

Licence L2 - Complément - Mécanique des Fluides 2^{nde} session 2018-2019 _ Durée : 1h30

Responsable : L. Blanchard

Documents interdits _ Calculatrice autorisée

On donne pour tous les exercices :

- l'accélération de la pesanteur : $g = 9.81 \text{ m.s}^{-2}$;
- la pression atmosphérique : $p_a = 1.013$ bar = 101.3 kPa;

Des points seront attribués à l'écriture de vos hypothèses, à la provenance de vos équations et la justification de vos simplifications.

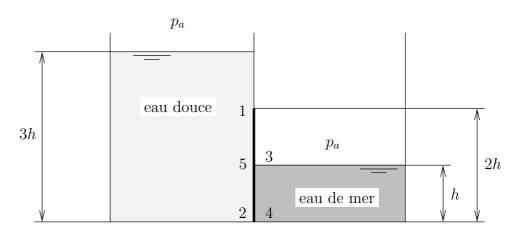
Exercice n°1 _ Réservoir - 12.5 pts

Le réservoir de gauche contient la hauteur 3h d'eau douce de masse volumique ρ et peut communiquer $_{-}$ par l'intermédiaire d'une porte verticale rectangulaire de largeur b (perpendiculaire au dessin) et de hauteur 2h $_{-}$ avec le réservoir de droite qui contient la hauteur h d'eau de mer de densité d.

La porte est représentée par un trait large sur le dessin. La base de la porte est au fond des 2 réservoirs.

De l'air, à la pression atmosphérique p_a , est au dessus des surfaces libres des deux réservoirs.

Le problème peut être considéré comme un problème plan. Les 2 liquides sont immobiles. La porte est fermée.


Données numériques :

 $\rho = 1000 \text{ kg.m}^{-3}$

d = 1.150

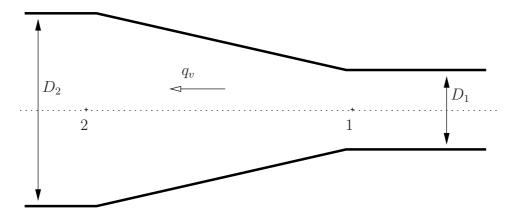
h = 1.6 m

b = 0.6 m

- 1) Calculez analytiquement puis numériquement les pressions effectives qui règnent dans les liquides (de part et d'autre) en haut ou en bas ou au milieu de la porte (aux points 1 à 5). [2]
- 2) Représentez à l'échelle la répartition de force effective exercée par les liquides sur cette porte. [1.5]
- 3) Calculez analytiquement puis numériquement la force effective globale exercée sur cette porte. . [5]
- 4) Précisez analytiquement puis numériquement le point d'application de cette force. [4]

Exercice n°2 _ Divergent - 7.5 pts

De l'eau arrive dans un divergent d'axe horizontal par la section d'entrée 1 de diamètre $D_1 = 16$ mm et ressort par la section de sortie 2 de diamètre $D_2 = 26$ mm.


Le débit volumique est $q_v = 30 \text{ l.mn}^{-1}$.

La pression absolue du fluide dans la section d'entrée 1 est $p_1 = 1.6$ bar.

L'angle caractérisant le divergent est $\alpha = 12^{\circ}$.

L'eau possède la masse volumique $\rho=1000~{\rm kg.m^{-3}}$ et la viscosité cinématique $\nu=10^{-6}~{\rm m^2.s^{-1}}$.

On négligera la perte de charge régulière.

1) Nommez et écrivez les relations permettant de calculer les vitesses et nombres de Reynolds dans les sections 1 et 2.

- 4) On ne néglige plus la perte de charge singulière relative à ce divergent qui possède un coefficient de perte de charge singulière ξ évalué par :

$$\xi = \left(1 - \frac{D_1^2}{D_2^2}\right)^2 \sin \alpha$$

Nommez et écrivez la relation permettant de calculer la pression absolue dans la section de sortie 2. Calculez ξ et la perte de charge singulière.