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Context of this work

e The subject of multilinear decompositions is relatively new in the SP community.

e There are essentially two families:

I CP (CANonical DECOMPosition/PARAIllel FACtors) model
[ Il ]. Relied to the tensor rank.

Il.a Tucker model | ]
Related to the n-mode ranks. The CP is a special case of the Tucker model.

Il.b If orthogonality constraints are imposed, one can refer to the Higher-Order
Singular Value Decomposition (HOSVD) [ ] or multilinear SVD.

= The HOSVD is the subject of this work.



Where can we find HOSVD ?

This decomposition plays an important role in various domains, such as:

* Spectral analysis,

* Non-linear modeling,

* Communication and Radar processing,

* blind source separation,

* image processing,

* biomedical applications (magnetic resonance imaging and electrocardiography),
* web search,

* computer facial recognition,

* handwriting analysis,

* ...



Definition of the HOSVD

Every I; x Iy x I5tensor A can be written as:

L L I3

A - S: S: S: Oiqigis (UEP O ug) O ug’))

i1=1 ig=1 ig=1

where o is the outer product and
ol = fa® ] U = a0 = [al )

are three I, x I unitary matrices. An other expression of the HOSVD based on the

Tucker product is
A=8 x; UY x, U x, U

where
[Sivisis = Tiigis

is a all-orthogonal core tensor.



HOSVD and standard unfoldings

Using the fast SVD implementation based on orthogonal iteration algorithm:

Operation | Cost per iteration
SVD of A1 O(Mllllglg)
SVD of AQ O(Mglllglg)
SVD of A3 O(Mg]llgjg)
Final cost O(MI?)

Very high computational cost !




The structure, the heart of many signal
processing applications

e In many signal processing applications, structured tensors are involved. For
instance,

- Higher Principal component analysis (PCA)
- Kernel decomposition in Volterra series

- 1-D Harmonic retrieval problem with subspace methods

e Standard modes do not present a particularly noticeable structure even in the
case of structured tensors.

e BUT... the modes (up to column-permutations) are IN FACT strongly structured.
— Need a new way to unfold a structured tensor.

e To the best of our knowledge, there are no specific HOSVD algorithms proposed
in the literature for exploiting tensors structures.



Higher PCA for real moment and cumulant

e The HOSVD can be viewed as a higher Principal Component Analysis (PCA) for
data dimensional reduction.

e Third-order moment and cumulant tensors are defined according to

[M]t1t2t3 - E{I(tﬁﬂ?(tg)l“(tg)}, (1)

(Clistoty = Efa(t)e(ta)e(ts)} + 2E{x(tr) }E{x(t2) } E{2(ts)}
— B{a(t) E{z(t)x(ts)} — E{x(ta) }E{x(t)x(ts)} — E{x(tz)}E{x(tl)x(tz()g-

where t,ts,t3 € {0...1 — 1}, and x(t) is a real random process.

e Moment and cumulant are symmetric tensors.

e If (t) is a third-order stationary process, the moment and cumulant tensors are
third-order Toeplitz tensors (if z(t) is a stationary process, its probability
distribution is invariant to temporal translations: [Cli+i, t+iy.t+is = [Cliyisis)-



Kernel decomposition in Volterra series

[ ]

The input/output of a multidimensional convolution of the input signal is

Mo I-1
y[n] = Z (Honliy. k, xn — k] ... x[n — k)] (3)
m=1 kq,....kp,,=0

where

e The aim is to factorize the cubic Volterra kernel ‘H.,,,.

e |f there is no symmetric relations between the entries, there always exists an
associated symmetrized kernel according to

[Sulbskn = — =S, (4)
TeP

where P is the set of cardinal m! of all the permutations of {1, ..., m}.



