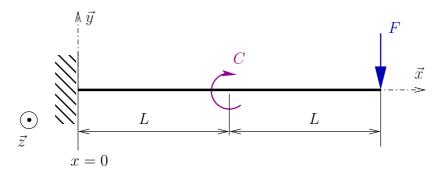


UE Complément Mécanique 1 - Résistance des Matériaux

2022-2023 Durée: 1h30

Responsable : L. Blanchard


Documents interdits Calculatrice autorisée

La poutre, de longueur 2L, est encastrée en x=0.

La poutre est soumise à une force ponctuelle $-F\vec{y}$ en x=2L et à un couple ponctuel $-C\vec{z}$ en x=Lavec $\mathcal{C} = FL$.

La poutre possède une section droite (constante) rectangulaire de largeur b suivant \vec{z} et de hauteur hsuivant \vec{y} .

La poutre est en bois de hêtre de limite élastique R_e et de module d'élasticité longitudinale E.

On donne:

L = 1500 mm	F = 900 N	b = 60 mm	h = 180 mm	$R_e = 57 \text{ MPa}$	E = 15300 MPa
--------------	------------	------------	-------------	------------------------	----------------

- 1) Déterminez analytiquement puis numériquement l'action exercée par l'encastrement sur la
- 2) Déterminez analytiquement les expressions de l'effort tranchant T(x) suivant la direction \vec{y} et du moment fléchissant M(x) suivant la direction \vec{z} .

Tracez les graphes de ces fonctions en précisant les valeurs (analytiques ou numériques) sur les axes. [5]

- 3) Calculez la contrainte maximum σ_M de tension (traction-compression).
- Quel(s) point(s) subit (subissent) cette contrainte en traction?

Quel(s) point(s) subit (subissent) cette contrainte en compression?

La poutre reste t'elle dans le domaine élastique?

Si oui, quel est le coefficient de sécurité?[3]

4) Calculez l'expression de la flèche v(x).

Tracez la déformée de la poutre.

Donnez alors analytiquement puis numériquement la flèche maximum et précisez sa position en x. [10]