*Trends in Arithmetic Geometry, Lorentz Center, Leiden January 14–18, 2013* 

Topological properties of principal *G*-bundles over valued fields

Laurent Moret-Bailly

IRMAR, Université de Rennes 1

Joint work with Ofer Gabber and Philippe Gille (CNRS)

#### Summary

- 1 Introduction: the classical case
- **2** Topology of varieties over valued fields
- 3 Torsors and the main result
- The smooth case and the general strategy
- **5** Gabber's compactification theorem

#### Orbit maps: the classical case

Let K be a field. Consider the following situation:

- G is an algebraic K-group acting on a K-variety T,
- $t \in T(K)$  is a point, with stabilizer  $G_t \subset G$ .
- $f: G \to T$  is the orbit map  $g \mapsto g.t$ .

By a theorem of Chevalley, the image of f is a locally closed subscheme  $Y \subset T$ , and the induced morphism  $G \to Y$  is a principal  $G_t$ -bundle, i.e. a  $G_t$ -torsor for the fppf topology (even the étale topology, if  $G_t$  is smooth).

#### Orbit maps: the classical case

Now assume that K is  $\mathbb{R}$  or  $\mathbb{C}$ , and look at the K-rational points, with the real/complex topology. The orbit map then factors as

$$G(K) \rightarrow G(K).t \hookrightarrow Y(K) \hookrightarrow T(K).$$

From the fact that  $G \rightarrow Y$  is a principal  $G_t$ -bundle, and  $G_t$  is smooth, it follows that:

- G(K).t is open in Y(K), and also closed (its complement is a union of orbits);
- in particular G(K).t is locally closed in T(K);
- $G(K) \rightarrow G(K).t$  is a principal  $G_t(K)$ -bundle.

# Problem:

## do these properties extend

# to other topological fields?

Note: the important map here is  $G \rightarrow Y$ , Y being a homogeneous space.

We may also generalize: given a topological field K and a torsor  $X \to Y$  under some algebraic K-group G (previously  $G_t$ ), what can we say about the map  $X(K) \to Y(K)$ , topologically?

In this talk I will give an answer for certain valued fields.

#### Notation and conventions

- R: a valuation ring,
- $K = \operatorname{Frac}(R)$ ,
- Γ: the valuation group,
- $v: K \to \Gamma \cup \{+\infty\}$ : the valuation,
- $\widehat{R} := \varprojlim_{z \in R \setminus \{0\}} R/zR$  (completion of R),
- $\widehat{K} := Frac(\widehat{R}),$
- K-variety = separated K-scheme of finite type,
- algebraic K-group = K-group scheme of finite type.

Recall that K is a topological field, with a basis of neighborhoods of 0 consisting of the nonzero (principal) ideals of R.

Accordingly, for each K-variety X, X(K) has a natural topology: a basis of open subsets consists of the sets

$$\left\{x \in U(K) \mid v(f_i(x)) \geq 0, i = 1, \ldots, m\right\}$$

for  $U \subset X$  affine open,  $f_i \in H^0(U, \mathscr{O}_U)$ .

The resulting topological space will be denoted by  $X_{top}$ .

Admissible valuations

#### Let us say that (K, v) (or R) is admissible if:

• (K, v) is henselian; i.e. (equivalently):

- R is a henselian local ring;
- v extends *uniquely* to every finite extension of K.
- $\widehat{K}$  is a separable extension of K.

(If  $\Gamma \cong \mathbb{Z}$ , the last condition says that *R* is excellent).

#### Properties of admissible valued fields

Assume (K, v) is admissible. Then:

- K is algebraically closed in  $\widehat{K}$ .
- If L is a finite extension of K, then:
  - L is admissible (for the unique extension of v),
  - ▶ as a topological K-vector space, L is free (isomorphic to  $K^{[L:K]}$ ),

$$\blacktriangleright \ \widehat{K} \otimes_{K} L \xrightarrow{\sim} \widehat{L}.$$

- If char (K) > 0, the Frobenius map K → K is a closed topological embedding.
- *R* has the strong approximation property (à la Greenberg).

