Université de Rennes 1 – UFR de Mathématiques Licence MIPE 2006-2007 – UE C05

Examen du 11 janvier 2007 : corrigé

(le barème est indicatif et sans engagement)

Question de cours (4 points)

Donner les définitions :

- | d'un endomorphisme diagonalisable;
- du polynôme caractéristique d'une matrice.

Remarque: toutes les hypothèses et notations introduites dans la définition doivent (évidemment) être clairement précisées.

Corrigé:

2 pts

2 pts

1 pt

2 pts

- Soient K un corps, E un K-espace vectoriel de dimension finie, f un K-endomorphisme de E. On dit que f est diagonalisable s'il existe une base \mathcal{B} de E telle que la matrice de f dans \mathcal{B} soit diagonale.
- Soient K un corps, n un entier naturel, et A un élément de $M_n(K)$. Le polynôme caractéristique de A est l'élément P_A de K[X] défini par $P_A(X) := \det(A X I_n)$, où I_n désigne la matrice identité d'ordre n.

Exercice 1 (3 points)

Soit $A \in M_n(\mathbb{Z})$ une matrice carrée à coefficients entiers. Montrer que les conditions suivantes sont équivalentes :

- (i) il existe $B \in M_n(\mathbb{Z})$ telle que $AB = I_n$ (matrice identité d'ordre n);
- (ii) $\det A = \pm 1$.

Corrigé : montrons que (i) implique (ii). Si (i) est vérifiée, alors det A et det B sont des entiers (comme on le voit par exemple en écrivant le déterminant comme somme indexée par le groupe symétrique) et l'on a $(\det A)(\det B) = \det(AB) = \det I_n = 1$. Ceci n'est possible que si $\det A = \det B = \pm 1$, donc (ii) est vérifiée.

Montrons que (ii) implique (i). La comatrice \widetilde{A} de A a pour coefficients des déterminants de sous-matrices de A, donc des entiers. On sait d'autre part que $A\widetilde{A} = (\det A)I_n$. Posons $B := (\det A)\widetilde{A}$. Alors on a

$$AB = (\det A) A \widetilde{A} = (\det A)^2 I_n = I_n$$

puisque $\det A = \pm 1$ par hypothèse, cqfd.

Exercice 2 (5 points)

Sur un corps K quelconque, on considère le système d'équations, à trois inconnues x, y, z, dépendant d'un paramètre $\lambda \in K$:

$$(\star) \begin{cases} x + y + z = 1 \\ (\lambda + 1)x + 2y + z = 2 \\ 3x + \lambda y + 3z = 3 \end{cases}$$

- (1) Trouver l'ensemble C des valeurs de λ pour lesquelles (\star) est un système de Cramer, et le résoudre dans ce cas.
- (2) Donner l'ensemble des solutions de (\star) pour chaque valeur de λ en-dehors de C. (Pour simplifier on pourra supposer que $3 \neq 0$ dans K).

Conseil: vérifiez vos calculs!

1 pt

2 pts

1 pt

Corrigé (abrégé) : (1) On calcule le déterminant du système en retranchant à la troisième ligne le triple de la première, puis en développant par rapport à la troisième ligne. On trouve que le déterminant vaut λ (λ – 3), de sorte que $C = K \setminus \{0, 3\}$.

Pour résoudre (\star) lorsque $\lambda \in C$ on peut appliquer les formules de Cramer : par exemple

$$\lambda (\lambda - 3) x = \begin{vmatrix} 1 & 1 & 1 \\ 2 & 2 & 1 \\ 3 & \lambda & 3 \end{vmatrix}$$

et le second membre se calcule comme précédemment. On trouve $\lambda (\lambda - 3) x = \lambda - 3$, d'où $x = 1/\lambda$ (puisque $\lambda (\lambda - 3) \neq 0$).

Pour y le déterminant à calculer est évidemment nul (les première et troisième ligne sont liées) donc y = 0. On en tire z par la première équation, et l'on trouve finalement

$$x = \frac{1}{\lambda}; \quad y = 0; \quad z = \frac{\lambda - 1}{\lambda},$$

solution qu'il est facile de vérifier.

- (2) On distingue deux cas:
- (a) $\lambda = 3$: alors la troisième équation est conséquence de la première, et le système se réduit aux deux premières équations :

$$\begin{cases} x + y + z = 1 \\ 4x + 2y + z = 2 \end{cases}$$

En donnant à x une valeur arbitraire, on trouve la solution générale

$$y = 1 - 3x; \qquad z = 2x$$

à nouveau facile à vérifier.

