The power of Tensor algebra in medical diagnosis

Sabine Van Huffel
Dept. EE, ESAT-SCD
iMinds Future Health Dept
KU Leuven, Belgium
• Introduction
 • EEG and epileptic seizure monitoring
 • Blind Source Separation
• Tensor Algorithms
• Examples in EEG monitoring
• Conclusions and new directions
Introduction: EEG and epileptic seizure monitoring

<table>
<thead>
<tr>
<th>Interictal EEG</th>
<th>Ictal EEG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spikes, slow waves (epileptiform activity?)</td>
<td>Ictal source localization</td>
</tr>
</tbody>
</table>

21 electrode positions @UZ Gasthuisberg
Blind source separation

EEG analysis difficult because of artefacts → REMOVE

Matrix based Blind Source Separation (BSS) → Constraints!

- sources orthogonal (PCA),
- statistically independent (ICA)
- sources uncorrelated and of different autocorrelation (CCA)

$$\text{EEG}_1 = a_{11}s_1 + a_{12}s_2 + a_{13}s_3$$
$$\text{EEG}_2 = a_{21}s_1 + a_{22}s_2 + a_{23}s_3$$
$$\text{EEG}_3 = a_{31}s_1 + a_{32}s_2 + a_{33}s_3$$

$$\text{EEG} = A.s$$
• Introduction
• Tensor Algorithms
• Examples in EEG monitoring
• Conclusions and new directions
Tensor Algorithms: Canonical Decomposition (PARAFAC)

- Advantage for BSS: Tensor Decompositions unique under mild conditions!
- Overviews: P. Comon (talk and papers), Kolda & Bader (SIAM Rev. 2009)
- PARAFAC -> Decomposition into minimal number of (non)orthogonal rank 1 tensors
 - compute via alternating least squares (Smilde, Bro, and Geladi, 2004) → most popular
 - Simultaneous matrix diagonalization/ generalized Schur (De Lathauwer, 2004, 2006)
 - Other schemes (Paatero, 1999; Vorobyov, Sidiropoulos and Gerschman, 2005, …)
 - With orthogonality constraints (Kolda, 2001; Zhang and Golub, 2001)
 - Online PARAFAC (Nion and Sidiropoulos, 2009)
 - Matrix-free Nonlinear Least Squares using Levenberg-Marquardt (Sorber et al., 2012)
• Introduction
• Tensor Algorithms
• Examples in EEG monitoring
 – Epileptic seizure onset localization
 – Neonatal seizure localization
 – Event-Related Potential analysis
• Conclusions and new directions
Split EEG in different frequencies using wavelets.

\[Y = A_1 B_1 C_1 + \ldots + A_R B_R C_R + E \]

PARAFAC for seizure onset localization

=> Analysis in 3 dimensions instead of just 2
PARAFAC: Example extracting 1 component

\[X = A_1 \times B_1 \times C_1 \]

- \(B_1 \): time course
- \(A_1 \): distribution over channels
- \(C_1 \): frequency content (distribution across scales).

Interpretation of a trilinear component
PARAFAC for seizure onset localization

\[\chi = \mathbf{A}_1 \mathbf{B}_1 + \ldots + \mathbf{A}_R \mathbf{B}_R + \mathbf{E} \]
Reconstructed epileptic atom

(De Vos et al., NeuroImage 2007) (E. Acar et al, Bioinformatics 2007)
More interesting seizure
More interesting seizure
• Muscle artifacts are distributed over frequencies by wavelet transformation and cannot be modeled by a trilinear structure

• In 2 (or 10) seconds, seizures are stable in time, frequency and space

• PARAFAC is "unique"
Validation study with UZ Leuven → ictal EEG of 37 patients
• Visual analysis: 21 well localized
• New method: 34 well localized

PARAFAC:
→ separates ictal atom from background EEG
→ is more reliable than visual analysis and matrix techniques (ICA, SVD) for seizure onset localization
→ can be used as preprocessing step for source localization
Limits of a trilinear model

• A sinusoidal signal gives rise to a perfect trilinear model after wavelet transforming,

• But what happens if the frequency changes during the analyzed time interval?

• We simulated a chirp, added noise and localised the epileptic EEG
Limits of a trilinear model

- Signal is not perfectly recovered (as expected)
- But it is still well localized!
• Introduction
• Tensor Algorithms
• Examples in EEG monitoring
 – Epileptic seizure onset localization
 – Neonatal seizure localization
 – Event-Related Potential Analysis
• Conclusions and new directions
Lack of oxygen supply leads to brain damage

The occurrence of seizures best indicator for neurological damage and can increase damage if not properly treated

Most seizures subclinical (90%): only detectable via EEG monitoring.

→Need for automated EEG monitoring.
Collaboration with Sophia Child Hospital, Rotterdam, NL

In the USA:
• 1 on 8 births premature
• 11.1% of prematures have seizures
Algorithm, mimicking the human observer:
(Deburchgraeve et al., Clinical Neurophysiology 2008 & 2009)

2 seizure types:

- **Spike train**
- **Oscillation**
- **Combination**

For each type a separate detection algorithm was developed.
Seizure on C3-Cz-F3 + artefact on T5

⇒ O-CP: Extract spatial distribution of the seizure without distortion of the artifact.
Extract & localize oscillations using PARAFAC

A

B-components CP-decomposition

B

(1) (2)

(1) (2)
PARAFAC models as much variance as possible in the tensor that fits in a trilinear structure.

