
Constrained tensor models
Applications to MIMO wireless communication systems

Gérard Favier
I3S Laboratory
Sophia Antipolis

GDR ISIS

16th January 2013

Gérard Favier Constrained tensor models 16th January 2013 1 / 50



Outline

1 Brief history
Doctorate thesis
Research subjects

2 Tensor prerequisites
Basic tensor operations
Tucker models

3 Constrained tensor models
CONFAC models
PARATUCK models

4 Tensor modeling of MIMO communication systems
Motivations
Two basic tensor-based systems
TST coding-based system
Other tensor-based systems

5 Conclusion and perspectives

Gérard Favier Constrained tensor models 16th January 2013 2 / 50



Brief history Doctorate thesis

Doctorate thesis (2005-2014)

Alain Kibangou (2005) University of Marrakech, Maroc

Andre de Almeida (2007) UFC, Fortaleza, Brasil

Estevao Fernandes (2008) UFC, Fortaleza, Brasil

Alexandre Fernandes (2009) UFC, Fortaleza, Brasil

Thomas Bouilloc (20011) DGA

Tristan Porges (2012) THALES

Michele da Costa (2013) UNICAMP, Campinas, Brasil

Leandro Ximenes (2014) UFC, Fortaleza, Brasil

Gérard Favier Constrained tensor models 16th January 2013 3 / 50



Brief history Research subjects

Research subjects

Constrained tensor models (de Almeida, da Costa)
- CONFAC (IEEE TSP 2008)
- Generalized Paratuck (Elsevier SP 2012)

System identification (Kibangou, E. Fernandes, Bouilloc)
- HOS-based linear system identification (Elsevier SP 2008,2010)
- NL system identification

I Block structured NL systems (Wiener, Hammerstein, ...)
I Volterra systems

(IEEE SPL 2006, 2007, 2009; IJ-STA 2009; Elsevier SP 2009, 2010,
2011, 2012; TS 2010; IEEE JSTSP 2010; IJACSP 2012)

SAR image processing (Porges)
- HOSVD-based object recognition/classification (EuRAD’2010,
ICASSP’2011)

Wireless communications (de Almeida, A. Fernandes, Bouilloc, da
Costa, Ximenes):3 book ch., 15 j. papers, >30 conf. papers

Gérard Favier Constrained tensor models 16th January 2013 4 / 50



Brief history Research subjects

Research subjects

Constrained tensor models (de Almeida, da Costa)
- CONFAC (IEEE TSP 2008)
- Generalized Paratuck (Elsevier SP 2012)

System identification (Kibangou, E. Fernandes, Bouilloc)
- HOS-based linear system identification (Elsevier SP 2008,2010)
- NL system identification

I Block structured NL systems (Wiener, Hammerstein, ...)
I Volterra systems

(IEEE SPL 2006, 2007, 2009; IJ-STA 2009; Elsevier SP 2009, 2010,
2011, 2012; TS 2010; IEEE JSTSP 2010; IJACSP 2012)

SAR image processing (Porges)
- HOSVD-based object recognition/classification (EuRAD’2010,
ICASSP’2011)

Wireless communications (de Almeida, A. Fernandes, Bouilloc, da
Costa, Ximenes):3 book ch., 15 j. papers, >30 conf. papers

Gérard Favier Constrained tensor models 16th January 2013 4 / 50



Brief history Research subjects

Research subjects

Constrained tensor models (de Almeida, da Costa)
- CONFAC (IEEE TSP 2008)
- Generalized Paratuck (Elsevier SP 2012)

System identification (Kibangou, E. Fernandes, Bouilloc)
- HOS-based linear system identification (Elsevier SP 2008,2010)
- NL system identification

I Block structured NL systems (Wiener, Hammerstein, ...)
I Volterra systems

(IEEE SPL 2006, 2007, 2009; IJ-STA 2009; Elsevier SP 2009, 2010,
2011, 2012; TS 2010; IEEE JSTSP 2010; IJACSP 2012)

SAR image processing (Porges)
- HOSVD-based object recognition/classification (EuRAD’2010,
ICASSP’2011)