1 pt suppl

(b) $\lambda = 0$: lorsque 3 = 0 dans K (par exemple si $K = \mathbb{Z}/3\mathbb{Z}$, ou plus généralement une extension de $K = \mathbb{Z}/3\mathbb{Z}$) ce cas est le même que le précédent.

1 pt

Supposons désormais que $3 \neq 0$ dans K. La troisième équation s'écrit 3x + 3z = 3; vu l'hypothèse ceci équivaut à x + z = 1. Avec la première équation cela implique y = 0, et la seconde équation donne alors x + z = 2, contradiction (on a toujours $1 \neq 2$ dans K, parce que $1 \neq 0$). Le système n'a donc pas de solution.

(On peut aussi remarquer que la relation $\lambda(\lambda - 3)x = \lambda - 3$ est toujours valable; or elle donne ici 0x = -3).

Exercice 3 (8 points)

On note $A \in M_5(\mathbb{R})$ la matrice

$$A = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

et ζ le nombre complexe $e^{2i\pi/5} = \cos \frac{2\pi}{5} + i \sin \frac{2\pi}{5}$. On rappelle que $\zeta^5 = 1$. On note I la matrice identité d'ordre 5.

- (1) Montrer que $A^5 = I$.
- (2) Quelles sont les racines complexes du polynôme $P(X) := X^5 1$? Quelles sont leurs multiplicités? Quelles sont les racines de P dans \mathbb{R} ?
- (3) Déduire des questions précédentes, sans calcul, que A est diagonalisable dans $M_5(\mathbb{C})$, et ne l'est pas dans $M_5(\mathbb{R})$.
- (4) Montrer que l'élément $(1, \zeta, \zeta^2, \zeta^3, \zeta^4)$ de \mathbb{C}^5 est vecteur propre de A. En s'inspirant de cette remarque, trouver une base de \mathbb{C}^5 formée de vecteurs propres de A.

0.5 pt

Corrigé (1) A est la matrice de l'endomorphisme f de \mathbb{R}^5 qui agit sur les vecteurs de base e_1, \ldots, e_5 par $e_1 \mapsto e_2 \mapsto e_3 \mapsto e_4 \mapsto e_5 \mapsto e_1$. Il est alors clair que $f^5 = \mathrm{Id}$, donc que $A^5 = I_5$.

2 pts

(2) Les racines de X^5-1 sont les 5 racines cinquièmes de l'unité, à savoir $1, \zeta, \zeta^2, \zeta^3, \zeta^4$. Donc P, qui est de degré 5, a 5 racines distinctes; celles-ci sont donc simples.

La seule racine réelle de P est 1 (c'est le seul nombre réel parmi les racines complexes; on peut aussi remarquer que la fonction $x \mapsto x^5$ sur \mathbb{R} est strictement croissante donc n'a que la racine évidente 1).

1 pt

(3) La matrice A est annulée par P puisque $A^5 = I_5$. Comme P est scindé à racines simples dans $\mathbb{C}[X]$ on en conclut que A est diagonalisable dans $M_5(\mathbb{C})$.

2 pts

La seule valeur propre réelle de A est 1; si A était diagonalisable dans $M_5(\mathbb{R})$ elle serait donc semblable à I_5 , donc égale à I_5 , ce qu'elle n'est point.

1 pt

2 pts

(4) Si $V := \begin{pmatrix} 1 \\ \zeta \\ \zeta^2 \\ \zeta^3 \\ \zeta^4 \end{pmatrix}$, on trouve tout de suite que $AV = \begin{pmatrix} \zeta^4 \\ 1 \\ \zeta \\ \zeta^2 \\ \zeta^3 \end{pmatrix} = \zeta^4 V$. Donc V est vecteur

propre de A pour la valeur propre $\zeta^4 = \zeta^{-1}$.

La seule propriété de ζ utilisée dans ce calcul est que $\zeta^5=1$. Par suite, si l'on pose

$$V_i := \begin{pmatrix} 1 \\ \zeta^i \\ \zeta^{2i} \\ \zeta^{3i} \\ \zeta^{4i} \end{pmatrix} \text{ pour } i = 0, \dots, 4, \text{ on voit que } V_i \text{ est vecteur propre de } A \text{ pour la valeur propre}$$

 $\zeta^{-i} = \zeta^{5-i}$. Ces valeurs propres sont les 5 racines (deux à deux distinctes) de P, de sorte que les V_i sont indépendants et forment une base de \mathbb{C}^5 .