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Abstract
We prove an analogue of the Weierstrass preparation theorem for henselian pairs,
generalizing the local case recently proved by Bouthier and Cesnavi¢ius. As an
application, we construct a henselian analogue of the resultant of p-adic series defined
by Berger.
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1 Introduction

Let R be a ring (commutative, with unit). We denote by R{t} the henselization of the
polynomial ring R[t] with respect to the ideal (¢): this is a subring of the power series
ring R[[t]]. (For a brief review of henselian pairs and henselization, see Section [2.1)).

The aim of this work is to prove the following result:

Theorem 1.1. Let R be a ring, I an ideal of R. Assume that (R, 1) is a henselian pair.
Let d be a natural integer and let f be an element of R{t} which in R[[t]] has the form
f =200, where ag € R* and a; € I fori < d. Then:

(1) The images of 1,t,...,t% form a basis of the R-module S = R{t}/(f).

(2) (Division theorem) Fvery element of R{t} can be written uniquely in the form Bf+C
where B € R{t} and where C' € R[t] is a polynomial of degree < d.

(3) (Preparation theorem) f can be written uniquely as f = (t% 4+ Q) v where v € R{t}*
and where @ € R[t] has degree < d and coefficients in 1.
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1.2 Related results

The result (today) most commonly named “Weierstrass preparation theorem” is the anal-
ogous statement where R{t} is replaced by R[[t]] where R is a complete noetherian local
ring with maximal ideal I: see for instance |5, VII, §3, n°8, prop. 5|. This formal variant
was generalized by O’Malley [11, 2.10] to the case where R is [-adically complete and
separated (but is no longer assumed local or noetherian).

In the local case, there is a convergent variant, where R = K(x1,...,x,) is the ring
of germs of analytic functions in n variables over some field K complete for an absolute
value, and the role of R{t} is played by K{(z1,...,z,,t). For K = C, this is in fact the
original theorem of Weierstrass. It is generally proved by inspection of the above formal
variant (where R is K[[z1,...,x,]]), checking that the series constructed in the proof
remain convergent; see for instance [10, Theorem 45.3].

When R is local henselian with maximal ideal I, Theorem was proved by Bouthier
and Cesnavicius in [6, 3.1.2], which inspired the present paper. The proof we give here is
somewhat different and more direct: we do not use reduction to the noetherian case or
the classical preparation theorem, but we work directly from the construction of R{t} as
a filtered colimit of étale R[t]-algebras.

Regrettably, there does not seem to be, at the moment, a general result covering all
the above-mentioned variants, or at least a common strategy of proof.

1.3 Outline of the paper

In Section [2] we recall some basic facts about henselian pairs and henselization, some
clementary results on henselian series rings (i.e. of the form R{t,...,t,}), and a useful
decomposition result for R-schemes, where R is as in Theorem [1.1]

Theorem itself is proved in section |3 The three statements are easily deduced
from each other; here we derive [(2)] and [(3)] from [(T)]

Finally, as an easy application, we define in Section {4 a notion of resultant in R{t¢},
entirely similar to the resultant constructed by Berger [4] for p-adic formal power series.

Notation and conventions. All rings are commutative with unit; ring homomorphisms
respect unit elements. The unit group of a ring R is denoted by R*, its Jacobson radical
by rad(R).

If x is a point of a scheme, x(x) denotes its residue field.

Let Y be a closed subscheme of a scheme X. We say (X,Y) is a Zariski pair if X is the
only open subscheme of X containing Y'; this condition only depends on the underlying
spaces. If X = Spec (A) is affine and I C A is the ideal of Y, we say (A, ) is a Zariski
pair if (X,Y) is a Zariski pair or, equivalently, if I C rad(A). If (X,Y) is Zariski and
X" — X is a closed morphism, then (X', Y xx X') is Zariski.