Wireless communications (de Almeida, A. Fernandes, Bouilloc, da
Costa, Ximenes):3 book ch., 15 j. papers, >30 conf. papers

Gérard Favier Constrained tensor models 16th January 2013 4 / 50



Brief history Research subjects

Research subjects

Constrained tensor models (de Almeida, da Costa)
- CONFAC (IEEE TSP 2008)
- Generalized Paratuck (Elsevier SP 2012)

System identification (Kibangou, E. Fernandes, Bouilloc)
- HOS-based linear system identification (Elsevier SP 2008,2010)
- NL system identification

I Block structured NL systems (Wiener, Hammerstein, ...)
I Volterra systems

(IEEE SPL 2006, 2007, 2009; IJ-STA 2009; Elsevier SP 2009, 2010,
2011, 2012; TS 2010; IEEE JSTSP 2010; IJACSP 2012)

SAR image processing (Porges)
- HOSVD-based object recognition/classification (EuRAD’2010,
ICASSP’2011)

Wireless communications (de Almeida, A. Fernandes, Bouilloc, da
Costa, Ximenes):3 book ch., 15 j. papers, >30 conf. papers

Gérard Favier Constrained tensor models 16th January 2013 4 / 50



Tensor prerequisites Basic tensor operations

Basic tensor operations
Vector/Matrix/Tensor unfoldings

Partition of the set {1, . . . ,N} into N1 subsets Sn1 , constituted of p(n1)

elements with
N1∑

n1=1
p(n1) = N. Each subset Sn1 is associated with a

combined mode of dimension Jn1 =
∏

In
n∈Sn1

.

X ∈ C
I1×···×IN → Y ∈ C

J1×···×JN1

Y =

J1∑

j1=1

· · ·

JN1∑

jN1=1

xj1,··· ,jN1
N1
◦

n1=1
e
(Jn1 )

jn1
with e

(Jn1 )

jn1
= ⊗

n∈Sn1

e
(In)
in

(1)

Two particular mode combinations correspond to vectorization and
matricization operations
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Tensor prerequisites Basic tensor operations

Basic tensor operations
Case of third-order tensors

For X ∈ C
I×J×K , there are two different forms of matricization, called flat

and tall unfoldings of X , respectively. For each form, there are six different
matrix representations:

Flat unfoldings: XI×JK ,XI×KJ ,XJ×KI ,XJ×IK ,XK×IJ ,XK×JI

Tall unfoldings: XJK×I ,XKJ×I ,XKI×J ,XIK×J ,XIJ×K ,XJI×K

XI×JK =
I∑

i=1

J∑

j=1

K∑

k=1

xi ,j ,k e
(I )
i (e

(J)
j ⊗ e

(K)
k )T ∈ C

I×JK (2)

XJK×I = XT
I×JK (3)
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Tensor prerequisites Basic tensor operations

Basic tensor operations
Mode-n product of a tensor with a matrix

The mode-n product of X ∈ C
I1×···×IN with A ∈ C

Jn×In along the nth

mode gives the tensor Y of order N and dimensions
I1 × · · · × In−1 × Jn × In+1 × · · · × IN , such as

Y = X×nA (4)

m (5)

yi1,··· ,in−1,jn,in+1,··· ,iN =

In∑

in=1

ajn,inxi1,··· ,in−1,in,in+1,··· ,iN (6)

or in terms of mode-n matrix unfoldings of X and Y

Yn = AXn (7)

Interpretation as the linear transformation from the mode-n space of X to
the mode-n space of Y, associated to the matrix A
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Tensor prerequisites Basic tensor operations

Basic tensor operations
Mode-n product of a tensor with a matrix

Properties

X ∈ C
I1×···×IN

For any permutation π(.) of P distinct indices mp ∈ {1, · · · ,N} such
as qp = π(mp), p ∈ {1, . . . ,P}, with P ≤ N, we have

X×qP
q=q1

A(q) = X×mP
m=m1

A(m) (8)

⇒ the order of the mode-mp products is irrelevant when the indices
mp are all distinct.

