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Abstract

We prove, with no claim to originality, a relative version of the Fujita-Zariski
theorem. When the base is a field, this result is due to Fujita [1] and states that
if an invertible sheaf on a proper variety is ample on its base locus, its sufficiently
high powers are globally generated. The special case where the base locus is finite
was proved by Zariski [5], whence the name.
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1 Definitions, notation, and statement
Throughout the paper we consider a noetherian ring R and a proper morphism of schemes
f : X → S := Spec(R).

Definition 1.1. A linear system Λ = (L , V, ρ) on X consists of:

(i) an invertible OX-module L ,

(ii) an R-module V of finite type, and

(iii) an R-linear map ρ : V → H0(X,L ), or (equivalently) an OX-linear map ρ̃ : f ∗V →
L .

From such a Λ we derive an exact sequence f ∗V ⊗L −1 → OX → OB → 0 where B is
a closed subscheme of X called the base locus of the system.
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Theorem 1.2. Let Λ be a linear system on X as above. Assume that the restriction of
L to B is ample. Then there exists an integer t0 such that L ⊗t is globally generated for
all t ≥ t0.

Remarks 1.3. (1) Note that the conclusion of the theorem is about L only. The assump-
tion is preserved if we replace V by its image in H0(X,L ) or a bigger submodule (since
this can only shrink B). So we could as well assume that V = H0(X,L ). However, this
does not make the proof any simpler. Moreover, given an element v ∈ V , it is advisable
to distinguish v (living in an R-module) from ρ(v) which is a section of L and thus lives
on X.

(2) When R is a field, this result is due to Fujita [1, Theorem 1.10]. The special case
when B is finite was proved earlier by Zariski [5, Theorem 6.2].

(3) Our proof follows Fujita’s strategy rather faithfully. The only difficulties were to find
the right substitutes for induction on dimension of a subscheme, on dimension of V , and
the notion of a “general element” of V .

(4) The interested reader will have no trouble adapting the proof to the case where X is
a proper algebraic space over S.

(5) To the author’s knowledge, and to this date, Theorem 1.2 is not in the literature. It
is used without proof in the paper [4], with a reference to Fujita’s article.

1.4 Graded rings and modules

By convention, all our graded rings and modules are N-graded. For modules, this may
seem somewhat unnatural, but it is harmless as the properties we shall be concerned with
can be checked “in large enough degree”.

Let X → S and Λ be as above. To a coherent OX-module F and an integer q ≥ 0 we
associate the graded R-module

Hq
∗(F ) = Hq(X,F ⊗ Sym

OX
(L )) =

⊕
t≥0

Hq(X,F ⊗L ⊗t)

whose graded components are finite R-modules. Note that H0
∗(OX) = H0(X, Sym

OX
(L ))

is a graded R-algebra, and each Hq
∗(F ) is a graded H0

∗(OX)-module. Moreover, ρ : V →
H0(X,L ) gives rise to a morphism

SymR(V )→ H0
∗(OX)

of graded R-algebras, thus turning Hq
∗(F ) into a graded SymR(V )-module. Technically,

these modules will be our main object of study; observe that SymR(V ) is a finitely gen-
erated R-algebra and thus a noetherian ring, unlike H0

∗(OX) in general.
We shall make use of the following easy fact: a graded SymR(V )-moduleM =

⊕
t≥0Mt

is finitely generated if and only if each Mt is finitely generated over R, and the natural
map V ⊗R Mt → Mt+1 (where V is viewed as the degree 1 component of SymR(V )) is
surjective for t large enough.

Definition 1.4.1. A Λ-module (F , q,M∗) consists of

(i) a coherent OX-module F ,
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(ii) an integer q ≥ 0,

(iii) a graded SymR(V )-submodule M∗ =
⊕

t≥0Mt ⊂ Hq
∗(F ).

This differs slightly from the corresponding notion of a “Λ-module system” in [1],
where negative degrees are allowed. Such a triple (F , q,M∗) will usually be called M∗ for
simplicity. In particular, we say that (F , q,M∗) is finitely generated if M∗ is a finitely
generated SymR(V )-module.