Acknowledgments. The author is grateful to Henri Lombardi and Herwig Hauser for
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2 Preliminary results

2.1 Review of henselian pairs

The notion of a henselian pair was defined by Lafon [9], generalizing the local case intro-
duced by Azumaya [3]. Let us first recall the definition:

Definition 2.1.1. Let R be a ring and I an ideal of R. We say that (R, ) is a henselian
pair if for every étale R-algebra R', every morphism p: R' — R/I of R-algebras lifts to a
morphism p: R’ — R.

If (R, 1) is a henselian pair, we also say occasionally that (Spec (R),Spec (R/I)) is a
henselian pair. (There is an obvious genaralization to general schemes, but we only need
the affine case). A henselian local ring is a local ring R, with maximal ideal I, such that
(R, I) is henselian.

A henselian pair is a Zariski pair: if f € 14 I, apply the definition to R' = Ry. It
follows that, given p as in the definition, p is unique. Another immediate consequence
of the henselian property is that the map R — R/I induces a bijection on idempotents:
consider R’ = R|x]/(z(z — 1)).

There are many equivalent definitions of a henselian pair; for this and for more gener-
alities, see for instance [I3, Tag 09XD]. One important property that we shall use is that
if (R, 1) is a henselian pair, so is (R, IR’) for every finite (or just integral) R-algebra R'.
In particular, idempotents of R'/I R’ lift uniquely to idempotents of R'.

2.1.2 Henselization

Let R be a ring and I C R an ideal. The category of henselian pairs (.S, J), where S is
an R-algebra and J is an ideal containing IS, has an initial object (R,I)" = (Rh,[h)
called the henselization of (R,I) (or the henselization of R at I). We have I" = IR"
and R/I = R"'/I™. We can construct R" as the filtered colimit of étale R-algebras R’
such that R/I = R'/IR’; in particular, R" is flat over R, and faithfully flat if (R, I)
is a Zariski pair. If R’ is an integral R-algebra (for instance a quotient of R), then
(RVIRY = (R, )" ®r R

2.2 Structure of henselian series rings

Let R be a ring, t = (1,...,1,) a finite sequence of indeterminates | We denote by R{t}
the henselization of RJt] at the ideal (¢1,...,t,); it is an R[t]-algebra with an isomorphism
e : R{t}/(t) = R, and there is a natural injection R{t} — R|[[t]] making R[[t]] the (¢)-adic
completion of R{t}; the image of f € R{t} in R][t]] will be denoted by fio,.

As a functor of R, R{t} is better behaved than R[[t]]. In particular, it commutes with
filtered colimits, and if I is any ideal of R we have R{t}/IR{t} = (R/I){t}.

For f € R{t} we have the equivalences:

f e R{t}* & fix € R[[L] & <(f) € R

LOf course, the notation R® will be used only if there is no doubt about I.
2For the preparation theorem we only need the case n = 1. The case of an infinite set of indeterminates
is left to the reader.



It follows that rad(R{t}) is generated by rad(R) and (¢). In particular, if (R,I) is a
Zariski pair, so is (R{t}, IR{t} + (1)).

Similarly, if (R, I) is a henselian pair, so is (R{t}, IR{t} + (¢)): to see this, view R as
the quotient R{t}/(t) and apply the transitivity property [13, 0DYD].

Classically, R{t} can be constructed as the colimit of a filtered family (Ay)xcy of étale
R|[t]-algebras, with compatible isomorphisms ¢ : Ay/(t)Ax = R. In particular, for all
A € L and N € N, the natural morphism of R-algebras R[t]/(t)Y — Ax/(t)N A, is an
isomorphism.

Each natural morphism 7 : Spec (A)) — Spec (R) is smooth of relative dimension n,
and has a section s, deduced from &,.

We say that an R-algebra A is geometrically irreducible if the natural morphism
Spec (A) — Spec (R) has geometrically irreducible fibers.

Lemma 2.2.1. Let R and t = (t1,...,t,) be as above. Then one can choose the system
(Ax)xerL such that each Ay is a geometrically irreducible R-algebra.

