

Licence L2 - Complément - Mécanique des Fluides 2^{nde} session 2022-2023 _ Durée : 2h00

Responsable : L. Blanchard

Exercice n°1 - Dynavia - 8 pts

L'entreprise Panhard a produit, en 1948, 2 exemplaires de la voiture "Dynavia" qui possédait (et qui possède encore) un coefficient de traînée remarquable. La surface de maître couple de la voiture est $S=1.52 \text{ m}^2$. Cette voiture était équipée d'un moteur bi-cylindres à plat d'une puissance maximum de 28 ch (1 ch=736 W).

On donne les résultats d'essais en soufflerie de ce véhicule; Pour différentes vitesse de vent v, on mesure la traînée T:

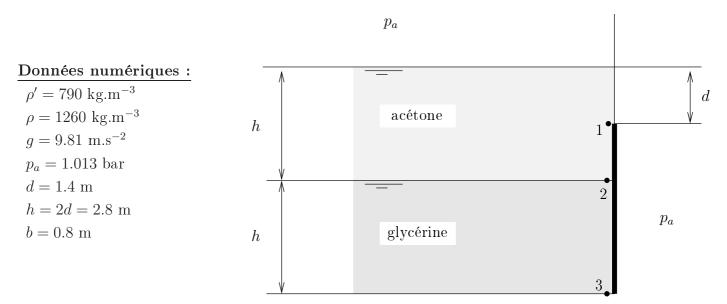
$v (\mathrm{km/h})$	140	125	108	87
T(N)	377.4	302.5	228.9	152.3

La masse volumique de l'air est $\rho=1.18~{\rm kg.m^{-3}}$ et sa viscosité cinématique $\nu=15\cdot 10^{-6}~{\rm m^2.s^{-1}}$.

- 2) La vitesse maximale atteinte par le véhicule est 130 km/h.

3) Les ingénieurs et techniciens ont eu la curiosité de mettre la voiture en position de "m	arche arrière".
Le vent arrivant de l'arrière à $140~\mathrm{km/h}$, le coefficient aérodynamique de traînée calculé e	st $C_x = 0.357$.
Quelle a été la traînée mesurée en soufflerie?	
Calculez la puissance absorbée par cette traînée	[1.5]

Exercice n°2 - Réservoir - 12 pts


Un réservoir contient une couche de hauteur h d'acétone de masse volumique ρ' au dessus d'une couche de même hauteur h de glycérine de masse volumique ρ .

Un hublot rectangulaire de largeur b (distance perpendiculaire au dessin) est situé sur la face verticale du réservoir. Le haut du hublot est à la distance d de la surface libre de l'acétone-air. Le bas du hublot est au fond du réservoir.

De l'air à la pression atmosphérique p_a est au dessus de la surface libre de l'acétone et à l'extérieur du réservoir et du hublot.

L'accélération de la pesanteur est constante et notée g.

Le problème peut être considéré comme un problème plan. Les 2 liquides sont immobiles.

- 3) Calculez numériquement la force effective globale exercée par les liquides sur ce hublot. [5]

n°d'anonymat :	 	
Ü		
	 	
	 <u></u>	