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PLS regression and its variants

® When X is a matrix and Y is a vector or a matrix, a very popular method to build

this regression model is Partial Least Squares Regression (PLSR) or its variants.
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® Many papers have discussed this method from geometrical, mathematical and
statistical point of view. Several reviews illustrating the interest of PLS regression in

various applications.

Martens, H,, Naes, T., (1989) Multivariate Calibration (2nd edn), Vol. 1. Wiley: Chichester

Bhupimder, S., Dayal and McGregor, J.F., (1997). Improved PLS algorithms. Journal of Chemometrics, 11, 73-85.
[Phatak, A., de Jong, S., (1997). The geometry of partial-least squares. Journal of Chemometrics, 11, 311-338.
Helland, I. (1988). On the structure of partial-least squares regression. Commun. Stat.—Simul. 17, 581-607.
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Compact form of PLS regression
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" Data Analysis Problem statement :
N way regression
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Targest application

Metabomic approach Metabolomic analysis

® Overall characterization of fluids and /
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or food in order to characterize the ;\} N |

biological impact of chemical : l
. EXTRACTION : [0 1
contaminants on the scale of the body, or G owLUTION... KA et L\

the body of the cell, ultimately with the ~
aim of highlighting the biological
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exposure biomarkers signing.
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Notations and definitions (1)

® Outer product of vectors. The outer product of the
vectors t,a and b is a three 3 way array P . The elements of

P are expressed as Pl-jk = tiajbk

¢ Three way data with rank one. A three way data is of

rank 1 if and only if it can be written as the outer product of

3 vectors. P=toaoch= \_tiajka

b/a




4 g q

Trilinear PLS o x = ¥

* Introduced by Bro [1996]  Bro, R. (1996). Journal of Chemometrics, 10, 47-61.

® Few studies around Nway PLS (Smilde and al. [6]). smiide, A.k. (1997). Journal of
Chemometrics, 11, 367-377.

® Trilinear PLS Model i
X = Ztgﬁ) oallobl) + R\

Y = T/'B") + RV

® Trilinear PLS algorithm( sequential )

® Stage 1. Computation of Scores and loadings

* Stage 2. Deflation
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Stage 1. Computation of scores and loadings

|((((( ) /’ Trpilinear PLS 1
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Covariance between X and y
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Singular Value Decomposition

Compute X score
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Stage 1. Computation of scores and loadings.

Trilinear PLS 2

‘ ] . t(f() =Yv \ TRI-PLS1
- ,

G ‘ o tl) — TRI - PLS1(X, ¢ A
Y t 4

| U YTt?)/M)TYw

Compute Y-score Perform TRI-PLS1
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Trilinear PLS Algorithm : deflation stage

X =x
kx(h+1) _ X(h) —tg) o agﬁ’) Obg?)
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* Using MLR for deﬂating Y

® X-Scores are not Orthogonal.

* X two way data =2 PLS2 (deflates on loadings) or Tucker
Analysis (1958)
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Motivation

- Convergence Issues Optimality issues

Scores and loadings Deflation Scores and loadings) Deflation
Trilinear No problem No problem Known Known
PLS1 (not iterative) (not iterative)
No problem
Trilinear Unknown (not iterative) Unknown Known

PLS2

® Main Lack of knowledge :

* Convergence of the procedure (felt but not rigorously

demonstrated).

® no apparent optimization is provided to characterize the parameters

(scores and loadings) of the method

® may be trilinear PLS 2 is equivalent to existing methods

.




How to do ?

® Sequences generated byTri—PLSZ

TRI-PLS? (l) (Z)
ot(;) -Yv tX . tY =1 ® Scores
et « TRI-PLS1(X, ) #
ev=Y'tl/y TyY'el (a(‘z{), al;by );20 * Loadings

° Study TRI-PLS? €= => study the various sequences generated
by the procedure
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Notations and definitions (2)

® From three way data two multiblock (Sk)

K/ . P .. P,
nﬁ; p » . s s,

® (Covariance tensor between X andY
q

Y'S,
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Results : monotony properties
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Monotony properties
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Monotony properties of Trilinear PLS 2

e Show the monotony convergence of trilinear PLS2

® Assess the best solutions to be choosen when several starting

vectors are used

® the various criteria can be used as stopping criterien
(Implementation )

® to assess the correcteness of the procedure (Implementation)




Optimality Results for Trilinear PLS 2 (1)

Scores are solutions the following optimization problem :
.. 7
Maximize cov (tX, tY)

under the constraints
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Optimality Results for Trilinear PLS 2 (2)

Loadings are solutions the following optimization problem :

2
Minimize HZ —Aayoa o bXH
under the constraints

fox] = o] = ] <1
AER

~

Trilinear PLS 2 = PARAFAC applied to covariance tensor
between X and Y

All procedure which estimates parafac can be used to
estimate loadings of Trilinear PLS2

S
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Optimality Results for Trilinear PLS 2 (2)

Trilinear PLS 2

K
Maximize Z cov’(S,a,,Ya, )

=]
under the constraints

fox] =y ] <!

MB PLS

K
Maximize Z cov’ (S Y, )

=1

under the constraints

o] =[] =1 (=12, .K)

Trilinear PLS 2 can be seen as a constrainted (equality of
block loadings) of the well known Multiblock PLS regression
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Conclusions and perspectives

Monotony convergence of trilinear PLS2
Optimality properties for parameters of Trilinear PLS2
Connexion of Trilinear PLS2 with PARAFAC and MBPLS

Application to discrimination

Perspective 1:

® Focus on the deflation stage ( scores are not orthogonal)

Perspective 2 : Explore other tensor decompositions like

Tucker 3

Tucker3 E
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