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Abstract
We prove an analogue of the Weierstrass preparation theorem for henselian pairs,

generalizing the local case recently proved by Bouthier and Česnavičius. As an
application, we construct a henselian analogue of the resultant of p-adic series defined
by Berger.
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1 Introduction
Let R be a ring (commutative, with unit). We denote by R{t} the henselization of the
polynomial ring R[t] with respect to the ideal (t): this is a subring of the power series
ring R[[t]]. (For a brief review of henselian pairs and henselization, see Section 2.1).

The aim of this work is to prove the following result:

Theorem 1.1. Let R be a ring, I an ideal of R. Assume that (R, I) is a henselian pair.
Let d be a natural integer and let f be an element of R{t} which in R[[t]] has the form
f =

∑
i≥0 ait

i, where ad ∈ R× and ai ∈ I for i < d. Then:

(1) The images of 1, t, . . . , td−1 form a basis of the R-module S = R{t}/(f).
(2) (Division theorem) Every element of R{t} can be written uniquely in the form Bf+C
where B ∈ R{t} and where C ∈ R[t] is a polynomial of degree < d.
(3) (Preparation theorem) f can be written uniquely as f = (td +Q) v where v ∈ R{t}×
and where Q ∈ R[t] has degree < d and coefficients in I.
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1.2 Related results

The result (today) most commonly named “Weierstrass preparation theorem” is the anal-
ogous statement where R{t} is replaced by R[[t]] where R is a complete noetherian local
ring with maximal ideal I: see for instance [5, VII, §3, no 8, prop. 5]. This formal variant
was generalized by O’Malley [11, 2.10] to the case where R is I-adically complete and
separated (but is no longer assumed local or noetherian).

In the local case, there is a convergent variant, where R = K〈x1, . . . , xn〉 is the ring
of germs of analytic functions in n variables over some field K complete for an absolute
value, and the role of R{t} is played by K〈x1, . . . , xn, t〉. For K = C, this is in fact the
original theorem of Weierstrass. It is generally proved by inspection of the above formal
variant (where R is K[[x1, . . . , xn]]), checking that the series constructed in the proof
remain convergent; see for instance [10, Theorem 45.3].

When R is local henselian with maximal ideal I, Theorem 1.1 was proved by Bouthier
and Česnavičius in [6, 3.1.2], which inspired the present paper. The proof we give here is
somewhat different and more direct: we do not use reduction to the noetherian case or
the classical preparation theorem, but we work directly from the construction of R{t} as
a filtered colimit of étale R[t]-algebras.

Regrettably, there does not seem to be, at the moment, a general result covering all
the above-mentioned variants, or at least a common strategy of proof.

1.3 Outline of the paper

In Section 2, we recall some basic facts about henselian pairs and henselization, some
elementary results on henselian series rings (i.e. of the form R{t1, . . . , tn}), and a useful
decomposition result for R-schemes, where R is as in Theorem 1.1.

Theorem 1.1 itself is proved in section 3. The three statements are easily deduced
from each other; here we derive (2) and (3) from (1).

Finally, as an easy application, we define in Section 4 a notion of resultant in R{t},
entirely similar to the resultant constructed by Berger [4] for p-adic formal power series.

Notation and conventions. All rings are commutative with unit; ring homomorphisms
respect unit elements. The unit group of a ring R is denoted by R×, its Jacobson radical
by rad(R).

If x is a point of a scheme, κ(x) denotes its residue field.
Let Y be a closed subscheme of a scheme X. We say (X, Y ) is a Zariski pair if X is the

only open subscheme of X containing Y ; this condition only depends on the underlying
spaces. If X = Spec (A) is affine and I ⊂ A is the ideal of Y , we say (A, I) is a Zariski
pair if (X, Y ) is a Zariski pair or, equivalently, if I ⊂ rad(A). If (X, Y ) is Zariski and
X ′ → X is a closed morphism, then (X ′, Y ×X X ′) is Zariski.

Acknowledgments. The author is grateful to Henri Lombardi and Herwig Hauser for
pointing out references, and to the referee for his/her remarks.
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2 Preliminary results

2.1 Review of henselian pairs

The notion of a henselian pair was defined by Lafon [9], generalizing the local case intro-
duced by Azumaya [3]. Let us first recall the definition:

Definition 2.1.1. Let R be a ring and I an ideal of R. We say that (R, I) is a henselian
pair if for every étale R-algebra R′, every morphism ρ : R′ → R/I of R-algebras lifts to a
morphism ρ : R′ → R.