For two products along the same mode-n, with A ∈ C
Jn×In and

B ∈ C
Kn×Jn , we have

Y = X×nA×nB = X×n(BA) (9)

∈ C
I1×···×In−1×Kn×In+1×···×IN (10)
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Tensor prerequisites Tucker models

Tucker models
Tucker equation

For a Nth-order tensor X ∈ C
I1×···×IN :

xi1,··· ,iN =

R1∑

r1=1

· · ·
RN∑

rN=1

gr1,··· ,rN

N∏

n=1

a
(n)
in,rn

(11)

with in = 1, · · · , In for n = 1, · · · ,N, where gr1,··· ,rN is an element of the

core/input tensor G ∈ C
R1×···×RN and a

(n)
in,rn

is an element of the matrix

factor A(n) ∈ C
In×Rn
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Tensor prerequisites Tucker models

Tucker models
Other writings

In terms of vector outer products:

X =

R1∑

r1=1

· · ·
RN∑

rN=1

gr1,··· ,rN
N
◦

n=1
A

(n)
.rn (12)

⇒ X is decomposed into a weighted sum of
N∏

n=1
Rn outer products.

In terms of mode-n products:

X = G×1A
(1)×2A

(2)×3 · · · ×NA
(N)

= G×N
n=1A

(n) (13)

⇒ The Tucker model can be interpreted as mode-n product-based
transformations of the core tensor, i.e. linear transformations defined by
the matrices A(n) applied to each mode-n vector space of G.
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Tensor prerequisites Tucker models

Tucker models
Case of third-order tensors (Tucker, 1966)

Tucker-3 models
Third-order tensor X ∈ C

I×J×K : core tensor G ∈ C
P×Q×S and matrix

factors A ∈ C
I×P ,B ∈ C

J×Q ,C ∈ C
K×S

xijk =

P∑

p=1

Q∑

q=1

S∑

s=1

gpqsaipbjqcks (14)

X = G×1A×2B×3C (15)

XIJ×K = (A⊗ B)GPQ×SC
T (16)

vec(X ) = (C⊗ A⊗ B)vec(G) (17)
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Tensor prerequisites Tucker models

Tucker models
Uniqueness issue

The Tucker model is not unique. Its matrix factors can be determined only
up to invertible transformations, i.e. nonsingular matrices.
If the matrix factors (A,B,C) and the core tensor G are replaced by
(ATa,BTb,CTc) and G ×1 T

−1
a ×2 T

−1
b ×3 T

−1
c , respectively, use of

Property P2 of mode-n product gives:

G ×1 T
−1
a ×2 T

−1
b ×3 T

−1
c ×1 ATa ×2 BTb ×3 CTc

= G ×1

(
ATaT

−1
a

)
×2

(
BTbT

−1
b

)
×3

(
CTcT

−1
c

)

= G ×1 A×2 B×3 C

= X
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Constrained tensor models CONFAC models

Constrained tensor models
CONFAC models (de Almeida, Favier, Mota, IEEE TSP’2008)

Tucker model: X = G×1A×2B×3C
with

G = I ×1Ψ×2Φ×3Ω (18)

⇓

X = I ×1(AΨ)×2(BΦ)×3(CΩ) (19)

⇓

Constrained PARAFAC model (PARAFAC with Constrained Factors)

Constraint matrices Ψ ∈ R
P×R , Φ ∈ R

Q×R and Ω ∈ R
S×R whose

columns are chosen as canonical vectors of the Euclidean spaces RP , RQ

and R
S , respectively, with R ≥ max(P ,Q,S).

Gérard Favier Constrained tensor models 16th January 2013 13 / 50



Constrained tensor models CONFAC models

Constrained tensor models
CONFAC models

In a telecommunications context, such constraint matrices
(Ψ ∈ R

P×R ,Φ ∈ R
Q×R ,Ω ∈ R

S×R) can be interpreted as allocation
matrices allowing to allocate (P ,Q,S) resources, like data streams,
codes, and transmit antennas, to the R components that form the
signal to be transmitted.

In this case, the core tensor G is called an allocation tensor.