Admissible valuations: topological properties of morphisms

#### Proposition 1

Assume (K, v) is admissible, and let  $f : X \to Y$  be a morphism of *K*-varieties. Consider the induced continuous map  $f_{top} : X_{top} \longrightarrow Y_{top}$ .

- Implicit function theorem": If f is étale, then f<sub>top</sub> is a local homeomorphism.
- 2 If f is smooth, then  $f_{top}$  has local sections at each point of  $X_{top}$ . (In particular, it is an open map).
- Output: Second content of the second cont

**Warning!** If *f* is proper,  $f_{top}$  is not a closed map in general. But its image is closed in  $Y_{top}$ .

#### Extension to algebraic spaces

We need to extend the  $X_{top}$  construction to algebraic spaces (of finite type over K) because:

- we shall consider G-torsors f : X → Y where G is an algebraic group. Even if Y is a scheme, a G-torsor over Y is naturally defined as an fppf sheaf. It is always an algebraic space, but not necessarily a scheme.
- We need to construct objects (typically quotients by algebraic group actions) which are always algebraic spaces but not necessarily schemes, even if we start from schemes.

#### Extension to algebraic spaces

So let K be a topological field, and X an algebraic space of finite type over K.

We equip X(K) with the finest topology making all maps  $f_{top} : X'_{top} \to X(K)$  continuous, where X' runs through [affine] K-varieties, and  $f : X' \to X$  runs through all K-morphisms.

The resulting space is denoted by  $X_{top}$  (if X is a scheme, it is the same as before). This construction has the same basic compatibilities as in the case of varieties.

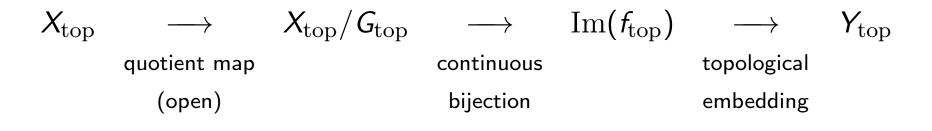
Assume now that K satisfies the implicit function theorem (e.g. K is a henselian valued field).

Then one can define  $X_{top}$  using only étale morphisms  $f : X' \to X$  in the definition. For such an f, the resulting  $f_{top}$  is a local homeomorphism.

#### Torsors

Let G be an algebraic group over K, and  $f : X \to Y$  a (right) G-torsor over a variety (or algebraic space) Y.

The induced map  $f_{\mathrm{top}}: X_{\mathrm{top}} o Y_{\mathrm{top}}$  decomposes as



#### which gives rise to natural questions:

#### Torsors



- Is the image of  $f_{top}$  closed (open, locally closed) in  $Y_{top}$ ?
- ② Is the middle bijection a homeomorphism? (In other words, is  $f_{top}$  a strict map?)
- ③ Is X<sub>top</sub> → X<sub>top</sub>/G<sub>top</sub> a "topological torsor" (i.e. a principal G<sub>top</sub>-bundle)?
  Equivalently, does this map have continuous local sections everywhere? (Remark: G<sub>top</sub> acts freely and properly on X<sub>top</sub>).

Note that a positive answer to both Questions 2 and 3 is equivalent to a positive answer to

④ Is 
$$X_{top} \rightarrow Im(f_{top})$$
 a principal  $G_{top}$ -bundle?

## The main result

#### Main Theorem

Let (K, v) be an admissible valued field, G an algebraic K-group, and  $f : X \rightarrow Y$  a G-torsor. Then:

• Im $(f_{top})$  is locally closed in  $Y_{top}$ .

2 The induced map  $X_{top} \to Im(f_{top})$  is a principal  $G_{top}$ -bundle.

Remark. In some cases, we can say more about  $Im(f_{top})$ :

- it is open and closed in  $Y_{top}$  if G is smooth, or if K is perfect;
- it is closed in  $Y_{\text{top}}$  if  $G_{\text{red}}^{\circ}$  is smooth, or if G is commutative.