If (R, I) is a henselian pair, we also say occasionally that (Spec (R), Spec (R/I)) is a
henselian pair. (There is an obvious genaralization to general schemes, but we only need
the affine case). A henselian local ring is a local ring R, with maximal ideal I, such that
(R, I) is henselian.

A henselian pair is a Zariski pair: if f ∈ 1 + I, apply the definition to R′ = Rf . It
follows that, given ρ as in the definition, ρ is unique. Another immediate consequence
of the henselian property is that the map R → R/I induces a bijection on idempotents:
consider R′ = R[x]/(x(x− 1)).

There are many equivalent definitions of a henselian pair; for this and for more gener-
alities, see for instance [13, Tag 09XD]. One important property that we shall use is that
if (R, I) is a henselian pair, so is (R′, IR′) for every finite (or just integral) R-algebra R′.
In particular, idempotents of R′/IR′ lift uniquely to idempotents of R′.

2.1.2 Henselization

Let R be a ring and I ⊂ R an ideal. The category of henselian pairs (S, J), where S is
an R-algebra and J is an ideal containing IS, has an initial object (R, I)h = (Rh, Ih)1

called the henselization of (R, I) (or the henselization of R at I). We have Ih = IRh

and R/I
∼−→ Rh/Ih. We can construct Rh as the filtered colimit of étale R-algebras R′

such that R/I ∼−→ R′/IR′; in particular, Rh is flat over R, and faithfully flat if (R, I)
is a Zariski pair. If R′ is an integral R-algebra (for instance a quotient of R), then
(R′, IR′)h = (R, I)h ⊗R R′.

2.2 Structure of henselian series rings

Let R be a ring, t = (t1, . . . , tn) a finite sequence of indeterminates 2 We denote by R{t}
the henselization of R[t] at the ideal (t1, . . . , tn); it is an R[t]-algebra with an isomorphism
ε : R{t}/(t) ∼−→ R, and there is a natural injection R{t} ↪→ R[[t]] making R[[t]] the (t)-adic
completion of R{t}; the image of f ∈ R{t} in R[[t]] will be denoted by ffor.

As a functor of R, R{t} is better behaved than R[[t]]. In particular, it commutes with
filtered colimits, and if I is any ideal of R we have R{t}/IR{t} ∼= (R/I){t}.

For f ∈ R{t} we have the equivalences:

f ∈ R{t}× ⇔ ffor ∈ R[[t]]× ⇔ ε(f) ∈ R×.
1Of course, the notation Rh will be used only if there is no doubt about I.
2For the preparation theorem we only need the case n = 1. The case of an infinite set of indeterminates

is left to the reader.
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It follows that rad(R{t}) is generated by rad(R) and (t). In particular, if (R, I) is a
Zariski pair, so is (R{t}, IR{t}+ (t)).

Similarly, if (R, I) is a henselian pair, so is (R{t}, IR{t}+ (t)): to see this, view R as
the quotient R{t}/(t) and apply the transitivity property [13, 0DYD].

Classically, R{t} can be constructed as the colimit of a filtered family (Aλ)λ∈L of étale
R[t]-algebras, with compatible isomorphisms ελ : Aλ/(t)Aλ

∼−→ R. In particular, for all
λ ∈ L and N ∈ N, the natural morphism of R-algebras R[t]/(t)N → Aλ/(t)

NAλ is an
isomorphism.

Each natural morphism πλ : Spec (Aλ)→ Spec (R) is smooth of relative dimension n,
and has a section sλ deduced from ελ.

We say that an R-algebra A is geometrically irreducible if the natural morphism
Spec (A)→ Spec (R) has geometrically irreducible fibers.

Lemma 2.2.1. Let R and t = (t1, . . . , tn) be as above. Then one can choose the system
(Aλ)λ∈L such that each Aλ is a geometrically irreducible R-algebra.