By assumption, each column of an allocation matrix is a canonical
vector, which means that there is only one value of p, q, and s such
that ψp,rφq,rωs,r = 1, and these values of p, q, and s correspond to
the resources allocated to the r th component of X .
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Constrained tensor models CONFAC models

Constrained tensor models
CONFAC-3 models

xi ,j ,k =
R∑

r=1

P∑

p=1

Q∑

q=1

S∑

s=1
(ψp,rφq,rωs,r )ai ,pbj ,qck,s

Each element xi ,j ,k of the received signal tensor X is equal to the sum
of R components, each component r resulting from the combination
of three resources, each resource being associated with a column of
each matrix factor (A,B,C). This combination, determined by the
allocation tensor, is defined by a set of three indices p, q, s such that
ψp,rφq,rωs,r = 1.

R ≥ max(P ,Q,S) ⇒ Each resource can be allocated several times.

Extension to order N: R ≥ max(R1, ...,RN ).
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Constrained tensor models PARATUCK models

Constrained tensor models
PARATUCK models

PARATUCK-2 model (Harshman, Lundy; 1996)

xi ,j ,k =
P∑

p=1

Q∑

q=1

wp,qai ,pbj ,qψp,kφq,k

⇓

X..k = ADk(Ψ)WDk(Φ)BT

= AG..kB
T

︸ ︷︷ ︸

Tucker-2

G..k = Dk(Ψ)WDk(Φ) = Ψ.kΦ
T
.k �W = (ΨDk(IK )Φ

T )
︸ ︷︷ ︸

PARAFAC(Ψ,Φ, IK )

�W
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Constrained tensor models PARATUCK models

Constrained tensor models
PARATUCK-2 models

xi ,j ,k =

P∑

p=1

Q∑

q=1

wp,qai ,pbj ,qψp,kφq,k

Two interpretations of Ψ and Φ: Interaction or allocation matrices:

- Interaction between the columns p and q of the matrix factors A and B
along the mode-k of X , with the weights wp,qψp,kφq,k .

- Allocation of resources p and q to the mode-k of X , with the weight
(code) wp,q.
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Constrained tensor models PARATUCK models

Constrained tensor models
Generalized PARATUCK models

PARATUCK-(2,4) model (Favier et al., EUSIPCO’2011)

xi ,j ,k,l =
P∑

p=1

Q∑

q=1
wp,q,lai ,pbj ,qψp,kφq,k

PARATUCK-(N1,N) (Favier et al., SP 2012).
X ∈ C

I1×···×IN , with N > N1

xi1,··· ,iN1+1,··· ,iN =

R1∑

r1=1

· · ·

RN1∑

rN1=1

cr1,··· ,rN1 ,iN1+2,··· ,iN

N1∏

n=1

a
(n)
in,rn

φ
(n)
rn,iN1+1

a
(n)
in,rn

, and φ
(n)
rn,iN1+1

are entries of the factor matrix A(n) ∈ C
In×Rn and the

allocation matrix Φ(n) ∈ C
Rn×IN1+1 , ∀n = 1, · · · ,N1, respectively.

Gérard Favier Constrained tensor models 16th January 2013 18 / 50



Constrained tensor models PARATUCK models

Constrained tensor models
Generalized PARATUCK models (Favier, de Almeida; 2013)

xi1,··· ,iN =
R1∑

r1=1
· · ·

RN1∑

rN1=1
wr1,··· ,rN1 ,S

N1∏

n=1
a
(n)
in,rn,Sn

cr1,··· ,rN1 ,T

{r1, · · · , rN1
}: input (or resource) modes,

{i1, · · · , iN}: output (or diversity) modes,

S , T , and Sn ⊆ S
⋃

T (for n = 1, · · · ,N1): subsets of {iN1+1, · · · , iN},

a
(n)
in,rn,Sn

, cr1,··· ,rN1 ,T (equal to 0 or 1), and wr1,··· ,rN1 ,S
: entries of the tensor

factor A(n), of the allocation tensor C, and of the input tensor W.
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Tensor modeling of MIMO communication systems Motivations

Tensor modeling of MIMO communication systems
Motivations

Future wireless communication systems

Aim: Best tradeoff between error performance (SER or BER),
transmission rate (in symbols or bits per channel use), energy
consumption, and receiver complexity for symbol recovery.