#### The case of orbit maps

#### Corollary 1

Let (K, v) be an admissible valued field, G an algebraic K-group acting on a variety T,  $t \in T(K)$  a rational point, with stabilizer  $G_t \subset G$ . Then the orbit map  $g \mapsto g.t$  on  $G_{top}$  factors as

When K is a local field, this is due to Bernstein and Zelevinsky (1976).

#### An example of a non-closed orbit

Let  $S = \mathbb{G}_a \rtimes \mathbb{G}_m$  be the affine group in dimension 1, acting on  $X = \mathbb{A}^1_K$  transitively "via Frobenius on *S*":

$$\begin{array}{rcccc} S \times \mathbb{A}^1 & \longrightarrow & \mathbb{A}^1 \\ ((x,y),z) & \longmapsto & (x,y).z := x^p + y^p z \end{array}$$

For  $z \in K$ , consider the orbit morphism

$$f_z: S \to \mathbb{A}^1, \quad s \mapsto s.z.$$

This is a torsor under the stabilizer  $S_z$  of z.

The image of  $f_{z,top}$  is the orbit  $S(K).z = K^p + (K^{\times})^p z \subset K$ . In particular:

- if  $z \in K^p$ , the orbit is  $K^p$ , which is closed in K if K is admissible;
- for any choice of z, the orbit has 0 in its closure (consider the action of  $\mathbb{G}_m$ ).

Hence, if  $z \notin K^p$ , then  $\operatorname{Im}(f_{z, \operatorname{top}})$  is not closed in K.

#### Torsors: the smooth case

Let us explain the smooth case. If G is smooth, then:

- $f: X \to Y$  is a smooth morphism,
- hence  $f_{top}$  has local sections at each point of  $X_{top}$ .
- This proves that
  - $Im(f_{top})$  is open, and
  - $X_{\text{top}} \to \text{Im}(f_{\text{top}})$  is a principal  $G_{\text{top}}$ -bundle.

Why is  $Im(f_{top})$  closed?

Consider the "classifying map"  $Y(K) \xrightarrow{\partial} H^1(K, G)$  deduced from f: we know that  $Im(f_{top}) = \partial^{-1}(1)$  is open in Y(K).

Together with a standard "twisting" argument, this implies that each fiber of  $\partial$  is open.

In other words,  $\partial$  is locally constant and  $\operatorname{Im}(f_{\operatorname{top}}) = \partial^{-1}(1)$  is closed.

- Pick a smooth subgroup  $G' \subset G$ .
- Consider the factorization  $X \xrightarrow{\pi} Z := X/G' \xrightarrow{h} Y$ .
- The smooth case applies to  $\pi$  (which is a G'-torsor).
- To control *h* and  $h_{top}$ , we need to study G/G', with G' as big as possible.

Let  $K_s$  be a separable closure of K. G has a largest smooth subgroup  $G^{\dagger}$ , which can be defined as the Zariski closure of  $G(K_s)$  in G.

This construction is functorial in G and commutes with separable ground field extensions.

It is easy to check that  $(G/G^{\dagger})(K_s) = \{e\}$  (in particular  $(G/G^{\dagger})(K) = \{e\}$ ).

More generally, if T is a G-torsor over K, then  $T/G^{\dagger}$  has at most one rational point.

Now let  $f : X \rightarrow Y$  be a *G*-torsor, factored as

$$X \xrightarrow{\pi} Z := X/G^{\dagger} \xrightarrow{h} Y.$$

The corresponding factorization of  $f_{top}$  looks like

$$\begin{array}{cccc} X_{\mathrm{top}} & \longrightarrow & \mathrm{Im}(\pi_{\mathrm{top}}) & \subset & Z_{\mathrm{top}} & \xrightarrow{h_{\mathrm{top}}} & Y_{\mathrm{top}} \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ &$$

This leads to a question:

## Question:

Assume  $h: Z \to Y$  is a K-morphism such that  $h_{top}$  is injective. Can we say more (topologically) about  $h_{top}$ ?