Proof. Starting with an arbitrary family (Ay)xer, we may assume, by enlarging L, that
for all A € L and f € A, such that e,(f) € R*, the localized algebra A,[1/f] is still
in the family. It suffices to show that, assuming this, the sub-system formed by the
geometrically irreducible Ay’s is cofinal. For each A, let U, C Spec (A,) be the union of
the connected components of the fibers of 7, meeting the section s,. As 7, is smooth, U,
is open in Spec (A,) [T, (15.6.7)], and its fibers over Spec (R) are smooth and connected,
with a rational point, hence geometrically irreducible. Since U, is open, there is f € A
such that Im(sy) C Spec (Ax[1/f]) C U, (in an affine scheme, every closed subset has
a basis of principal open neighborhoods). The fibers of Spec (A)[1/f]) — Spec (R) are
nonempty and open in those of Uy, — Spec (R) and therefore geometrically irreducible.
This completes the proof. O

2.2.2 Evaluation

This section will not be used until Section [l

Let us keep the notation of and consider the category Alg]]“% of henselian pairs
(A, J) where A is an R-algebra. Then (R{t},(t)) is an object of Alg® corepresenting the
set-valued functor (4,J) +— [[r,J. In particular, for an object (A,J) of Algh and a
sequence o = (g, ...,q,) from J, we have a morphism “evaluation at o’ from R{t} to
A which we denote by f +— f(a). One may construct it by noting that the morphism
P +— P(a) from R[t] to A maps the ¢;’s into J, hence factors through R{t} because (A, J)
is henselian.

For given a, the element f(«) is the sum in A, for the J-adic topology, of the series
fior(@) obtained by substituting « for ¢; this property characterizes f(«) if A is J-adically
separated (but not in general).

The reader can check the following nice property, which will not be used here: if I
is an ideal of R generated by n elements ay,...,a,, the evaluation morphism f — f(a)
induces an isomorphism of R{t}/(t; — a;)1<i<n with the henselization (R, I)".

2.3 Schemes over henselian pairs: a decomposition result

Notation 2.3.1. Let (R,I) be a henselian pair. Put S = Spec(R), R = R/I, and
S = Spec (R); more generally, for each R-algebra A, (resp. each R-scheme X) we shall
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put A= A/IA (resp. X = X x5 9).
The following proposition is a variant of [12, XI, cor. 1 p. 119]:

Proposition 2.3.2. With notation as above, let Z be a separated R-scheme of finite type.
Assume that Z is finite over R.

Then there is a unique open and closed subscheme Z' of Z which is finite over R and
satisfies Zt = Z. Moreover Z* has the following properties:

(1) The pair (Z%,Z) is henselian.
(2) Z' is the smallest open subscheme of Z containing Z .

(3) Let T be an R-scheme and u : T — Z an R-morphism. Assume that (T, T) is a
Zariski pair. Then u factors through Z*.

Proof. Let us first assume the existence of Zf and prove , and . First, is clear
since (R, I) is henselian and Z' is finite over R. In particular, (Zf, 7) is a Zariski pair,
and . follows because Z' is open in Z. Now take u : T — Z as in|(3) . then u=1(Z") is
a neighborhood of T in T', hence equal to T', which proves |(3) .

Observe that|(2) . for instance, implies the uniqueness of Zf. Now let us prove existence.
First, consider the set Z’ of points x € Z isolated in their fiber above Spec (R). Then Z’
is open in Z [T, (13.1.4)] and viewed as an open subscheme, it is quasifinite over Spec (R);
in addition, we have Z’ = Z. So it is clear that if Z'" exists it is open in Z, and closed
since it is finite over R, so we can take Z' = Z'". Replacing Z by Z', we can therefore
assume Z quasifinite over R.