Proof. Starting with an arbitrary family (Aλ)λ∈L, we may assume, by enlarging L, that
for all λ ∈ L and f ∈ Aλ such that ελ(f) ∈ R×, the localized algebra Aλ[1/f ] is still
in the family. It suffices to show that, assuming this, the sub-system formed by the
geometrically irreducible Aλ’s is cofinal. For each λ, let Uλ ⊂ Spec (Aλ) be the union of
the connected components of the fibers of πλ meeting the section sλ. As πλ is smooth, Uλ
is open in Spec (Aλ) [7, (15.6.7)], and its fibers over Spec (R) are smooth and connected,
with a rational point, hence geometrically irreducible. Since Uλ is open, there is f ∈ Aλ
such that Im(sλ) ⊂ Spec (Aλ[1/f ]) ⊂ Uλ (in an affine scheme, every closed subset has
a basis of principal open neighborhoods). The fibers of Spec (Aλ[1/f ]) → Spec (R) are
nonempty and open in those of Uλ → Spec (R) and therefore geometrically irreducible.
This completes the proof.

2.2.2 Evaluation

This section will not be used until Section 4.
Let us keep the notation of 2.2 and consider the category AlghR of henselian pairs

(A, J) where A is an R-algebra. Then (R{t}, (t)) is an object of AlghR corepresenting the
set-valued functor (A, J) 7→

∏n
i=1 J . In particular, for an object (A, J) of AlghR and a

sequence α = (α1, . . . , αn) from J , we have a morphism “evaluation at α” from R{t} to
A which we denote by f 7→ f(α). One may construct it by noting that the morphism
P 7→ P (α) from R[t] to A maps the ti’s into J , hence factors through R{t} because (A, J)
is henselian.

For given α, the element f(α) is the sum in A, for the J-adic topology, of the series
ffor(α) obtained by substituting α for t; this property characterizes f(α) if A is J-adically
separated (but not in general).

The reader can check the following nice property, which will not be used here: if I
is an ideal of R generated by n elements a1, . . . , an, the evaluation morphism f 7→ f(a)
induces an isomorphism of R{t}/(ti − ai)1≤i≤n with the henselization (R, I)h.

2.3 Schemes over henselian pairs: a decomposition result

Notation 2.3.1. Let (R, I) be a henselian pair. Put S = Spec (R), R = R/I, and
S = Spec (R); more generally, for each R-algebra A, (resp. each R-scheme X) we shall
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put A = A/IA (resp. X = X ×S S).

The following proposition is a variant of [12, XI, cor. 1 p. 119]:

Proposition 2.3.2. With notation as above, let Z be a separated R-scheme of finite type.
Assume that Z is finite over R.

Then there is a unique open and closed subscheme Z f of Z which is finite over R and
satisfies Z f = Z. Moreover Z f has the following properties:

(1) The pair (Z f , Z) is henselian.

(2) Z f is the smallest open subscheme of Z containing Z.

(3) Let T be an R-scheme and u : T → Z an R-morphism. Assume that (T, T ) is a
Zariski pair. Then u factors through Z f .

Proof. Let us first assume the existence of Z f and prove (1), (2) and (3). First, (1) is clear
since (R, I) is henselian and Z f is finite over R. In particular, (Z f , Z) is a Zariski pair,
and (2) follows because Z f is open in Z. Now take u : T → Z as in (3): then u−1(Z f) is
a neighborhood of T in T , hence equal to T , which proves (3).

Observe that (2), for instance, implies the uniqueness of Z f . Now let us prove existence.
First, consider the set Z ′ of points x ∈ Z isolated in their fiber above Spec (R). Then Z ′
is open in Z [7, (13.1.4)] and, viewed as an open subscheme, it is quasifinite over Spec (R);
in addition, we have Z ′ = Z. So it is clear that if Z ′f exists it is open in Z, and closed
since it is finite over R, so we can take Z f = Z ′f . Replacing Z by Z ′, we can therefore
assume Z quasifinite over R.

By Zariski’s main theorem [8, (18.12.13)], there is an open immersion Z ↪→ Zc, where
Zc is a finite R-scheme. As Z is finite over R, the induced open immersion Z ↪→ Zc is
closed, so we have Zc = Z q Y for an open and closed subscheme Y of Zc. Since (R, I)
is henselian and Zc is finite over R, this decomposition is induced (using the idempotent
lifting property) by a decomposition Zc = Z f qZc

1 of Zc, where Z f and Zc
1 are finite over

R and Z f = Z. In particular (Z f , Z f) = (Z f , Z) is a Zariski pair. Since Z ∩ Z f is open in
Z f and contains Z, it is therefore equal to Z f which means that Z f ⊂ Z and Z = Z f qZ ′
with Z ′ := Z ∩ Zc

1. Thus, the desired conditions for Z f are satisfied.

Remarks 2.3.3. (1) Assertions (2) and (3) of 2.3.2 only use the existence of Z f and the
Zariski property for (R, I).