Performance improvement by jointly exploiting several diversities.

m

To exploit redundancy into the information-bearing signals at the
receiver.

Blind joint channel/symbol estimation.
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Tensor modeling of MIMO communication systems Motivations

Tensor modeling of MIMO communication systems
Motivations

Redundancy can be provided by:

Channels:
Frequency-selective / Time-selective channels ⇔ Multipath / Doppler
diversities

Spreading/Coding operations at the transmitter in space, time and/or
frequency domains
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Tensor modeling of MIMO communication systems Motivations

Tensor modeling of MIMO communication systems
Space/Time/Frequency spreadings

Space/Time/frequency diversities by:
- Transmitting the same symbols (or data streams) using several Tx
antennas, and using several Rx antennas at the receiver.

⇒ MIMO systems

- Repeating the same symbols during several chip periods or/and
multiple time blocks or/and over several subcarriers.

⇒ Reliability improvement

Space multiplexing by transmitting independent data streams in
parallel on multiple-transmit antennas.

⇒ Transmission rate increase
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Tensor modeling of MIMO communication systems Motivations

Tensor modeling of MIMO communication systems
Motivations

Multidimensional data ⇒ Third- to fifth-order tensors for transmitted
and received signals

Structure of tensor model results from system design

Structure parameters (rank, mode dimensions) are design parameters
(code lengths, nb of Tx/Rx antennas, data streams, subcarriers, time
slots, ...)

Uniqueness properties of tensor models

Possibility of tensor coding

Possibility of resource allocation

Blind/semi-blind receivers (channel/symbol/code joint estimation)

Deterministic approach
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Tensor modeling of MIMO communication systems Motivations

Tensor modeling of MIMO communication systems
Block-diagram of tensor-based systems

S
pa

ce
 

Time (symbol periods)

Code

Time (time blocks)TX signal 
tensor

Data streams
Transmitter 
processing

RX signal 
tensor

Channel

Receiver 
processing

Symbol and 
channel 

estimation

System design

S
pa

ce
 

Time (symbol periods)

Frequency

Time (time blocks)

S
pa

ce
 

Time (symbol periods)

Code

TST

STF

NL-CDMA

Time (time blocks)
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Tensor modeling of MIMO communication systems Two basic tensor-based systems

Tensor modeling of MIMO communication systems
Two basic tensor-based systems

PARAFAC-CDMA (code division multiple access) system
(Sidiropoulos, Giannakis, Bro, IEEE TSP 2000)

M users, K Rx antennas, N symbol periods, J chips (spreading length)

n-th coded/spread symbol of user m

um,n,j = sn,mwj ,m

Signal received by antenna k

xk,n,j =
M∑

m=1

hk,mum,n,j =
M∑

m=1

hk,msn,mwj ,m ⇒ X ∈ C
K×N×J

⇓
Three different diversities: space (K ), time (N), code (J).
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Tensor modeling of MIMO communication systems Two basic tensor-based systems

Tensor modeling of MIMO communication systems
PARAFAC-CDMA system

Assumptions

Flat Rayleigh fading channel time-invariant over N symbol periods.

K , M, N, J are known.

Symbol-level synchronization.

Advantages

Essential uniqueness (up to column permutation and scaling).

Possibility of more users than Rx antennas (underdetermined
systems).

Deterministic approach (ALS) without space/time statistical
independence constraint.

Blind receiver.

Joint channel/symbol/code estimation.
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Tensor modeling of MIMO communication systems Two basic tensor-based systems

Tensor modeling of MIMO communication systems
PARAFAC-CDMA system

Kruskal’s condition
Under the assumptions H, S, and C full k-rank

min(K ,M) +min(N,M) +min(J,M) ≥ 2M + 2

⇓

If N and J ≥ M, then K ≥ 2 antennas are sufficient for M users.

