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Context of this work

• The subject of multilinear decompositions is relatively new in the SP community.

• There are essentially two families:

I CP (CANonical DECOMPosition/PARAllel FACtors) model
[Carroll][Harshman]. Relied to the tensor rank.

II.a Tucker model [Tucker].
Related to the n-mode ranks. The CP is a special case of the Tucker model.

II.b If orthogonality constraints are imposed, one can refer to the Higher-Order
Singular Value Decomposition (HOSVD) [DeLathauwer] or multilinear SVD.
⇒ The HOSVD is the subject of this work.
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Where can we find HOSVD ?

This decomposition plays an important role in various domains, such as:

? Spectral analysis,

? Non-linear modeling,

? Communication and Radar processing,

? blind source separation,

? image processing,

? biomedical applications (magnetic resonance imaging and electrocardiography),

? web search,

? computer facial recognition,

? handwriting analysis,

? ...
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Definition of the HOSVD

Every I1 × I2 × I3 tensor A can be written as:

A =

I1∑
i1=1

I2∑
i2=1

I3∑
i3=1

σi1i2i3

(
u

(1)
i1
◦ u(2)

i2
◦ u(3)

i3

)
where ◦ is the outer product and

U(1) =
[
u

(1)
1 . . . u

(1)
I1

]
, U(2) =

[
u

(2)
1 . . . u

(2)
I2

]
, U(3) =

[
u

(3)
1 . . . u

(3)
I3

]
are three Is × Is unitary matrices. An other expression of the HOSVD based on the
Tucker product is

A = S ×1 U
(1) ×2 U

(2) ×3 U
(3)

where
[S]i1i2i3 = σi1i2i3

is a all-orthogonal core tensor.
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HOSVD and standard unfoldings

Using the fast SVD implementation based on orthogonal iteration algorithm:

Operation Cost per iteration
SVD of A1 O(M1I1I2I3)
SVD of A2 O(M2I1I2I3)
SVD of A3 O(M3I1I2I3)
Final cost O(MI3)

Very high computational cost !
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The structure, the heart of many signal
processing applications

• In many signal processing applications, structured tensors are involved. For
instance,

- Higher Principal component analysis (PCA)

- Kernel decomposition in Volterra series

- 1-D Harmonic retrieval problem with subspace methods

• Standard modes do not present a particularly noticeable structure even in the
case of structured tensors.

• BUT... the modes (up to column-permutations) are IN FACT strongly structured.

=⇒ Need a new way to unfold a structured tensor.

• To the best of our knowledge, there are no specific HOSVD algorithms proposed
in the literature for exploiting tensors structures.
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Higher PCA for real moment and cumulant

• The HOSVD can be viewed as a higher Principal Component Analysis (PCA) for
data dimensional reduction.

• Third-order moment and cumulant tensors are defined according to

[M]t1t2t3 = E{x(t1)x(t2)x(t3)}, (1)

[C]t1t2t3 = E{x(t1)x(t2)x(t3)}+ 2E{x(t1)}E{x(t2)}E{x(t3)}
− E{x(t1)}E{x(t2)x(t3)} − E{x(t2)}E{x(t1)x(t3)} − E{x(t3)}E{x(t1)x(t2)}.

(2)

where t1, t2, t3 ∈ {0 . . . I − 1}, and x(t) is a real random process.

• Moment and cumulant are symmetric tensors.

• If x(t) is a third-order stationary process, the moment and cumulant tensors are
third-order Toeplitz tensors (if x(t) is a stationary process, its probability
distribution is invariant to temporal translations: [C]t+i1,t+i2,t+i3 = [C]i1i2i3).
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Kernel decomposition in Volterra series
[ICASSP’11]

The input/output of a multidimensional convolution of the input signal is

y[n] =

M∑
m=1

I−1∑
k1,...,km=0

[Hm]k1...kmx[n− k1] . . . x[n− km] (3)

where

• The aim is to factorize the cubic Volterra kernel Hm.

• If there is no symmetric relations between the entries, there always exists an
associated symmetrized kernel according to

[Sm]k1...km =
1

m!

∑
π∈P

[Hm]kπ(1)...kπ(m)
(4)

where P is the set of cardinal m! of all the permutations of {1, . . . ,m}.
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1-D harmonic retrieval problem

• The complex harmonic model is

xn =

M∑
m=1

αme
(δm+iφm)n, for n ∈ [0 : N − 1] (5)

where the aim is to estimate φm, the angular-frequency and δm, the damping
factor.

