

Higher-Order Singular Value Decomposition (HOSVD) for structured tensors

Definition and applications

Rémy Boyer

Laboratoire des Signaux et Système (L2S) Université Paris-Sud XI

GDR ISIS, January 16, 2012

Joint work and articles

Collaborations:

- Roland Badeau (ENST-Paris, LTSI lab./COD team)
- Gérard Favier (CNRS, I3S lab.)

Publications:

- SIAM J. on Matrix Analysis and Applications: "Fast multilinear singular value decomposition for structured tensors", 2008, 30, 3.
- ICASSP'06: "Adaptive multilinear SVD for structured tensors"
- ICASSP'11: "Fast orthogonal decomposition of Volterra cubic kernels using oblique unfolding"

Context of this work

- The subject of multilinear decompositions is relatively new in the SP community.
- There are essentially two families:

I CP (CANonical DECOMPosition/PARAllel FACtors) model [Carroll][Harshman]. Relied to the tensor rank.

II.a Tucker model [Tucker].

Related to the n-mode ranks. The CP is a special case of the Tucker model.

 II.b If orthogonality constraints are imposed, one can refer to the Higher-Order Singular Value Decomposition (HOSVD) [DeLathauwer] or multilinear SVD.
 ⇒ The HOSVD is the subject of this work.

Where can we find HOSVD ?

This decomposition plays an important role in various domains, such as:

- * Spectral analysis,
- * Non-linear modeling,
- * Communication and Radar processing,
- \star blind source separation,
- * image processing,
- * biomedical applications (magnetic resonance imaging and electrocardiography),
- \star web search,
- * computer facial recognition,
- \star handwriting analysis,
- * ...

Definition of the HOSVD

Every $I_1 \times I_2 \times I_3$ tensor $\boldsymbol{\mathcal{A}}$ can be written as:

$$\boldsymbol{\mathcal{A}} = \sum_{i_1=1}^{I_1} \sum_{i_2=1}^{I_2} \sum_{i_3=1}^{I_3} \sigma_{i_1 i_2 i_3} \left(\mathbf{u}_{i_1}^{(1)} \circ \mathbf{u}_{i_2}^{(2)} \circ \mathbf{u}_{i_3}^{(3)} \right)$$

where \circ is the outer product and

$$\mathbf{U}^{(1)} = \begin{bmatrix} \mathbf{u}_1^{(1)} & \dots & \mathbf{u}_{I_1}^{(1)} \end{bmatrix}, \ \mathbf{U}^{(2)} = \begin{bmatrix} \mathbf{u}_1^{(2)} & \dots & \mathbf{u}_{I_2}^{(2)} \end{bmatrix}, \ \mathbf{U}^{(3)} = \begin{bmatrix} \mathbf{u}_1^{(3)} & \dots & \mathbf{u}_{I_3}^{(3)} \end{bmatrix}$$

are three $I_s \times I_s$ unitary matrices. An other expression of the HOSVD based on the Tucker product is

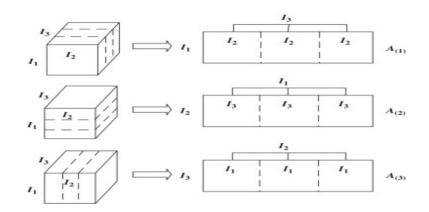
$$\mathcal{A} = \mathcal{S} \times_1 \mathbf{U}^{(1)} \times_2 \mathbf{U}^{(2)} \times_3 \mathbf{U}^{(3)}$$

where

$$[\boldsymbol{\mathcal{S}}]_{i_1i_2i_3} = \sigma_{i_1i_2i_3}$$

is a all-orthogonal core tensor.

HOSVD and standard unfoldings



Using the fast SVD implementation based on orthogonal iteration algorithm:

Operation	Cost per iteration
SVD of \mathbf{A}_1	$O(M_1I_1I_2I_3)$
SVD of \mathbf{A}_2	$O(M_2I_1I_2I_3)$
SVD of \mathbf{A}_3	$O(M_3I_1I_2I_3)$
Final cost	$O(MI^3)$

Very high computational cost !

The structure, the heart of many signal processing applications

- In many signal processing applications, structured tensors are involved. For instance,
 - Higher Principal component analysis (PCA)
 - Kernel decomposition in Volterra series
 - 1-D Harmonic retrieval problem with subspace methods
- Standard modes do not present a particularly noticeable structure even in the case of structured tensors.
- BUT... the modes (up to column-permutations) are IN FACT strongly structured.
 Need a new way to unfold a structured tensor.
- To the best of our knowledge, there are no specific HOSVD algorithms proposed in the literature for exploiting tensors structures.