Remark 1.4.2. To prove Theorem 1.2, an essential tool is to prove that (under its as-
sumptions) certain Λ-modules are finitely generated. We shall use induction arguments
typically involving the choice of a “general” element of V . The next section explains what
we mean by this.

1.5 Fat subsets in modules, general position results

Definition 1.5.1. Let A be a ring, M an A-module. A subset E ⊂M is (A-)fat if MrE
is contained in a finite union of proper submodules of M .

Lemma 1.5.2. Let A be a ring.

(1) The following are equivalent:

(i) For every A-module M , every A-fat subset of M is nonempty.
(ii) For every finitely generated A-module M , every A-fat subset of M is nonempty.
(iii) For each maximal ideal m of A, the residue field A/m is infinite.
(iv) For each prime ideal p of A, the residue field κ(p) is infinite.

(2) There is a faithfully flat A-algebra A′ satisfying the conditions of (1). Moreover we
can take A′ noetherian if A is.

Proof. (1) The implication (i)⇒(ii) is trivial. For the converse, let M be an A-module
and (Ni)1≤i≤r a finite family of submodules. Pick an element in M r Ni for each i, and
apply (ii) to the submodule generated by these.

(ii)⇒(iii): Assume A has a finite residue field κ. Then the finitely generated A-module
κ2 is the union of its finitely many proper submodules.

(iii)⇔(iv) is immediate. Now we assume (iii) and prove (ii). Let M and (Ni)1≤i≤r
be as above, with M finitely generated, and let us prove that

⋃
1≤i≤rNi  M . For

each i, M/Ni is finitely generated, so there is a maximal ideal mi and an epimorphism
πi : M/Ni � κi := A/mi. Clearly we may replace Ni by Ker πi. In other words, Ni is now
the preimage of a hyperplane Hi in the κi-vector space M ⊗A κi.

First assume that all the mi’s are equal, with residue field κ. Since κ is infinite by
assumption, we have

⋃
1≤i≤rHi  M ⊗A κ, whence the result.

Otherwise we renumber the κi’s as κ1, . . . , κs (assumed pairwise distinct), and the Ni’s
as Njk in such a way that M/Njk

∼= κj. For each j we pick an element mj of M ⊗ κj
which is not in the image of any Njk, as in the previous step. Then we observe that the
mj’s are pairwise coprime, and therefore M →

∏
jM ⊗κj is surjective, so there is m ∈M

which reduces to mj for all j and thus cannot belong to any Njk.

(2) We can take A′ = U−1A[T ] where U is the multiplicative set of all monic polynomials.
(If A is noetherian, another choice is A′ = A[[T ]][T−1]).
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Proposition 1.5.3. Let R, f : X → S and Λ = (L , V, ρ) be as in 1.1, with base locus
B ⊂ X. Let F be a coherent OX-module, and let Σ ⊂ X r B be a finite set of points.
Then, for all δ in a suitable fat subset of V , the following conditions are satisfied:

(i) The section ρ(δ) of L does not vanish at any x ∈ Σ.

(ii) The morphism ϕ : F ⊗L −1 → F induced by tensoring with ρ(δ) is injective on
X rB; in other words, Supp (Kerϕ) ⊂ B.

Proof. We can enlarge Σ and assume it contains AssOX
(F )rB. Then condition (ii) is a

consequence of (i). Now for x ∈ Σ, Vx := {δ ∈ V | ρ(δ)(x) = 0} is an R-submodule of V ,
and Vx  V since x /∈ B. The result follows.

Here is a first consequence:

Corollary 1.5.4. Let R be a noetherian ring, V a finitely generated R-module, M∗ a
finitely generated graded Sym(V )-module. There exists t0 ≥ 0 and a fat subset E of V
such that for all δ ∈ E, the map Mt

×δ−→Mt+1 is injective for all t ≥ t0.