By Zariski’s main theorem [8] (18.12.13)], there is an open immersion Z — Z¢, where
Z° is a finite R-scheme. As Z is finite over R, the induced open immersion Z <—> 7Z¢ is
closed, so we have Z¢ = ZI1'Y for an open and closed subscheme Y of Z¢. Since (R, )
is henselian and Z° is finite over R, this decomposition is induced (using the idempotent
lifting property) by a decomposition Z¢ = Z FT1 Z¢ of Z¢, where Z! and Z¢ are finite over
R and Zf = Z. In particular (Zf, Zf) = (Z%,Z) is a Zariski pair. Since Z N ZF is open in
Z" and contains Z, it is therefore equal to ZF which means that Z* ¢ Z and Z = Zf 11 7/
with Z' := Z N Z¢. Thus, the desired conditions for Zf are satisfied. ]

Remarks 2.3.3. (1) Assertions |(2)|and|(3)| of only use the existence of Z! and the
Zariski property for (R, I).

(2) We see in particular that Z is the largest closed subscheme of Z which is finite over
S. Moreover, Z' is functorial in Z: if Y is a separated R-scheme of finite type with Y
finite over R, every R-morphism Z — Y sends Z! to Y.

(3) Using more sophisticated tools, one can generalize by replacing “finite” by
“proper” in the conditions for Z and Zf. For the proof, the first step (reduction to
the quasifinite case) is of course ignored. One uses Nagata compactification to choose an
open immersion Z — Z¢ into a proper S-scheme p : Z¢ — S. Then by the properness
of Z¢ and the henselian property of (R, I), we can apply [I3] Tag 0AOC] to the sheaf
(Z./27) z to conclude that the idempotent defining Z in Z¢ lifts to a unique idempotent
on Z¢, which we take to define Z*.

(4) Assume that R is local henselian and [ is its maximal ideal, and let Y be a separated
R-scheme of finite type. Let y be an isolated point of Y. Then C :=Y \ {y} is closed in



Y, so we can apply to Z :=Y . C since Z = {y} set-theoretically. It is then easy
to see that Z' = Spec (0y,). In particular, Oy, is a finite R-module: this is the Mather
division theorem as stated in [I, Theorem 1]. The approach in [I] (and the related paper
[2]) is algorithmic, while here we use Zariski’s main theorem as a magic wand.

3 The preparation theorem

3.1 Notation and assumptions

We fix a ring R and an indeterminate t. We denote by Alg;[t] the category of pairs (A, x)
where A is an R[t]-algebra and z is an element of A.
We also fix an element f of R{t}, and we write

for =Y _ait' € R[] (a; € R).

i>0

We assume that the ideal generated by the a;’s (i > 0) is equal to R. Equivalently, for all
p € Spec (R), the image of f in k(p)[[t]], or in k(p){t}, is not a constant.
Finally we denote by S the R[t]-algebra R{t}/(f).

Proposition 3.2. With the assumptions of 3.1, we also fix an indeterminate u.

(1) The object (R{t}, f) of Alg;[t] is the filtered colimit of a system (Ay, f)rer with, for
each A\ € L, the following properties:

(i) The R[t]-algebra Ay is étale and, for alln € N, the canonical morphism R[t]/(t") —
AyJt" Ay is an isomorphism.
(ii) The canonical R-morphism R[u] — Ay mapping u to fx is flat and quasifinite.
In particular, the canonical R-morphism R[u] — R{t} mapping u to f is flat, and f is a
nonzerodivisor in R{t}.

(2) The R[t]-algebra S is the filtered colimit of a system (S\)rer with the following prop-
erties:

(i) Each R-algebra Sy is flat, of finite presentation and quasifinite, and the transition
maps Sy — S, (A < p) are étale. (In particular, S is flat over R.)

(ii) For alln € N and \ € L, the canonical morphism R[t]/(t") — S\/t"S\ is surjective.

Proof. Part immediately implies part , with S\ = A,/(f\) (the transition maps are
¢tale due to the same property for the A,’s, which are étale over RJt]).