Higher PCA for real moment and cumulant

- The HOSVD can be viewed as a higher Principal Component Analysis (PCA) for data dimensional reduction.
- Third-order moment and cumulant tensors are defined according to

$$[\mathbf{\mathcal{M}}]_{t_1 t_2 t_3} = E\{x(t_1)x(t_2)x(t_3)\},\tag{1}$$

 $\begin{bmatrix} \boldsymbol{\mathcal{C}} \end{bmatrix}_{t_1 t_2 t_3} = E\{x(t_1)x(t_2)x(t_3)\} + 2E\{x(t_1)\}E\{x(t_2)\}E\{x(t_3)\} \\ - E\{x(t_1)\}E\{x(t_2)x(t_3)\} - E\{x(t_2)\}E\{x(t_1)x(t_3)\} - E\{x(t_3)\}E\{x(t_1)x(t_2)\}.$ (2)

where $t_1, t_2, t_3 \in \{0 \dots I - 1\}$, and x(t) is a real random process.

- Moment and cumulant are symmetric tensors.
- If x(t) is a third-order stationary process, the moment and cumulant tensors are third-order Toeplitz tensors (if x(t) is a stationary process, its probability distribution is invariant to temporal translations: $[\mathcal{C}]_{t+i_1,t+i_2,t+i_3} = [\mathcal{C}]_{i_1i_2i_3}$).

Kernel decomposition in Volterra series [ICASSP'11]

The input/output of a multidimensional convolution of the input signal is

$$y[n] = \sum_{m=1}^{M} \sum_{k_1, \dots, k_m=0}^{I-1} [\mathcal{H}_m]_{k_1 \dots k_m} x[n-k_1] \dots x[n-k_m]$$
(3)

where

- The aim is to factorize the cubic Volterra kernel \mathcal{H}_m .
- If there is no symmetric relations between the entries, there always exists an associated symmetrized kernel according to

$$[\boldsymbol{\mathcal{S}}_m]_{k_1\dots k_m} = \frac{1}{m!} \sum_{\pi \in \mathcal{P}} [\boldsymbol{\mathcal{H}}_m]_{k_{\pi(1)}\dots k_{\pi(m)}}$$
(4)

where \mathcal{P} is the set of cardinal m! of all the permutations of $\{1, \ldots, m\}$.

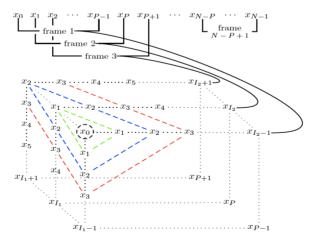
1-D harmonic retrieval problem

• The complex harmonic model is

$$x_n = \sum_{m=1}^{M} \alpha_m e^{(\delta_m + i\phi_m)n}, \text{ for } n \in [0:N-1]$$
(5)

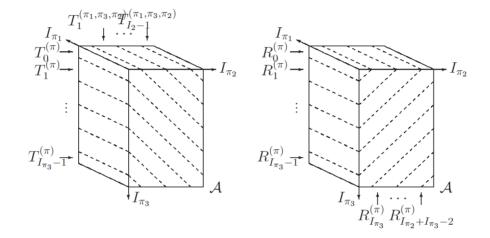
where the aim is to estimate ϕ_m , the angular-frequency and δ_m , the damping factor.

• The Hankel tensor $[\mathcal{A}]_{i_1i_2i_3} = x_{(i_1+i_2+i_3)}$ is diagonalizable in three Vandermonde basis [Papy, Delathauwer and VanHuffel]



New way to see a structured tensor

• Type-1 and type-2 oblique unfolding of a tensor:



Property 1 Type-1 unfolding of symmetric tensors \rightarrow reordered tensor modes has an axial blockwise symmetry w.r.t. its central oblique sub-matrix.

Property 2 Type-1 unfolding of Toeplitz tensors \rightarrow reordered tensor modes are block-Toeplitz.

Property 3 Type-2 unfolding of Hankel tensors \rightarrow reordered tensor modes are composed by rank-1 oblique sub-matrices.

Oblique unfoldings to decrease the complexity

Structured modes by oblique unfolding ψ fast techniques from numerical linear algebra

Thanks to the oblique type-1 and type-2 unfoldings, we have two improvements:

- 1. Exploit the column-redundancy resulting from oblique unfoldings \rightarrow symmetric or Hankel tensors.
- 2. Exploit fast matrix-vector products \rightarrow specific to Toeplitz and Hankel matrices.

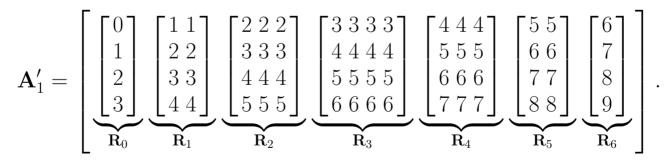
Hankel tensor: an example

Let $[\mathbf{A}]_{ijk} = i + j + k$ be a Hankel tensor of size $4 \times 4 \times 4$.