If K and J ≥ M, then N ≥ 2 symbol periods are sufficient.
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Tensor modeling of MIMO communication systems Two basic tensor-based systems

Tensor modeling of MIMO communication systems
PARAFAC-KRST coding system

PARAFAC-KRST coding system
(Sidiropoulos, Budampati, IEEE TSP 2002)

T time blocks of J time slots

KRST coding

st ∈ C
M×1: symbol vector transmitted during block t.

vt = Wst ∈ C
M×1: precoding (space spreading), with W ∈ C

M×M .

D(Wst) ∈ C
M×M : diagonal matrix containing information-bearing

signals to be transmitted by each Tx antenna.

Ut = D(Wst)C
T ∈ C

M×J : postcoding (time spreading onto J time
slots) for each block t, with C ∈ C

J×M .
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Tensor modeling of MIMO communication systems Two basic tensor-based systems

Tensor modeling of MIMO communication systems
PARAFAC-KRST coding system

Reception
Xt = HUt ∈ C

K×J : signals received during each time block t.
⇓

Tensor of received signals: X ∈ CK×J×T

st = [st,1, · · · , st,M ]T , vt = [vt,1, · · · , vt,M ]T

vt = Wst ⇔ vt,m =

M∑

l=1

st,lwm,l

Ut = D(Wst)C
T ⇔ um,j ,t = vt,mcj ,m

xk,j ,t =
R∑

m=1

hk,mum,j ,t =
M∑

m=1

hk,mvt,mcj ,m

⇒ PARAFAC model with matrix factors (H,V,C)
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Tensor modeling of MIMO communication systems Two basic tensor-based systems

Tensor modeling of MIMO communication systems
PARAFAC-KRST coding system

Advantages

ST coding ⇒ Two diversities: space (K ), time (J).

X ∈ C
K×J×T ⇒ Three diversities: space (K ), time (J and T ).

Transmission rate: M
J
log2(µ) bits/channel use, where µ is the

constellation cardinality.

⇒ Performance/Rate tradeoff

Blind joint channel/symbol estimation ⇒ No training is needed for
acquiring CSI (channel state information).

Drawback
Decoding is needed (estimation of st from estimated vt = Wst
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Tensor modeling of MIMO communication systems TST coding-based system

Tensor modeling of MIMO communication systems
PARATUCK-TST coding system (Favier, da Costa, de Almeida, J. Romano, SP 2012)

R data streams of N symbols

S
Data streams

∈CN×R

Coding + Allocation
→ U

Tx signal tensor
∈CM×N×P×J

Channel
→ X = U ×1 H

Rx signal tensor
∈CK×N×P×J
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Tensor modeling of MIMO communication systems TST coding-based system

Tensor modeling of MIMO communication systems
PARATUCK-TST coding system

• MIMO communication system with M transmit antennas and K receive antennas.

• Transmission of R data streams composed of N symbols each.

• Transmission decomposed into P data blocks formed of N time slots each.

Tensor of transmitted signals

Coded signal transmitted from the transmit antenna m, during the time slot n of block
p, and associated with the chip j :

um,n,p,j =
R∑

r=1
wm,r,j
︸ ︷︷ ︸

code

sn,r
︸︷︷︸

symbol

φp,m ψp,r
︸ ︷︷ ︸

allocations
↓ ↓ ↓

W ∈ CM×R×J S ∈ CN×R Φ ∈ RP×M ,Ψ ∈ RP×R







sn,r = nth symbol of rth data stream.

ψp,r = 1 ⇔ data stream r allocated to block p.

φp,m = 1 ⇔ transmit antennam allocated to block p.
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Tensor modeling of MIMO communication systems TST coding-based system

Tensor modeling of MIMO communication systems
PARATUCK-TST coding system

Tensor of received signals

• Flat Rayleigh fading propagation channel H ∈ C
K×M with i.i.d. CN(0,1) entries.