To prove , write R{t} = @AGL A, asin Lemma and call £, € A, the canonical
image of t. ere exists \g € L and f,, € A), mapping to f; we can restrict L to the
indices A > A¢ and, for each A\, denote by f\, € A, the image of f),. Clearly, we have
(R{t}, f) = lig/\eL(A,\, fr). Part is obvious from the choice of (Ay)xer-

Let us prove[(1)[(il)} For fixed A, we can view f as a morphism g, : X := Spec (4,) —
A} = Spec (R[u]) of R-schemes. For s € Spec (R), the x(s)-morphism gy, : X, s — A}i(s)
induced on the fibers is deduced from 1 ® fy € k(s) @ Ay, whose image in x(s) @ R{t}
is assumed nonconstant. So g, s is not constant on X} ;, which is a smooth geometrically
irreducible curve over £(s). It follows that g ¢ is flat and quasifinite. Since X and A}



are smooth over Spec (R), the “fiberwise flatness” criterion |7, (11.3.10)| shows that g, is
flat. It is also quasifinite since it is affine of finite presentation with finite fibers. This
completes the proof. n

Definition 3.3. Let R be a ring, I an ideal of R, t an indeterminate.

We say that a formal power series f =Y ,o,a;t" € R[[t] is I-normal if there is d € N
such that aqg € R* and a; € I for i < d. The integer d (unique if I # R) is called the
order of f.

We say that f is I-monic of order d if it ws I-normal of order d and ag = 1.

An element f of R{t} is [-normal (I-monic) of order d if fix € R[[t]] is.

3.4 Proof of Theorem [1.1]

As in let (R,I) be a henselian pair and let f € R{t} be I-normal of order d, with
fior = D_spait” € R[[t]] (a; € R). If d = 0, everything is trivial, so we assume in
addition that d > 0; thus, the assumption of [3.1]is satisfied and, in particular, Proposition
3.2 applies to f.

Assume assertion is proved, i.e. S = R{t}/(f) is a free R-module with the
images of 1,¢,...,t% ! as a basis. This immediately implies the division theorem ,
with uniqueness coming from the fact that f is a nonzerodivisor (3.2(1)]).

In turn, the division theorem implies the preparation theorem E Indeed, the
relation in can be rewritten as t? = v=! f — @Q, so that uniqueness follows from the
uniqueness part of ; next, applying to t¢, we find that t¢ = Bf — Q where Q is a
polynomial of degree < d. Reducing modulo I and comparing coefficients, we see that ()
has coefficients in I and the constant term of B is in a;+ I, which gives with v = B~1.

It remains to prove . As i, we put A = A/IA for every R-algebra A.

First we observe that the image f of f in R{t} = R{t} is the product of t? by a unit,
so that S = R{t}/(t%) = R[t]/(t?) which is R-free with basis (1,¢,...,t%"!).

Let us write S as the colimit of a filtered system (S))rer of R[t]-algebras with the
properties of . We have just seen that ¢ vanishes in S, so by changing the index set
L we may assume that t? vanishes in Sy for all \: thus, S\ = S,/t%S) hence, by @,
it is a quotient of R[t]/(t%). So we have morphisms of R[t]-algebras R[t]/(t?) — Sy — S
where the first map is surjective and the composition is an isomorphism. We conclude
that R[t]/(t?) = Sy for all \. In particular, Sy is finite over R. As (R, I) is henselian,
we may apply Proposition and write Sy = S x T\, where S} is finite over R and
Sf =S\. By functoriality (Remark , the quotients S§ of the Sy’s form an inductive
system.

Since S is a quotient of R{t} and (R{t}, [R{t}) is a Zariski pair, so is (.5, 1.S). Hence,
for all A\, the canonical morphism Sy — S factors through S% by , and finally
5= hﬂ)\eL Sﬁ\'

Since, for each ), Sy is a flat R-algebra of finite presentation, so is Si, which is in
addition a finite R-module, hence locally free. As (1,ty,...,t"") induces an R-basis of
St and I C rad (R), it follows easily that (1,¢y,...,t9" ') is an R-basis of S for all A,

and part follows.




4 Application: a henselian resultant

If R is a ring, S a finite locally free R-algebra and z an element of S, we denote by

Ng/r(xz) € R the norm of z in R, ie. the determinant of multiplication by z in the
R-module S.