(2) We see in particular that Z f is the largest closed subscheme of Z which is finite over
S. Moreover, Z f is functorial in Z: if Y is a separated R-scheme of finite type with Y
finite over R, every R-morphism Z → Y sends Z f to Y f .

(3) Using more sophisticated tools, one can generalize 2.3.2 by replacing “finite” by
“proper” in the conditions for Z and Z f . For the proof, the first step (reduction to
the quasifinite case) is of course ignored. One uses Nagata compactification to choose an
open immersion Z ↪→ Zc into a proper S-scheme p : Zc → S. Then by the properness
of Zc and the henselian property of (R, I), we can apply [13, Tag 0A0C] to the sheaf
(Z/2Z)Zc to conclude that the idempotent defining Z in Zc lifts to a unique idempotent
on Zc, which we take to define Z f .

(4) Assume that R is local henselian and I is its maximal ideal, and let Y be a separated
R-scheme of finite type. Let y be an isolated point of Y . Then C := Y r {y} is closed in
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Y , so we can apply 2.3.2 to Z := Y r C since Z = {y} set-theoretically. It is then easy
to see that Z f = Spec (OY,y). In particular, OY,y is a finite R-module: this is the Mather
division theorem as stated in [1, Theorem 1]. The approach in [1] (and the related paper
[2]) is algorithmic, while here we use Zariski’s main theorem as a magic wand.

3 The preparation theorem

3.1 Notation and assumptions

We fix a ring R and an indeterminate t. We denote by Alg+R[t] the category of pairs (A, x)
where A is an R[t]-algebra and x is an element of A.

We also fix an element f of R{t}, and we write

ffor =
∑
i≥0

ait
i ∈ R[[t]] (ai ∈ R).

We assume that the ideal generated by the ai’s (i > 0) is equal to R. Equivalently, for all
p ∈ Spec (R), the image of f in κ(p)[[t]], or in κ(p){t}, is not a constant.

Finally we denote by S the R[t]-algebra R{t}/(f).

Proposition 3.2. With the assumptions of 3.1, we also fix an indeterminate u.

(1) The object (R{t}, f) of Alg+R[t] is the filtered colimit of a system (Aλ, fλ)λ∈L with, for
each λ ∈ L, the following properties:

(i) The R[t]-algebra Aλ is étale and, for all n ∈ N, the canonical morphism R[t]/(tn)→
Aλ/t

nAλ is an isomorphism.
(ii) The canonical R-morphism R[u]→ Aλ mapping u to fλ is flat and quasifinite.

In particular, the canonical R-morphism R[u]→ R{t} mapping u to f is flat, and f is a
nonzerodivisor in R{t}.
(2) The R[t]-algebra S is the filtered colimit of a system (Sλ)λ∈L with the following prop-
erties:

(i) Each R-algebra Sλ is flat, of finite presentation and quasifinite, and the transition
maps Sλ → Sµ (λ ≤ µ) are étale. (In particular, S is flat over R.)

(ii) For all n ∈ N and λ ∈ L, the canonical morphism R[t]/(tn)→ Sλ/t
nSλ is surjective.

Proof. Part (1) immediately implies part (2), with Sλ = Aλ/(fλ) (the transition maps are
étale due to the same property for the Aλ’s, which are étale over R[t]).

To prove (1), write R{t} = lim−→λ∈LAλ as in Lemma 2.2.1, and call tλ ∈ Aλ the canonical
image of t. There exists λ0 ∈ L and fλ0 ∈ Aλ0 mapping to f ; we can restrict L to the
indices λ ≥ λ0 and, for each λ, denote by fλ ∈ Aλ the image of fλ0 . Clearly, we have
(R{t}, f) = lim−→λ∈L(Aλ, fλ). Part (1) (i) is obvious from the choice of (Aλ)λ∈L.

