{\text{top}}\) has local sections at each point of \(X_{\text{top}}\). (In particular, it is an open map).

3. “Continuity of roots”: If \(f\) is finite, then \(f_{\text{top}}\) is a closed map (hence proper, since it has finite fibers).

Warning! If \(f\) is proper, \(f_{\text{top}}\) is not a closed map in general. But its image is closed in \(Y_{\text{top}}\).
Admissible valuations: topological properties of morphisms

Proposition 1

Assume \((K, v)\) is admissible, and let \(f : X \to Y\) be a morphism of \(K\)-varieties. Consider the induced continuous map \(f_{\text{top}} : X_{\text{top}} \to Y_{\text{top}}\).

1. “Implicit function theorem”: If \(f\) is étale, then \(f_{\text{top}}\) is a local homeomorphism.

2. If \(f\) is smooth, then \(f_{\text{top}}\) has local sections at each point of \(X_{\text{top}}\). (In particular, it is an open map).

3. “Continuity of roots”: If \(f\) is finite, then \(f_{\text{top}}\) is a closed map (hence proper, since it has finite fibers).

Warning! If \(f\) is proper, \(f_{\text{top}}\) is not a closed map in general. But its image is closed in \(Y_{\text{top}}\).
Now let us return to the main result:

Main Theorem

Let \((K, v)\) be an admissible valued field, \(G\) an algebraic \(K\)-group, and \(f : X \to Y\) a \(G\)-torsor. Then:

1. \(\text{Im}(f_{\text{top}})\) is locally closed in \(Y_{\text{top}}\).

2. The induced map \(X_{\text{top}} \to \text{Im}(f_{\text{top}})\) is a principal \(G_{\text{top}}\)-bundle.
The smooth case

Let us explain the smooth case. If G is smooth, then:

- $f : X \to Y$ is a smooth morphism,
- hence f_{top} has local sections at each point of X_{top}.
- This proves that
 - $\text{Im}(f_{\text{top}})$ is open, and
 - $X_{\text{top}} \to \text{Im}(f_{\text{top}})$ is a principal G_{top}-bundle.
Let us explain the smooth case. If G is smooth, then:

- $f : X \to Y$ is a smooth morphism,
- hence f_{top} has local sections at each point of X_{top}.
- This proves that
 - $\text{Im}(f_{\text{top}})$ is open, and
 - $X_{\text{top}} \to \text{Im}(f_{\text{top}})$ is a principal G_{top}-bundle.
The smooth case

Let us explain the smooth case. If G is smooth, then:

- $f : X \rightarrow Y$ is a smooth morphism,
- hence f_{top} has local sections at each point of X_{top}.
- This proves that
 - $\text{Im}(f_{\text{top}})$ is open, and
 - $X_{\text{top}} \rightarrow \text{Im}(f_{\text{top}})$ is a principal G_{top}-bundle.
The smooth case

Let us explain the smooth case. If G is smooth, then:

- $f : X \to Y$ is a smooth morphism,
- hence f_{top} has local sections at each point of X_{top}.
- This proves that
 - $\text{Im}(f_{\text{top}})$ is open, and
 - $X_{\text{top}} \to \text{Im}(f_{\text{top}})$ is a principal G_{top}-bundle.
The smooth case

Let us explain the smooth case. If \(G \) is smooth, then:

- \(f : X \to Y \) is a smooth morphism,
- hence \(f_{\text{top}} \) has local sections at each point of \(X_{\text{top}} \).
- This proves that
 - \(\text{Im}(f_{\text{top}}) \) is open, and
 - \(X_{\text{top}} \to \text{Im}(f_{\text{top}}) \) is a principal \(G_{\text{top}} \)-bundle.
The smooth case

Let us explain the smooth case. If G is smooth, then:

- $f : X \to Y$ is a smooth morphism,
- hence f_{top} has local sections at each point of X_{top}.
- This proves that
 - $\text{Im}(f_{\text{top}})$ is open, and
 - $X_{\text{top}} \to \text{Im}(f_{\text{top}})$ is a principal G_{top}-bundle.
The smooth case

Let us explain the smooth case. If G is smooth, then:

- $f : X \to Y$ is a smooth morphism,
- hence f_{top} has local sections at each point of X_{top}.
- This proves that
 - $\text{Im}(f_{\text{top}})$ is open, and
 - $X_{\text{top}} \to \text{Im}(f_{\text{top}})$ is a principal G_{top}-bundle.

Next, a standard “twisting argument” shows that $Y_{\text{top}} \setminus \text{Im}(f_{\text{top}})$ is a union of subsets similar to $\text{Im}(f_{\text{top}})$. Hence $\text{Im}(f_{\text{top}})$ is also closed.
Strategy for general G

Let K_s be a separable closure of K. G has a largest smooth subgroup G^\dagger, which can be defined as the Zariski closure of $G(K_s)$ in G.

This construction is functorial in G and commutes with separable ground field extensions.
Strategy for general G

Let K_s be a separable closure of K. G has a largest smooth subgroup G^\dagger, which can be defined as the Zariski closure of $G(K_s)$ in G.

This construction is functorial in G and commutes with separable ground field extensions.
Strategy for general G

It is easy to check that $(G/G^\dagger)(K_s) = \{e\}$ (in particular $(G/G^\dagger)(K) = \{e\}$).

More generally, if T is a G-torsor over K, then T/G^\dagger has at most one rational point.