• Channel assumed to be constant during at least P blocks.

xk,n,p,j =
M∑

m=1

hk,m um,n,p,j ⇔ X = U ×1 H

=
M∑

m=1

R∑

r=1

wm,r,j hk,m sn,r φp,m ψp,r

⇒X ∈ C
K×N×P×J satisfies a PARATUCK-(2,4) model

Gérard Favier Constrained tensor models 16th January 2013 33 / 50



Tensor modeling of MIMO communication systems TST coding-based system

Tensor modeling of MIMO communication systems
Visualization of the tensor slice X

..p.

Matrix slice of the received signal tensor obtained by slicing it along the
plane (p, j), i.e. by fixing the two last indices:

X··p,j = HG··p,j S
T

with G··p,j = Dp(Φ)W··j Dp(Ψ)

 

N 

K 

J 

!..p. 
= R 

R 

Dp(!) K 

M 

H M 

M 

Dp(") 

R 

M 

J 

"#
R 

N 

S
T
 

Received signal 

(p-th block) 

MIMO channel 
Code tensor 

Transmitted 

symbols 

Antenna allocation 

(p-th block) 

Stream allocation 

(p-th block) 

TST coding TST coding with allocations 

"!

J 

!..p. 
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Tensor modeling of MIMO communication systems TST coding-based system

Tensor modeling of MIMO communication systems
PARATUCK-TST coding system

Blind joint symbol and channel estimation
Matrix representations of the received signal tensor
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∈ C
JPK×N

∈ C
JPM×R

∈ C
JPN×K

∈ C
JPR×M

X2 = (IJP ⊗ H)G2S
T ⇒ ST= [(IJP ⊗ H)G2]

†X2 (20)

X3 = (IJP ⊗ S)G3H
T ⇒ HT= [(IJP ⊗ S)G3]

†X3 (21)

S and H are estimated by alternately solving (20)-(21) in the LS sense w.r.t. one matrix

conditionally to the knowledge of previously estimated value of the other matrix.
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Tensor modeling of MIMO communication systems
PARATUCK-TST coding system

Identifiability

If S and H are full column-rank, the uniqueness of their conditional LS
estimates requires that G2 ∈ CJPM×R and G3 ∈ CJPR×M be also full
column-rank.

Theorem (Necessary condition)
Assuming that S and H are full column-rank, a necessary condition for
LS identifiability is given by:

PJ ≥ max

(⌈
R

M
,
M

R

⌉)

. (22)

where dxe denotes the smallest integer number greater than or equal to x .
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Tensor modeling of MIMO communication systems
Identifiability

Code tensor: third-order Vandermonde tensor

wm,r ,j = e i2πmrj/MRJ , i2 = −1.

Theorem (Sufficient condition)
Assuming that S and H are full column-rank, and (Φp· = 1TM , Ψp· = 1TR )
for a given p ∈ {1, ...,P}, the minimum value of the spreading length J

ensuring the LS identifiability of S and H is given by:

H
H
H
H

M
R

1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8
2 2 1 2 3 3 4 5 5
3 3 2 1 2 2 3 4 4
4 4 3 2 1 2 2 3 3
5 5 3 2 2 1 2 2 2
6 6 4 3 2 2 1 2 2
7 7 5 4 3 2 2 1 2
8 8 5 4 3 2 2 2 1
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Tensor modeling of MIMO communication systems
Uniqueness

Uniqueness

Theorem
Assuming a Vandermonde structure for the code tensor, if ΨT �ΦT is
full row-rank, which implies P ≥ RM, then S and H are unique up to a
scalar factor, i.e.

S = α Ŝ, H =
1

α
Ĥ. (23)

and the scaling ambiguity factor α can be eliminated by simply
transmitting a known symbol s1,1: α = s1,1/ŝ1,1(∞), where ŝ1,1(∞) is the
estimated value of s1,1 at convergence.
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Tensor modeling of MIMO communication systems
PARATUCK-TST coding system

Advantages

Tensor coding and resource allocation (Tx antennas and data streams
to time blocks).

Three diversities are exploited: space (K ), time (J and P)
⇒ Improved performance w.r.t. KRST coding.