Let us prove (1) (ii). For fixed λ, we can view fλ as a morphism gλ : Xλ := Spec (Aλ)→
A1
R = Spec (R[u]) of R-schemes. For s ∈ Spec (R), the κ(s)-morphism gλ,s : Xλ,s → A1

κ(s)

induced on the fibers is deduced from 1⊗ fλ ∈ κ(s)⊗R Aλ, whose image in κ(s)⊗R R{t}
is assumed nonconstant. So gλ,s is not constant on Xλ,s, which is a smooth geometrically
irreducible curve over κ(s). It follows that gλ,s is flat and quasifinite. Since Xλ and A1

R
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are smooth over Spec (R), the “fiberwise flatness” criterion [7, (11.3.10)] shows that gλ is
flat. It is also quasifinite since it is affine of finite presentation with finite fibers. This
completes the proof.

Definition 3.3. Let R be a ring, I an ideal of R, t an indeterminate.
We say that a formal power series f =

∑
i≥0 ait

i ∈ R[[t]] is I-normal if there is d ∈ N
such that ad ∈ R× and ai ∈ I for i < d. The integer d (unique if I 6= R) is called the
order of f .

We say that f is I-monic of order d if it is I-normal of order d and ad = 1.
An element f of R{t} is I-normal (I-monic) of order d if ffor ∈ R[[t]] is.

3.4 Proof of Theorem 1.1

As in 1.1, let (R, I) be a henselian pair and let f ∈ R{t} be I-normal of order d, with
ffor =

∑
i≥0 ait

i ∈ R[[t]] (ai ∈ R). If d = 0, everything is trivial, so we assume in
addition that d > 0; thus, the assumption of 3.1 is satisfied and, in particular, Proposition
3.2 applies to f .

Assume assertion 1.1 (1) is proved, i.e. S = R{t}/(f) is a free R-module with the
images of 1, t, . . . , td−1 as a basis. This immediately implies the division theorem 1.1 (2),
with uniqueness coming from the fact that f is a nonzerodivisor (3.2 (1)).

In turn, the division theorem implies the preparation theorem 1.1 (3). Indeed, the
relation in (3) can be rewritten as td = v−1 f − Q, so that uniqueness follows from the
uniqueness part of (2); next, applying (2) to td, we find that td = Bf − Q where Q is a
polynomial of degree < d. Reducing modulo I and comparing coefficients, we see that Q
has coefficients in I and the constant term of B is in ad+I, which gives (3) with v = B−1.

It remains to prove 1.1 (1). As in 2.3, we put A = A/IA for every R-algebra A.
First we observe that the image f of f in R{t} ∼= R{t} is the product of td by a unit,

so that S ∼= R{t}/(td) ∼= R[t]/(td) which is R-free with basis (1, t, . . . , td−1).
Let us write S as the colimit of a filtered system (Sλ)λ∈L of R[t]-algebras with the

properties of 3.2 (2). We have just seen that td vanishes in S, so by changing the index set
L we may assume that td vanishes in Sλ for all λ: thus, Sλ = Sλ/tdSλ hence, by 3.2 (2) (ii),
it is a quotient of R[t]/(td). So we have morphisms of R[t]-algebras R[t]/(td) → Sλ → S
where the first map is surjective and the composition is an isomorphism. We conclude
that R[t]/(td) ∼−→ Sλ for all λ. In particular, Sλ is finite over R. As (R, I) is henselian,
we may apply Proposition 2.3.2 and write Sλ = Sf

λ × Tλ, where Sf
λ is finite over R and

Sf
λ = Sλ. By functoriality (Remark 2.3.3), the quotients Sf

λ of the Sλ’s form an inductive
system.

Since S is a quotient of R{t} and (R{t}, IR{t}) is a Zariski pair, so is (S, IS). Hence,
for all λ, the canonical morphism Sλ → S factors through Sf

λ by 2.3.2 (3), and finally
S = lim−→λ∈L S

f
λ.

Since, for each λ, Sλ is a flat R-algebra of finite presentation, so is Sf
λ, which is in

addition a finite R-module, hence locally free. As (1, tλ, . . . , t
d−1
λ ) induces an R-basis of

Sf
λ, and I ⊂ rad (R), it follows easily that (1, tλ, . . . , t

d−1
λ ) is an R-basis of Sf

λ for all λ,
and part (1) follows.
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4 Application: a henselian resultant
If R is a ring, S a finite locally free R-algebra and x an element of S, we denote by
NS/R(x) ∈ R the norm of x in R, i.e. the determinant of multiplication by x in the
R-module S.

Definition 4.1. Let (R, I) be a henselian pair. Let f ∈ R{t} be I-monic of order d.
Denote by S the R-algebra R{t}/(f) (which is a free R-module of rank d, by 1.1 (1)).