⇒ Sensitive for activity that is active during the whole time segment, stable in localization and frequency

\[
\begin{array}{c}
X \\
\end{array}
\begin{array}{c}
A_1 \\
B_1 \\
C_1
\end{array}
\]

⇒ Oscillations in the EEG meet those requirements, thus PARAFAC is most sensitive for oscillations in the EEG.

⇒ *Less suitable for spike train type seizures* as they are discontinuous and too local in time.
Extract & localize spikes using PARAFAC

We use the output of the seizure detector:
Construction of the tensor:

Spikes detected by seizure detector

\[\text{EEG} \]

Add the EEG segments to the tensor

\[A + B = C \]

\[E \]
Extract & localize spikes using PARAFAC

SP-CP:

\[
\begin{align*}
\text{Distribution over the detected spikes} \\
\text{Amplitude} \\
\end{align*}
\]
Comparison with spike averaging
- Construct tensor with 20 identical EEG spike segments
- Add random noise to the tensor with different SNR
- Calculate correlation with the noise free spatial distribution

![Impact of noise on the localization](chart.png)
Comparison with visual analysis of the EEG by a neurophysiologist.

- In all cases there is a good qualitative correspondence between the neurologist and the algorithm.

- Localization plots are helpful tool for neurophysiologist in analyzing seizures.

- Together with seizure detector: useful for brain monitoring at the bedside.
PARAFAC expects a fixed localization in time:

- Divide migrating seizures into smaller windows

Long seizures >1min:

- Divide into smaller windows

Current research:

- PARAFAC useful to delineate ictal onset zone?
 1. use the extracted spatial distribution as *input to dipole source localization* with a realistic head model
 2. *using simultaneous EEG-fMRI: prospective validation* in the presurgical work-up for epilepsy surgery.
• Blind source separation
• Tensor Algorithms
• **Examples in EEG monitoring**
 – Epileptic seizure onset localization
 – Neonatal seizure localization
 – Event-Related Potential Analysis
• Conclusions and new directions
Tasks during data acquisition

EEG with 62 electrodes+EOG+ECG in 3T
Variable randomized SOA

1. Detection task
2. Go/NoGo task
EEG analysis 1: average ERPs

EEG measured at Pz electrode

Average of 20 Os

Average of 80 Go
ERPs have very low SNR and suffer from artifacts caused by non-brain and brain sources

Variety of PARAFAC Applications, e.g.:

- Brain topography *(Field and Graupe, *Brain Topogr.* 1991)*

- Brain-computer interfacing *(A. Cichocki, *IEEE computer society magazine*, 2008)*

- Inter-trial phase coherence analysis in event-related EEG *(Mørup et al., *NeuroImage* 2005) *(M. Weiss et al., *ICASSP* 2009)*

- Event-related EEG (during simultaneous fMRI acquisition)
Application of PARAFAC to Event-Related EEG allows
– including three or more data dimensions into the tensor for ERP analysis (e.g. subjects, trials, tasks, etc.)
– unique data decomposition without additional assumptions
– finding ERP properties not revealed by traditional averaging

Preprocessing important, e.g.
• removal of artifacts
• Imposing orthogonality in 1 mode (trial, subject) to avoid degeneracy
• Optimize parameters (number of components between 2 and 10)
ERP analysis: PARAFAC on channels x time x trials

$$X = \sum_{r=1}^{R} C_r B_r^T + E$$
PARAFAC on Channels x Time x Subjects ERP for upper right stimulus

Recorded in scanner plus fMRI
Averaged ERPs per subject
→ 5 left occipital channels
→ different P1 latencies found
 in grand average ERP
 separated in 2 components

Recorded in scanner, no fMRI
Averaged ERPs per subject
→ all channels
→ 2 components: grand average (left) and BCG artefact (right)
Validation: classification of trial type

Left vs. right stimuli

• **Raw data**: based on difference in P1 amplitude (left – right)
• **PARAFAC**: based on 1 trial mode of decomposition
• In both cases: $\frac{1}{2}$ trials for training, $\frac{1}{2}$ for testing
Quadrant stimuli

- **Raw data**: based on P1 left-right difference and C1 amplitude
- **PARAFAC**: based on 2 trial modes of decomposition
- In both cases: ½ trials for training, ½ for testing
• PARAFAC allows the extraction of task-related ERP information on a single trial basis
• Performance is better than raw data characteristics
• Both for left-right and 4 quadrant distinction
• More difficult but still possible for simultaneously acquired EEG data

• Introduction
• Tensor Algorithms
• Examples in EEG monitoring
 – Epileptic seizure onset localization
 – Neonatal seizure localization
 – Event-Related Potential Analysis
• Conclusions and new directions
Conclusions: Tensors increasingly popular in biom. SP

- Successful: e.g. epileptic seizure onset localization using multichannel EEG
- Mostly restricted to PARAFAC via alternating least squares
- PARAFAC more sensitive than visual EEG reading for seizure localization
- Electrode artifacts disturb localization …
- PARAFAC output used as starting point for 3D EEG source localization
- Remark: Tucker3 model has also been used for seizure localization (Acar et al., IASTED 2007)

Future challenges?
Block Tensor Decomposition

\[\mathbf{X} = \mathbf{A}_1 \mathbf{S}_1 \mathbf{B}_1 + \ldots + \mathbf{A}_R \mathbf{S}_R \mathbf{B}_R \]

Ref: De Lathauwer et al., SIMAX, 2008; Sorber et al., SIOPT, 2012
Acknowledgements

KATHOLIEKE UNIVERSITEIT
LEUVEN

IDO EEG-fMRI project

iWT

cost action NeuroMath

iMinds CONNECT.INNOVATECREATE
Thank you for your attention!

Questions?

http://www.esat.kuleuven.be/scd/