Transmission rate: R
P
log2(µ) bits/channel use, where µ is the

constellation cardinality, independent of M (unlike KRST-coding)

⇒ Performance/Rate tradeoff

Blind joint channel/symbol estimation ⇒ No training is needed for
acquiring CSI (channel state information).
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PARATUCK-TST coding system
Simulation results
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Figure : Influence of the spreading length: BER versus SNR.
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PARATUCK-TST coding system
Simulation results
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Figure : Influence of the block number: BER versus SNR.
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PARATUCK-TST coding system
Simulation results
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Figure : Influence of the data stream number: BER versus SNR.
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PARATUCK-TST coding system
Simulation results
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Figure : TST-ALS vs. TST-ZF.
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Tensor modeling of MIMO communication systems
Comparison of tensor-based systems

Systems Core tensors Received signals τ

TST
PARATUCK-(2,4)

SP 2012

gm,r,p,j = wm,r,jφp,mψp,r xk,n,p,j =
M∑

m=1

R∑

r=1
gm,r,p,jhk,msn,r

R
P

STF
Gen. PARATUCK-(2,4)

IEEE TSP 2013

gm,r,f ,p = wm,r c
(H)
f ,p,m

c
(S)
f ,p,r

xk,n,f ,p =
M∑

m=1

R∑

r=1
gm,r,f ,phk,m,f sn,r

R
PF

ST
PARATUCK-2

SP 2009

gm,r,p = wm,rφp,mψp,r xk,n,p =
M∑

m=1

R∑

r=1
gm,r,phk,msn,r

R
P

STF
PARAFAC
SPAWC 2007

gm,r,f ,j = wm,r,f ,j xk,n,f ,j =
M∑

m=1

R∑

r=1
gm,r,f ,jhk,m,f sn,r

R
F

ST
Tucker-(2,3)
SPAWC 2006

gm,r,p = wm,r,p xk,n,p =
M∑

m=1

R∑

r=1
gm,r,phk,msn,r

R
P

The transmission rate (in bits per channel use) for each system is equal to τ log2(µ) where µ is

the cardinality of the information symbol constellation.

Gérard Favier Constrained tensor models 16th January 2013 44 / 50



Tensor modeling of MIMO communication systems Other tensor-based systems

Tensor modeling of MIMO communication systems
Two other tensor-based systems

NL-CDMA systems

Blind constrained block-Tucker2 receiver for multiuser SIMO NL-CDMA
communication systems. Signal Processing 92, 1624-1636, July 2012.

Assumptions

Multiuser.

Nonlinear coding with column-orthonormal and mutually orthogonal
code matrices.

FIR channels.

Gérard Favier Constrained tensor models 16th January 2013 45 / 50



Tensor modeling of MIMO communication systems Other tensor-based systems

Tensor modeling of MIMO communication systems
NL-CDMA systems

System properties

Block-Tucker2 model for the fourth-order tensor of received signals,
with constrained core tensor (matrix slices having a Vandermonde or
an Hankel structure) implying uniqueness of the model.

Simultaneous users separation and decoding.

Blind joint channel estimation and symbol recovery for each user
using an ALS type algorithm that takes the constrained structure of
the core tensor into account.
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Tensor modeling of MIMO communication systems
Two other tensor-based systems

Cooperative systems

PARAFAC-PARATUCK based blind receivers for dual-hop cooperative
MIMO relay systems. To be published.

Relay-based MIMO systems with Amplify-and-Forward (AF) protocol, for
augmenting signal power and diversity at reception, with KRST coding at
the transmission that allows blind joint channel/symbol estimation using
the direct link (PARAFAC model) and the relay-assisted link (PARATUCK
model).
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Conclusion and perspectives

Conclusion
Advantages of tensor models

Tensor models are very useful for:

Representing and analysing multidimensional signals

Modeling and designing MIMO communication systems

Joint semi-blind estimation of symbols and channels
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Conclusion and perspectives

Future works

Uniqueness of constrained tensor models

Estimation algorithms for structured/constrained tensor models

Optimization/Estimation of resource allocation matrices/tensors

Tensor-based cooperative communication systems
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Conclusion and perspectives

End

Thank you for your attention

List of bibliographical references sent upon request to

favier@i3s.unice.fr
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