

Licence L2 - Majeure - Mécanique des Fluides 2^{nde} session 2020-2021 _ Durée : 2h00

Responsable : L. Blanchard

Documents interdits _ Calculatrice autorisée

Des points seront attribués à l'écriture de vos hypothèses, à la provenance de vos équations, à la justification de vos simplifications et à la clarté des pages rendues qui comporteront votre numéro d'anonymat (présent sur l'étiquette).

On donne pour tous les exercices :

- l'accélération de la pesanteur : $g = 9.81 \text{ m.s}^{-2}$;
- la pression atmosphérique : $p_a = 1.013$ bar = 101.3 kPa.

Exercice n°1 _ Balle de tennis : 10 pts

Une balle de tennis sphérique possède un diamètre D compris entre 63.5 et 66.68 mm et une masse $m=58~{\rm g}$.

On souhaite calculer la force de trainée exercée sur cette balle qui possède une vitesse relativement à l'air de $v_{\infty}=100~\rm km.h^{-1}$.

La masse volumique de l'air est $\rho = 1.24 \text{ kg.m}^{-3}$ et sa viscosité cinématique est $\nu = 15.10^{-6} \text{ m}^2.\text{s}^{-1}$. On fournit sur la Fig. 1 le graphe donnant le coefficient de trainée C_x d'une sphère.

Comme appris en TP, toutes les incertitudes relatives seront exprimées en %!

La seule incertitude provient de D.

1) Calculez la valeur moyenne de D . Calculez l'incertitude relative sur D soit $\frac{\Delta D}{D}$ [0.5]
2) Calculez le poids d'une balle de tennis
3) Ecrivez l'équation permettant de calculer la pression effective au point d'arrêt sur la sphère; Calculez alors cette pression
4) Calculez le nombre de Reynolds \mathcal{R} moyen relatif à l'écoulement autour de la sphère. Exprimez puis calculez l'incertitude relative sur \mathcal{R} soit $\frac{\Delta \mathcal{R}}{\mathcal{R}}$
5) Evaluez les C_x de la sphère dans le cas où elle est lisse et dans le cas où elle est rugueuse; La Fig. 1, précisant les points utilisés, sera rendue
6) Calculez alors la force de trainée sur chacune de ces 2 sphères
7) Exprimez l'incertitude relative sur T soit $\frac{\Delta T}{T}$. Calculez numériquement sa valeur pour l'une et l'autre des trainées précédemment calculées. En déduire alors les valeurs maxi et mini des trainées

Exercice n°2 _ Hublot et réservoir : 10 pts

Un réservoir contient une couche de hauteur h' d'hydrocarbure de masse volumique ρ' au dessus d'une couche de hauteur h d'eau douce de masse volumique ρ comme le montre la Fig. 2.

Un hublot rectangulaire de hauteur a et de largeur b (distance perpendiculaire au dessin) est situé sur la face verticale du réservoir; La base du hublot étant au fond du réservoir.

De l'air à la pression atmosphérique p_a est au dessus de la surface libre de l'hydrocarbure et à l'extérieur du réservoir et du hublot.

Le problème peut être considéré comme un problème plan. Les 2 liquides sont immobiles.

$\rho = 1000 \text{ kg.m}^{-3}$	$\rho' = 750 \text{ kg.m}^{-3}$	h'=3 m
h = 4 m	a = 2.4 m	b = 1.6 m

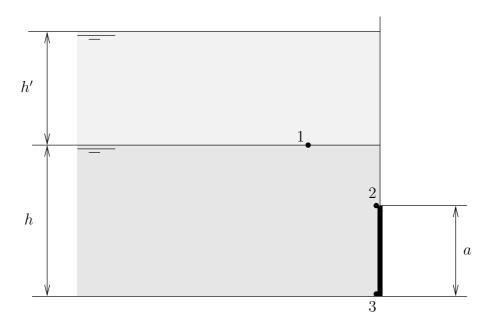


Fig. 2 – Hublot et réservoir.

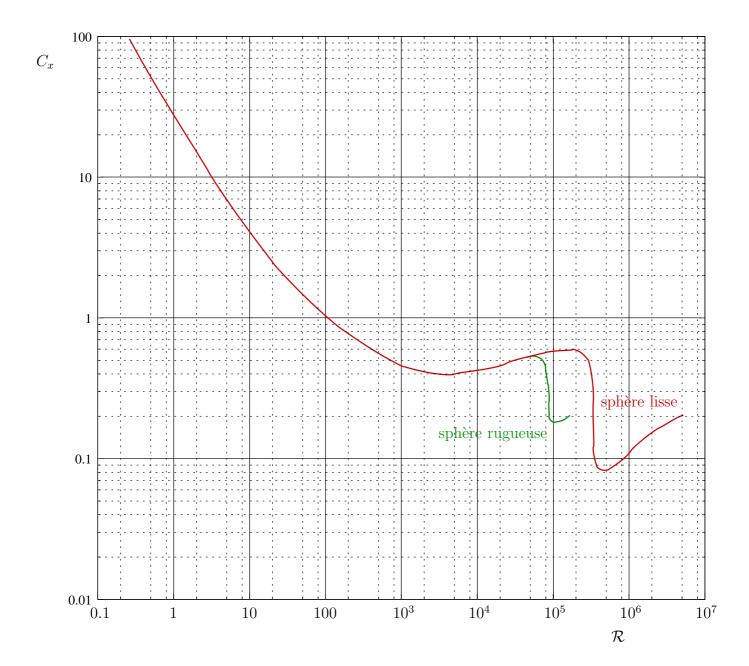


Fig. 1 – Evolution du coefficient de trainée C_x d'une sphère en fonction du nombre de Reynolds \mathcal{R} .