For g ∈ R{t}, the (henselian) resultant of f and g, denoted by Resh(f, g), is the
element of R defined by

Resh(f, g) := NS/R(g).

4.2 Properties of the resultant

We keep the notation and assumptions of 4.1, and we denote by P = td+Q the polynomial
associated to f by 1.1 (3). The proofs of the following properties are easy and left to the
reader.

4.2.1. Functoriality: Let ϕ : (R, I) → (R′, I ′) be a morphism of henselian pairs, f ′ et g′
the images of f and g in R′{t}. Then Resh(f ′, g′) = ϕ(Resh(f, g)).

4.2.2. By construction, Resh(f, g) only depends on f via the R-algebra R{t}/(f). In
particular, Resh(f, g) = Resh(P, g).

4.2.3. Resh(f, g) only depends on g via its class modulo f ; in other words, we have
Resh(f, g + hf) = Resh(f, g) for all h ∈ R{t}. Moreover, Resh(f, g) ∈ R× if and only if
the ideal (f, g) ⊂ R{t} equals R{t}. (More generally, see 4.2.8 below.)

4.2.4. Special cases: If α ∈ R, we have Resh(f, α) = αd and Resh(f, α− t) = P (α).
If α ∈ I, then Resh(α− t, g) = g(α), and Resh(f, α− t) = (1+ ε) f(α) for some ε ∈ I

by the second formula above (recall that f is I-monic).

4.2.5. Multiplicativities: If h ∈ R{t}, we have Resh(f, gh) = Resh(f, g) Resh(f, h); if in
addition h is I-monic of order m, then Resh(fh, g) = Resh(f, g) Resh(h, g). For the second
equality, one may use the exact sequence

0 −→ R{t}/(h) ×f−−→ R{t}/(fh) −→ R{t}/(f) −→ 0.

4.2.6. Polynomials: If f and g are in R[t], with f monic of degree d (in the sense of
polynomials), then Resh(f, g) is the usual resultant. The condition on f is essential: for
instance, Resh(1 + αt, g) = 1 for all α ∈ R and g ∈ R{t}. (In fact, for two possibly
non-monic polynomials of respective degrees ≤ d and ≤ m, the definition of the classical
resultant depends on the choice of d and m.)

4.2.7. Weak symmetry: Assuming that g is I-monic of order m, then Resh(g, f) =
(−1)md (1 + ε) Resh(f, g) for some ε ∈ I. To see this, reduce to the case of polynomials
and apply 4.2.6.

4.2.8. Elimination: Let J ⊂ R{t} be the ideal generated by f and g. Then Resh(f, g) ∈ J
(thus it belongs to J ∩ R): indeed, in the free R-module S = R{t}/(f), the image of
multiplication by g contains Resh(f, g)S.

Conversely, every α ∈ J ∩R is a multiple of the class of g in S so, taking norms, αd
is a multiple of Resh(f, g) in R. In particular, we have in R the inclusions (Resh(f, g)) ⊂
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J ∩R ⊂
√

(Resh(f, g)). Geometrically, the closed subset V (Resh(f, g)) ⊂ Spec (R) is the
projection of V (f, g) ⊂ Spec (R{t}).
4.2.9. Roots: Let ϕ : R→ R′ be a ring homomorphism, and let α ∈ R′ be a zero of P in
R′. First, I claim that g(α) makes sense in R′ and is an element of R[α] ⊂ R′. Indeed, the
relation P (α) = 0 shows that (due to the form of P ) αd ∈ IR[α], whence α ∈

√
IR[α].

Since R[α] is a finite R-module, the pair (R[α],
√
IR[α]) is henselian, hence the claim.

Now assume that the image of P in R′[t] factors as
∏d

i=1(t− αi), where the αi’s are
elements of R′. Then we have in R′ the equality

ϕ(Resh(f, g)) =
d∏
i=1

g(αi)

as follows from the above remark and properties 4.2.4 and 4.2.5 (applied in the ring
R[α1, . . . , αd] ⊂ R′).

Note that if we assume for simplicity that R = R′ is a domain, then the αi’s are the
zeros of f in

√
I.

4.2.10. Power series: Assume R is I-adically complete and separated. Then Resh(f, g) =
Res(ffor, gfor) where Res denotes the resultant defined in [4].
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