• The Hankel tensor [A]i1i2i3 = x(i1+i2+i3) is diagonalizable in three Vandermonde
basis [Papy, Delathauwer and VanHuffel]
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New way to see a structured tensor

• Type-1 and type-2 oblique unfolding of a tensor:

Property 1 Type-1 unfolding of symmetric tensors→ reordered tensor modes
has an axial blockwise symmetry w.r.t. its central oblique sub-matrix.

Property 2 Type-1 unfolding of Toeplitz tensors→ reordered tensor modes are
block-Toeplitz.

Property 3 Type-2 unfolding of Hankel tensors→ reordered tensor modes are
composed by rank-1 oblique sub-matrices.
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Oblique unfoldings to decrease the complexity

Structured modes by oblique unfolding
⇓

fast techniques from numerical linear algebra

Thanks to the oblique type-1 and type-2 unfoldings, we have two improvements:

1. Exploit the column-redundancy resulting from oblique unfoldings
→ symmetric or Hankel tensors.

2. Exploit fast matrix-vector products
→ specific to Toeplitz and Hankel matrices.
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Hankel tensor: an example

Let [A]ijk = i + j + k be a Hankel tensor of size 4× 4× 4.

• The 1-mode is

A1 =


 0 1 2 3

1 2 3 4
2 3 4 5
3 4 5 6


 1 2 3 4

2 3 4 5
3 4 5 6
4 5 6 7


 2 3 4 5

3 4 5 6
4 5 6 7
5 6 7 8


 3 4 5 6

4 5 6 7
5 6 7 8
6 7 8 9


 .

• A type-2 reordered tensor mode is formed of 7 rank-1 matrices R0 . . .R6 :

A′1 =


 0

1
2
3


︸︷︷︸
R0

 1 1
2 2
3 3
4 4


︸ ︷︷ ︸

R1

 2 2 2
3 3 3
4 4 4
5 5 5


︸ ︷︷ ︸

R2

 3 3 3 3
4 4 4 4
5 5 5 5
6 6 6 6


︸ ︷︷ ︸

R3

 4 4 4
5 5 5
6 6 6
7 7 7


︸ ︷︷ ︸

R4

 5 5
6 6
7 7
8 8


︸ ︷︷ ︸

R5

 6
7
8
9


︸︷︷︸
R6

 .
• The first column is repeated 1 time, the second column is repeated 2 times...
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Exploiting column-redundancy (1)
• Define the Is × Js matrix Hs as the matrix obtained by removing the repeated

columns in the s-mode with Js =
∑

s 6=s′ Is − 1.

In the proposed example (J1 = 7): H1 =

 0 1 2 3 4 5
1 2 3 4 5 6
2 3 4 5 6 7
3 4 5 6 7 8

 .
• Let d(s)

k be the number of occurrences of the kth column of Hs in the s-mode.

In the proposed example:

d
(1)
1 = d

(1)
7 = 1, d

(1)
2 = d

(1)
6 = 2, d

(1)
3 = d

(1)
5 = 3, d

(1)
4 = 4.

• The general form of the occurrence is given by:
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Exploiting column-redundancy (2)
• Let a(s)

k be the k-th column of mode As, using the column-redundancy property,
we have

AsA
H
s =

Is∑
k=1

a
(s)
k a

(s)H
k =

∑
k∈Ωs

d
(s)
k a

(s)
k a

(s)H
k

with |Ωs| = Js.

• Same dominant left singular space:

R{As} = R

Hs


√
d

(s)
0

. . . √
d

(s)
Js−1


 .

• The column dimensions of HsDs and As satisfiy

Js <
∏
s 6=s′

Is

• SVD of modes with a smaller number of columns !

→ O(MI2): Gain of one order of magnitude w.r.t. the standard algorithm.
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Complexities of the HOSVD algorithms

Computation of the (M,M,M)-HOSVD by the orthogonal iteration method for a
cubic tensor.

Structure Global cost per iteration
unstructured 12MI3

symmetric 6MI3

Toeplitz (fast) 540MI2 log2(I)
symmetric Toeplitz (fast) 90MI2 log2(I)

Hankel (fast) 24MI2

cubic Hankel (fast) 8MI2

Hankel (ultra-fast) 270MI log2(I)
cubic Hankel (ultra-fast) 60MI log2(I)
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Conclusion and perspectives

• Structured tensors imply strongly structured modes if oblique unfoldings are
used. Not true for standard unfoldings !

• Increasing the structure of the modes allows to exploit fast techniques from
numerical linear algebra based on

- the column-redundancy property

- fast products vector/matrix for Toeplitz or Hankel matrices.

• Fastest implementation of the rank-truncated HOSVD (dedicated to Hankel
tensors) has a quasilinear complexity w.r.t. the tensor dimensions.

• Generalize to tensors of order > 3.

• Extend to other HOSVD (constrained HOSVD, cross-HOSVD,...)?
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