Proof. We apply Proposition 1.5.3 to the following data: let P := P(V ) = Proj(Sym(V )),
M = M̃∗ the coherent OP -module associated to M∗. We take for L the canonical sheaf
OP (1); note that the base locus B is empty. By the proposition, for δ in a fat subset of
V the corresponding M (−1)→M is injective, so of course the same holds for all maps
M (t)→M (t+ 1) and H0(P,M (t))→ H0(P,M (t+ 1)).

On the other hand, by [2, (2.3.1)] there exists t0 such that for all t ≥ t0 the canonical
map Mt → H0(P,M (t)) is an isomorphism, which completes the proof.

2 Proof of the theorem

2.1 A finiteness result

A key step in the proof is the following proposition (which will be used for q = 1 only!):

Proposition 2.1.1. With the assumptions of Theorem 1.2, let (F , q,M∗) be a Λ-module
with q > 0. Then M∗ is finitely generated.

The proof relies on a dévissage lemma:

Lemma 2.1.2. Let Λ = (L , V, ρ) be a linear system on X. Let δ ∈ V be fixed, and let
ϕ : F ⊗L −1 → F denote the morphism given by multiplication by ρ(δ). Consider the
self-defining exact sequence

0 −→ K −→ F ⊗L −1 ϕ−−→ F
π−−→ C −→ 0

of sheaves on X. We fix an integer q ≥ 0, and we introduce the following Λ-modules:

M∗ := Hq
∗(F )

N∗ := Im (M∗ → Hq
∗(C ))

K+
∗ := Hq+1

∗ (K )

and we assume the following conditions:
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(i) K+
t = 0 for t� 0;

(ii) N∗ is a finitely generated Λ-module.

Then M∗ is finitely generated.

Proof of 2.1.2. Condition (ii) means that V Nt−1 = Nt for large t. We fix t such that this
holds in addition to K+

t = 0, and we proceed to show that VMt−1 = Mt, which will prove
the result.

To achieve this we already observe that we have a natural surjective morphism M∗ �
N∗ of graded Sym(V )-modules. This and the condition V Nt−1 = Nt imply that VMt−1 ↪→
Mt → Nt is surjective. Thus it suffices to prove that Ker(Mt → Nt) ⊂ VMt−1. We shall
see that, more precisely, Ker(Mt → Nt) = δMt−1.

Le I ⊂ F be the image of ϕ. Put I∗ = Hq
∗(I ). The map Mt−1 → Mt induced

by ϕ is just multiplication by δ for the Sym(V )-module structure on M∗ (in particular
its image is δMt−1), and it factors as Mt−1

α−→ It
β−→ Mt. From the short exact sequence

0 → K → F ⊗ L −1 → F → I −→ 0 (twisted by L ⊗t) and the condition on K+
t

we infer that α : Mt−1 → It is surjective. Thus Im β = Im(β ◦ α) = δMt−1. On the
other hand, the short exact sequence 0 → I → F → C → 0 yields an exact sequence
It

β−→ Mt → Nt → 0. Combining these we conclude that Ker(Mt → Nt) = δMt−1, as
promised.

Proof of 2.1.1. We first note that the question is local on S for the fpqc topology. In
particular, applying Lemma 1.5.2 (2), we may assume that all the residue fields of R are
infinite, so that fat subsets of R-modules are always nonempty.

Next, we may and will assume thatM∗ is the full Hq
∗(F ) since Sym(V ) is a noetherian

ring.
We now choose a point s ∈ S and work locally, i.e. we shall find an affine neighborhood

Spec(R′) of s such that M∗ ⊗R R′ is a finitely generated Sym(V )⊗R R′-module. Putting
Y := Supp(F ) (defined, as a subscheme of X, by the ideal AnnOX

(F )), we proceed by
induction on

d(F ) := dimκ(s) Im
(
V → H0(Ys,L|Ys)

)
.

If d(F ) = 0, then Ys ⊂ B. Therefore L is ample on Ys. By [3, (4.7.1)] we may assume
that L is ample on Y by restricting to a neighborhood of s. But then the result is trivial
since Mt = 0 for large t. (The condition q > 0 is used here).