Definition 4.1. Let (R,I) be a henselian pair. Let f € R{t} be I-monic of order d.
Denote by S the R-algebra R{t}/(f) (which is a free R-module of rank d, by [L.I[(1)).

For g € R{t}, the (henselian) resultant of f and g, denoted by Res"(f,g), is the
element of R defined by

Res"(f,9) := Ng/r(9).

4.2 Properties of the resultant

We keep the notation and assumptions of and we denote by P = t?4(Q the polynomial
associated to f by The proofs of the following properties are easy and left to the
reader.

4.2.1. Functoriality: Let ¢ : (R,1) — (R',I') be a morphism of henselian pairs, f" et ¢
the images of f and g in R'{t}. Then Res"(f’",¢') = ¢(Res"(f, g)).

4.2.2. By construction, Res"(f,g) only depends on f via the R-algebra R{t}/(f). In
particular, Res®(f, g) = Res"(P, g).

4.2.3. Res®(f,g) only depends on g via its class modulo f; in other words, we have
Res®(f,g + hf) = Res®(f,g) for all h € R{t}. Moreover, Res"(f,g) € R* if and only if
the ideal (f,g) C R{t} equals R{t}. (More generally, see below.)

4.2.4. Special cases: If a € R, we have Res"(f,a) = a? and Res®(f,a —t) = P(a).
If a € I, then Res"(a—t,g) = g(a), and Res®(f,a —t) = (1+¢) f(a) for some € € [
by the second formula above (recall that f is I-monic).

4.2.5. Multiplicativities: If h € R{t}, we have Res"(f, gh) = Res®(f, g) Res®(f, h); if in
addition A is I-monic of order m, then Res"(fh, g) = Res"(f, g) Res®(h, g). For the second
equality, one may use the exact sequence

0 — R{t}/(h) =L R{t}/(fh) — R{t}/(f) — O.

4.2.6. Polynomials: If f and g are in R[t], with f monic of degree d (in the sense of
polynomials), then Res"(f, g) is the usual resultant. The condition on f is essential: for
instance, Res"(1 4+ at,g) = 1 for all @« € R and g € R{t}. (In fact, for two possibly
non-monic polynomials of respective degrees < d and < m, the definition of the classical
resultant depends on the choice of d and m.)

4.2.7. Weak symmetry: Assuming that g is I-monic of order m, then Res"(g, f) =
(—=1)™ (1 + €) Res®(f, g) for some € € I. To see this, reduce to the case of polynomials

and apply [£.2.6]

4.2.8. Elimination: Let J C R{t} be the ideal generated by f and g. Then Res®(f,g) € J
(thus it belongs to J N R): indeed, in the free R-module S = R{t}/(f), the image of
multiplication by g contains Res"(f, g) S.

Conversely, every a € J N R is a multiple of the class of g in S so, taking norms, «
is a multiple of Res"(f, g) in R. In particular, we have in R the inclusions (Res"(f,g)) C

d
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JN R C /(Res(f, g)). Geometrically, the closed subset V (Res"(f,g)) C Spec (R) is the
projection of V'(f,g) C Spec (R{t}).

4.2.9. Roots: Let ¢ : R — R’ be a ring homomorphism, and let & € R’ be a zero of P in
R'. First, I claim that g(«) makes sense in R' and is an element of R|a] C R'. Indeed, the
relation P(a) = 0 shows that (due to the form of P) a? € IR[a], whence a € \/IR[a].

Since R[a] is a finite R-module, the pair (R[], v/IR[«]) is henselian, hence the claim.

Now assume that the image of P in R'[t] factors as [[°_, (t — a;), where the a;’s are
elements of R’. Then we have in R’ the equality

d

p(Res"(f,9)) = [ [ 9(cu)

i=1

as follows from the above remark and properties and (applied in the ring
Rloy,...,aq4) CR').

Note that if we assume for simplicity that R = R’ is a domain, then the «;’s are the
zeros of f in v/1.

4.2.10. Power series: Assume R is I-adically complete and separated. Then Res"(f, g) =
Res( fror, gfor) Where Res denotes the resultant defined in [4].
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