The answer is yes if *h* is proper:

#### Proposition 2

Let  $h: Z \to Y$  be a proper K-morphism. Let  $z \in Z(K)$  and y = h(z) be such that  $h_{top}^{-1}(y) = \{z\}$ .

Then every neighborhood of z in  $Z_{top}$  contains  $h_{top}^{-1}(V)$  for some neighborhood V of y.

(In particular, if  $h_{top}$  is injective then it is a closed topological embedding).

(The proof uses strong approximation).

#### In our situation

## $X \xrightarrow{\pi} Z := X/G^{\dagger} \xrightarrow{h} Y$

h is not proper in general

so we will compactify it.

#### Gabber's compactification theorem

Let G be an algebraic K-group. Put  $Q = G/G^{\dagger}$ , and denote by q the unique point of Q(K).

Theorem (Gabber, 2012)

*Q* admits a *G*-equivariant projective compactification  $Q \hookrightarrow Q^c$  without separable points at infinity:

if L is a separable extension of K, then  $Q^{c}(L) = Q(L) = \{q\}$ .

End of proof

Theorem (Gabber, 2012)

*Q* admits a *G*-equivariant projective compactification  $Q \hookrightarrow Q^c$  without separable points at infinity:

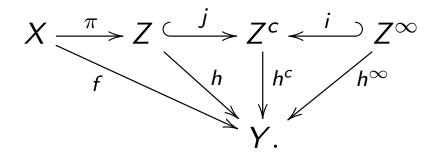
if L is a separable extension of K, then  $Q^{c}(L) = Q(L) = \{q\}$ .

Back to our diagram  $f: X \xrightarrow{\pi} Z \xrightarrow{h} Y$ :

Consider the contracted product  $Z^c := X \times^G Q^c$ . This is a relative compactification (over Y) of  $X \times^G Q = X/G^{\dagger} = Z$ . Put  $Z^{\infty} = Z^c \setminus Z$ .

## End of proof

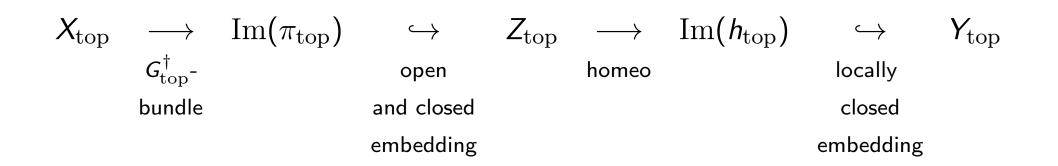
Now we have a diagram



- if z ∈ Z(K), and y = h(z), then Z<sub>y</sub>(K) = Z<sup>c</sup><sub>y</sub>(K) = {z} (from the properties of Gabber's compactification).
   In particular:
- Z(K) and Z<sup>∞</sup>(K) have disjoint images in X(K). Hence, Im(h<sub>top</sub>) = Im(h<sup>c</sup><sub>top</sub>) \ Im(h<sup>∞</sup><sub>top</sub>). But h<sup>c</sup> and h<sup>∞</sup> are proper, so these images are closed. Hence I := Im(h<sub>top</sub>) is locally closed.
- *h*<sub>top</sub> : *Z*(*K*) → *X*(*K*) is injective. Moreover, *Z*(*K*) and *Z<sup>c</sup>*(*K*)
   "coincide over *I*", so we can apply Proposition 2 at any point of *Z*(*K*). This implies that *Z*<sub>top</sub> → Im(*h*<sub>top</sub>) is closed and bijective, hence a homeomorphism.

## End of proof

Summarizing, we have the following decomposition of  $f_{top}$ :



which completes the proof. (Note that  $G_{top}^{\dagger} = G_{top}!$ ).