

Licence L2 - PCSTM

Mineure Mécanique des Fluides

 $2^{\mbox{nde}}$ session 2009-2010 _ Durée : 2h00

Responsable : L. Blanchard Eléments de correction

Exercice n°1 6.5 pts

1) p_i désignant la pression absolue en i, $p_i - p_{atm}$ désigne la pression effective en i.

Dans l'eau de mer : $p_1 = p_a + 2\rho_1 gh \implies p_1 - p_a = 2\rho_1 gh = 27.0756$ kPa $p_2 = p_a + 3\rho_1 gh \implies p_2 - p_a = 3\rho_1 gh = 40.6134$ kPa

 $p_3 = p_a \implies p_3 - p_a = 0$ Dans l'eau douce :

 $p_4 = p_a + \rho_2 gh \implies p_4 - p_{atm} = \rho_2 gh = 11.772 \text{ kPa}$

On peut calculer : $p_2 - p_4 = 28.8414$ kPa et $p_1 - p_3 = 27.0756$ kPa puis $(p_2 - p_4) - (p_1 - p_3) = 1.7658$ kPa

2) cf Fig. 1

3)

$$\begin{cases} F = (p_1 - p_3)hb = 22743 \text{ N} \\ P = \frac{1}{2}((p_2 - p_4) - (p_1 - p_3))hb = 741 \text{ N} \end{cases}$$

soit une force globale de F + P = 23485 N.

Le point d'application de cette force globale sera situé logiquement entre $\frac{h}{2}$ et $\frac{h}{3}$ du bas de la porte et positionné par :

$$(F+P)c = \frac{h}{2}F + \frac{h}{3}P \implies \frac{c}{h} = \frac{\frac{1}{2}F + \frac{1}{3}P}{F+P} \approx 0.4947 \in [0.3; 0.50] \implies c = 0.593 \text{ m}$$

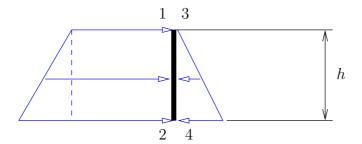
L'intensité de F étant bien supérieure à celle de P, le point d'application de (F + P) est proche de la moitié de la porte.

Exercice n°2 _ Pitot 5 pts

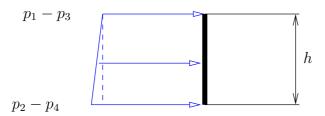
Bernoulli 1-2 : $p_1 + \frac{1}{2}\rho v^2 = p_2$

Bernoulli 1'-5 : $p'_1 + \frac{1}{2}\rho v^2 = p_5 + \frac{1}{2}\rho v^2 \implies p'_1 = p_5$

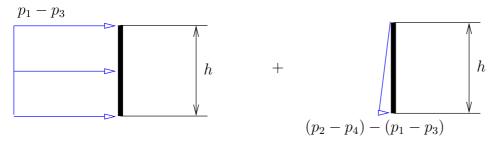
Points 1 et 1' voisins : $p_1 = p'_1$


Points 5 et 6 voisins : $p_5 = p_6$

Statique 2-3 : $p_2 = p_3$


Statique 6-4 : $p_6 = p_4$

Statique 3-4 : $p_3 = p_4 + \rho' g h$


Donc: $p_1 + \frac{1}{2}\rho v^2 = p_1 + \rho' gh$ \Longrightarrow $\frac{1}{2}\rho v^2 = \rho' gh$ \Longrightarrow $v = \sqrt{2\frac{\rho'}{\rho}gh} = 27.8 \text{ m/s} = 100.2 \text{ km/h}$

Ces 2 répartitions de force équivalent à celle ci :

ou encore à la somme de ces 2 là :

Ce qui équivaut à des forces ponctuelles positionnées tel que :