1-D harmonic retrieval problem

e The complex harmonic model is
M
Ty, = Z ozme((smﬂgbm)”, for n € [0: N —1] (5)
m=1

where the aim is to estimate ¢,,,, the angular-frequency and 9,,,, the damping
factor.

e The Hankel tensor [Al; i,i, = %(;,+iy+iy) IS diagonalizable in three Vandermonde
basis [ ]
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New way to see a structured tensor

e Type-1 and type-2 oblique unfolding of a tensor:

Tl(ﬁl.ﬁg,.ﬂ'ﬂ)-l(ﬁl.’fl’g.ﬁg)

]ﬁl ¢ L I"‘Tl
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Property 1 Type-1 unfolding of symmetric tensors — reordered tensor modes
has an axial blockwise symmetry w.r.t. its central oblique sub-matrix.

Property 2 Type-1 unfolding of Toeplitz tensors — reordered tensor modes are

block-Toeplitz.

Property 3 Type-2 unfolding of Hankel tensors — reordered tensor modes are

composed by rank-1 oblique sub-matrices.
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Oblique unfoldings to decrease the complexity

Structured modes by oblique unfolding

fast techniques from numerical linear algebra

Thanks to the oblique type-1 and type-2 unfoldings, we have two improvements:

1. Exploit the column-redundancy resulting from oblique unfoldings
— symmetric or Hankel tensors.

2. Exploit fast matrix-vector products
— specific to Toeplitz and Hankel matrices.
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Hankel tensor: an example

Let [A];;x = ¢ + j + k be a Hankel tensor of size 4 x 4 x 4.

e The 1-mode is

TT01237 12347 23457 34567
1234| 2345 [3456]| |4567
2345| [3456]| |4567| [5678
13456 |4567] |5678] | 6789

A =

e A type-2 reordered tensor mode is formed of 7 rank-1 matrices Ry ... Rg :

(O] [117 [2227 [33337] [4447 [H5] [6]
1 22 333 4444 5595 66 7

Al = 2 33 444 55955 666 T 8
3] [44] |555] |6666] 777 s8] |9]
M~ —— —— — = =
Ry Ry Rs R3 Ry Rs Rg

e The first column is repeated 1 time, the second column is repeated 2 times...
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Exploiting column-redundancy (1)

e Define the I, x J, matrix H, as the matrix obtained by removing the repeated
columns in the s-mode with J; = > |, I — 1.

012345
123456
234567

1345678

In the proposed example (J; = 7): H; =

o Let d,(j) be the number of occurrences of the kth column of H, in the s-mode.
In the proposed example:

dV =d" =1,d) =) =2,d) = d) = 3,d") = 4.

e The general form of the occurrence is given by:

- \
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Exploiting column-redundancy (2)

o Let agf) be the k-th column of mode A, using the column-redundancy property,

we have ;
AAT = Z a,(:)agj)H = Z d,(i,s)aés)agj)[{
k=1 keQs
with || = Js.
e Same dominant left singular space:
( B T )
dy)
R{A,} = R { H, .
(s)
\ i dJs_l_ J

e The column dimensions of H, D and A, satisfiy

JS<HIS

s#£s!
e SVD of modes with a smaller number of columns !

— O(M I?): Gain of one order of magnitude w.r.t. the standard algorithm.
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Complexities of the HOSVD algorithms

Computation of the (M, M, M )-HOSVD by the orthogonal iteration method for a
cubic tensor.

Structure Global cost per iteration
unstructured 12MI?
symmetric 6M I3
Toeplitz (fast) 540M 1% log,(I)
symmetric Toeplitz (fast) 90M I? log, (1)
Hankel (fast) 24M I?
cubic Hankel (fast) SMI?
Hankel (ultra-fast) 27T0M I'logs (1)
cubic Hankel (ultra-fast) 60M I logy (1)
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Conclusion and perspectives

e Structured tensors imply strongly structured modes if obliue unfoldings are
used. Not true for standard unfoldings !

e Increasing the structure of the modes allows to exploit fast techniques from
numerical linear algebra based on

- the column-redundancy property

- fast products vector/matrix for Toeplitz or Hankel matrices.

e Fastest implementation of the rank-truncated HOSVD (dedicated to Hankel
tensors) has a quasilinear complexity w.r.t. the tensor dimensions.

e Generalize to tensors of order > 3.

e Extend to other HOSVD (constrained HOSVD, cross-HOSVD,...)?
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