Now let $f : X \rightarrow Y$ be a G-torsor. We factor it as

$$X \xrightarrow{\pi} Z := X/G^\dagger \xrightarrow{h} Y.$$

The corresponding factorization of f_{top} looks like

$$X_{\text{top}} \rightarrow \text{Im}(\pi_{\text{top}}) \subset Z_{\text{top}} \xrightarrow{h_{\text{top}}} Y_{\text{top}}.$$
Strategy for general G

It is easy to check that $(G/G^\dagger)(K_s) = \{e\}$ (in particular $(G/G^\dagger)(K) = \{e\}$).

More generally, if T is a G-torsor over K, then T/G^\dagger has at most one rational point.

Now let $f : X \to Y$ be a G-torsor. We factor it as

$$X \xrightarrow{\pi} Z := X/G^\dagger \xrightarrow{h} Y.$$

The corresponding factorization of f_{top} looks like

$$X_{\text{top}} \to \text{Im}(\pi_{\text{top}}) \subset Z_{\text{top}} \xrightarrow{h_{\text{top}}} Y_{\text{top}}.$$
Strategy for general G

It is easy to check that $(G/G^\dagger)(K_s) = \{e\}$ (in particular $(G/G^\dagger)(K) = \{e\}$).

More generally, if T is a G-torsor over K, then T/G^\dagger has at most one rational point.

Now let $f : X \to Y$ be a G-torsor. We factor it as

$$X \xrightarrow{\pi} Z := X/G^\dagger \xrightarrow{h} Y.$$

The corresponding factorization of f_{top} looks like

$$X_{\text{top}} \quad \longrightarrow \quad \text{Im}(\pi_{\text{top}}) \quad \subset \quad Z_{\text{top}} \xrightarrow{h_{\text{top}}} Y_{\text{top}}.$$
Strategy for general G

It is easy to check that $(G/G^\dagger)(K_s) = \{e\}$ (in particular $(G/G^\dagger)(K) = \{e\}$).

More generally, if T is a G-torsor over K, then T/G^\dagger has at most one rational point.

Now let $f : X \to Y$ be a G-torsor. We factor it as

$$X \xrightarrow{\pi} Z := X/G^\dagger \xrightarrow{h} Y.$$

The corresponding factorization of f_{top} looks like

$$X_{\text{top}} \xrightarrow{G^\dagger_{\text{top}} \text{-bundle}} \text{Im}(\pi_{\text{top}}) \subset Z_{\text{top}} \xrightarrow{h_{\text{top}}} Y_{\text{top}}.$$
Strategy for general G

It is easy to check that $(G/G^\dagger)(K_s) = \{e\}$ (in particular $(G/G^\dagger)(K) = \{e\}$).

More generally, if T is a G-torsor over K, then T/G^\dagger has at most one rational point.

Now let $f : X \to Y$ be a G-torsor. We factor it as

$$X \xrightarrow{\pi} Z := X/G^\dagger \xrightarrow{h} Y.$$

The corresponding factorization of f_{top} looks like

$$X_{\text{top}} \xrightarrow{G^\dagger_{\text{top}}-\text{bundle}} \text{Im}(\pi_{\text{top}}) \subset Z_{\text{top}} \xrightarrow{h_{\text{top}}} Y_{\text{top}}$$

open, closed
Strategy for general G

It is easy to check that $(G/G^\dagger)(K_s) = \{e\}$ (in particular $(G/G^\dagger)(K) = \{e\}$).

More generally, if T is a G-torsor over K, then T/G^\dagger has at most one rational point.

Now let $f : X \to Y$ be a G-torsor. We factor it as

$$X \xrightarrow{\pi} Z := X/G^\dagger \xrightarrow{h} Y.$$

The corresponding factorization of f_{top} looks like

$$X_{\text{top}} \xrightarrow{G_{\text{top}}^\dagger \text{-bundle}} \text{Im}(\pi_{\text{top}}) \subset Z_{\text{top}} \xrightarrow{h_{\text{top}}} Y_{\text{top}}$$

open, closed injective
The hard part of the proof is to show that h_{top} is in fact a topological embedding, with locally closed image.

This uses:

- strong approximation,
- the construction (due to Gabber) of a remarkable G-equivariant compactification of G/G^\dagger.
Strategy for general G

\[X_{\text{top}} \xrightarrow{G_{\text{top}}^\dagger \text{-bundle}} \text{Im}(\pi_{\text{top}}) \subset Z_{\text{top}} \xrightarrow{h_{\text{top}}} Y_{\text{top}} \]

The hard part of the proof is to show that h_{top} is in fact a topological embedding, with locally closed image.

This uses:

- strong approximation,
- the construction (due to Gabber) of a remarkable G-equivariant compactification of G/G^\dagger.

Laurent Moret-Bailly (IRMAR) | Principal Bundles over Valued Fields | Oberwolfach, June 2013 | 24 / 24
Strategy for general G

\[
\begin{array}{c}
X_{\text{top}} \quad \longrightarrow \quad \text{Im}(\pi_{\text{top}}) \quad \subset \quad Z_{\text{top}} \quad \xrightarrow{h_{\text{top}}} \quad Y_{\text{top}}
\end{array}
\]

$G_{\text{top}}\dagger$-bundle open, closed

The hard part of the proof is to show that h_{top} is in fact a topological embedding, with locally closed image.

This uses:

- strong approximation,
- the construction (due to Gabber) of a remarkable G-equivariant compactification of $G/G\dagger$.
Strategy for general G

The hard part of the proof is to show that h_{top} is in fact a topological embedding, with locally closed image.

This uses:

- strong approximation,
- the construction (due to Gabber) of a remarkable G-equivariant compactification of G/G^\dagger.