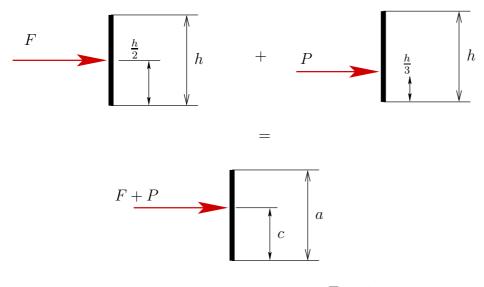


Fig. 1 –

Exercice n°3

1)				
r (m)	4.09	3	2	1
$v = \Omega r \text{ (m/s)}$	188.4	138.23	92.15	46
$\mathcal{M} = \frac{v}{v_{son}}$	0.538	0.39	0.263	0.13
$\mathcal{R} = \frac{vc}{\nu}$	$3.14 \ 10^6$	$2.30 \ 10^6$	$1.53 \ 10^6$	$0.76 \ 10^6$
$C_x \approx$	0.0069	0.00715	0.0077	0.009
$C_z \approx$	0.558	0.5533	0.544	0.543
$p_{Ar} = \frac{1}{2}\rho v^2 \text{ (Pa)}$	21296	11464	5095	1274
$\frac{T}{L} = p_{Ar} c C_x \text{ (N/m)}$	36.7	20.49	9.8	2.45
$\frac{P}{L} = p_{Ar}cC_z \text{ (N/m)}$	2970	1585	693	173

si $\mathcal{M}=0.2 \implies v=70 \text{ m/s} \implies r=1.519 \text{ m}$. L'écoulement de l'air autour des profils situés à moins de 1.519 m de l'axe de rotation peut être considéré comme incompressible. Par contre, on commet une erreur en considérant l'écoulement de l'air autour des profils situés à plus de 1.519 m de l'axe de rotation; Cette erreur allant en augmentant au fur et à mesure que le se rapproche du bout de la pale.

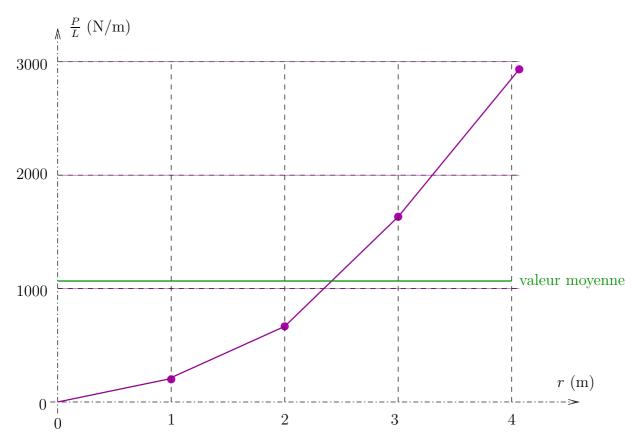
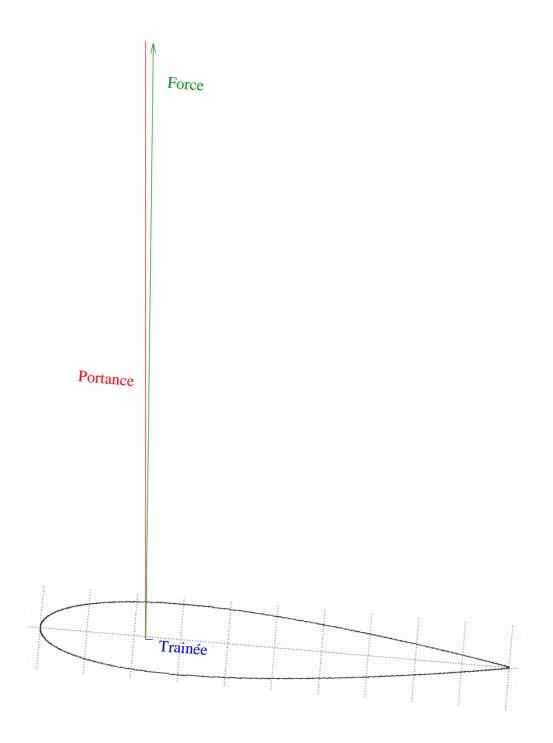



Fig. 2 – Evolution de la force de portance par unité d'envergure sur toute la pale.

La force de portance pour 1 pale est évaluée par l'aire sous la courbe. On évalue la valeur moyenne à 1100 N/m qui permet d'estimer l'intégrale à 1100 N/m * L \approx 4400 N, soit une force de portance sur les 3 pales de 13200 N soit une valeur supérieure aux poids à vide 4905 N et maxi en charge 9810 N. On peut donc diminuer l'angle d'incidence pour assurer un décollage.

La dépression la plus importante est telle que $C_p=-1.65$ soit une dépression de $p_{Ar}C_p=-18915$ Pa.