 \bullet The 1-mode is

$$\mathbf{A}_{1} = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \\ 4 & 5 & 6 & 7 \end{bmatrix} \begin{bmatrix} 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \\ 4 & 5 & 6 & 7 \\ 5 & 6 & 7 & 8 \end{bmatrix} \begin{bmatrix} 3 & 4 & 5 & 6 \\ 4 & 5 & 6 & 7 \\ 5 & 6 & 7 & 8 \\ 6 & 7 & 8 & 9 \end{bmatrix} \end{bmatrix}$$

• A type-2 reordered tensor mode is formed of 7 rank-1 matrices $\mathbf{R}_0 \dots \mathbf{R}_6$:



• The first column is repeated 1 time, the second column is repeated 2 times...

Exploiting column-redundancy (1)

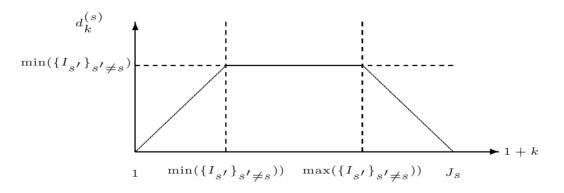
• Define the $I_s \times J_s$ matrix \mathbf{H}_s as the matrix obtained by removing the repeated columns in the *s*-mode with $J_s = \sum_{s \neq s'} I_s - 1$.

In the proposed example
$$(J_1 = 7)$$
: $\mathbf{H}_1 = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 4 & 5 & 6 & 7 & 8 \end{bmatrix}$.

• Let $d_k^{(s)}$ be the number of occurrences of the k^{th} column of \mathbf{H}_s in the *s*-mode. In the proposed example:

$$d_1^{(1)} = d_7^{(1)} = 1, d_2^{(1)} = d_6^{(1)} = 2, d_3^{(1)} = d_5^{(1)} = 3, d_4^{(1)} = 4.$$

• The general form of the occurrence is given by:



Exploiting column-redundancy (2)

• Let $\mathbf{a}_k^{(s)}$ be the k-th column of mode \mathbf{A}_s , using the column-redundancy property, we have

$$\mathbf{A}_{s}\mathbf{A}_{s}^{H} = \sum_{k=1}^{I_{s}} \mathbf{a}_{k}^{(s)} \mathbf{a}_{k}^{(s)H} = \sum_{k \in \Omega_{s}} d_{k}^{(s)} \mathbf{a}_{k}^{(s)} \mathbf{a}_{k}^{(s)H}$$

with $|\Omega_s| = J_s$.

• Same dominant left singular space:

$$\mathcal{R}\{\mathbf{A}_s\} = \mathcal{R} \left\{ \mathbf{H}_s \begin{bmatrix} \sqrt{d_0^{(s)}} & & \\ & \ddots & \\ & & \sqrt{d_{J_s-1}^{(s)}} \end{bmatrix} \right\}.$$

• The column dimensions of $\mathbf{H}_s \mathbf{D}_s$ and \mathbf{A}_s satisfy

$$J_s < \prod_{s \neq s'} I_s$$

• SVD of modes with a smaller number of columns !

 $\rightarrow O(MI^2)$: Gain of one order of magnitude w.r.t. the standard algorithm.

Complexities of the HOSVD algorithms

Computation of the $(M,M,M)\mbox{-HOSVD}$ by the orthogonal iteration method for a cubic tensor.

Structure	Global cost per iteration
unstructured	$12MI^3$
symmetric	$6MI^3$
Toeplitz (fast)	$540MI^2\log_2(I)$
symmetric Toeplitz (fast)	$90MI^2\log_2(I)$
Hankel (fast)	$24MI^2$
cubic Hankel (fast)	$8MI^2$
Hankel (ultra-fast)	$270MI\log_2(I)$
cubic Hankel (ultra-fast)	$60MI\log_2(I)$

Conclusion and perspectives

- Structured tensors imply strongly structured modes if oblique unfoldings are used. Not true for standard unfoldings !
- Increasing the structure of the modes allows to exploit fast techniques from numerical linear algebra based on
 - the column-redundancy property
 - fast products vector/matrix for Toeplitz or Hankel matrices.
- Fastest implementation of the rank-truncated HOSVD (dedicated to Hankel tensors) has a quasilinear complexity w.r.t. the tensor dimensions.
- Generalize to tensors of order > 3.
- Extend to other HOSVD (constrained HOSVD, cross-HOSVD,...)?