Now assume d(F ) > 0, and the result proved for all sheaves with smaller d. We have
Ys 6⊂ B. Fix a point y ∈ Ys r B and apply Proposition 1.5.3 with Σ = {y}. With our
assumption on the residue fields, we see that there exists δ ∈ V such that

(i) ρ(δ) ∈ H0(X,L ) does not vanish identically on Ys, and

(ii) ϕ : F ⊗L −1 → F given by ρ(δ) is injective on X rB.

We now apply Lemma 2.1.2. We have an exact sequence

0 −→ K −→ F ⊗L −1 ϕ−−→ F
π−−→ C −→ 0

where Supp K ⊂ B because of (ii). In particular, L is ample on Supp K , whence
Hq+1(K ⊗L ⊗t) = 0 for large t, which is condition (i) of 2.1.2.
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Consider N∗ := Im(M∗ → Hq
∗(C )). We have a Λ-module (C , q, N∗), and we shall use

the induction hypothesis to prove that N∗ is finitely generated: this will complete the
proof by 2.1.2. For this, it suffices to prove that d(C ) < d(F ). Putting Z = Supp(C ),
we have a surjection of κ(s)-vector spaces

Im
(
V → H0(Ys, L|Ys)

)
� Im

(
V → H0(Zs, L|Zs)

)
of dimensions d(F ) and d(C ) respectively. The image of δ ∈ V in the first space is
nonzero by the above condition (i), but it vanishes in the second space by definition of C .
Thus, d(C ) < d(F ), as claimed.

2.2 Proof of Theorem 1.2

We keep the notation and assumptions of 1.2. As in the proof of 2.1.2, we assume that
all residue fields of R are infinite. In addition, we may assume V = H0(X,L ): this does
not change the conclusion, and can only make the base locus smaller.

We procced by noetherian induction on X, assuming that for all proper closed sub-
schemes Y  X, L ⊗t

|Y is globally generated for large t. We also assume B  X set-
theoretically: otherwise, L is ample. In particular, V 6= 0.

We shall apply the induction to the subscheme Y  X defined by ρ(δ), for a suitable
0 6= δ ∈ V . The idea is to find δ such H0(L ⊗t) −→ H0(L ⊗t

|Y ) is surjective for large t.
This clearly suffices because then L ⊗t will have no base points on Y (by induction) and
no base points off Y since Y clearly contains B. The surjectivity requirement translates
into an injectivity property on H1, which motivates the choices below.

I claim that there is a fat E ⊂ V (not containing 0) such that, for all δ ∈ E:

(i) multiplication by δ on H1
∗(OX) is injective on components of large degree;

(ii) ρ(δ) is regular off B, i.e. ϕ : L −1 → OX given by ρ(δ) is injective on X rB .

Indeed, (ii) is the same as in the proof of 2.1.1, and for (i) we see by 2.1.1 that H1
∗(OX) is a

finitely generated Sym(V )-module, so Corollary 1.5.4 applies. Putting I = Im(ϕ) ⊂ OX ,
we have exact sequences (where Y  X is the zero locus of δ)

0 −→ K −→ L −1 −→ I −→ 0
0 −→ I −→ OX −→ OY −→ 0.

and the same sequences twisted by L ⊗t for all t. By (i), K has support in B on which
L is ample, so the first sequence induces H1(L ⊗(t−1))

∼−→ H1(I ⊗L ⊗t) for large t. The
composition H1(L ⊗(t−1))

∼−→ H1(I ⊗ L ⊗t) −→ H1(L ⊗t) is given by multiplication by
δ on H1

∗(OX), thus injective for large t by (i). In short, for t � 0 the second exact
sequence gives rise to injections H1(I ⊗L ⊗t) −→ H1(L ⊗t), hence the restriction maps
H0(L ⊗t) −→ H0(L ⊗t

|Y ) are surjective. As explained above, this completes the proof.
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