JEVD and CPD: algorithms and application to ICA and fluorescence spectroscopy. PART I

Laurent Albera $^{(1,2,3)}$, Xavier Luciani $^{(4,5)}$

⁽¹⁾ INSERM U1099, Rennes F-35000, France.
⁽²⁾ Université de Rennes 1, LTSI, Rennes F-35000, France.
⁽³⁾ INRIA, Centre Inria Rennes - Bretagne Atlantique, 35042 Rennes Cedex, France.
⁽⁴⁾ Aix Marseille Université, CNRS, ENSAM, LSIS, UMR 7296, 13397 Marseille, France.

⁽⁵⁾ Université de Toulon, CNRS, LSIS, UMR 7296, 83957 La Garde, France.

TRICAP : ThRee-way methods In Chemistry And Psychology 7th edition, June 1st-5th, 2015, Belluno

OUTLINE

1 How to modify BIOME to compute the CP decomposition of symmetric even higher order arrays?

Introduction BIOME and its modified version

2 JET: A SOLUTION TO THE JEVD PROBLEM The JEVD problem Two algorithms based on the LU decomposition

3 APPLICATION TO ICA Cumulant-based ICA Computer results

4 CONCLUSION

APPLICATION TO ICA

OUTLINE

1 How to modify BIOME to compute the CP decomposition of symmetric even higher order arrays?

Introduction BIOME and its modified version

Introduction

TENSORS WITH SOME STRUCTURE

Definition (cubical array) A Q-way ($Q \ge 2$) array $\mathcal{T} \in \mathbb{C}^{N_1 \times \cdots \times N_Q}$ is "cubical" if all its Q dimensions are identical, i.e. $N_1 = \cdots = N_Q = N$

Definition (symmetric array)

Let \mathfrak{S}_Q be the symmetric group of permutations on $[\![1,Q]\!]$. A cubical Q-way $(Q \ge 2)$ array $\mathcal{T} \in \mathbb{C}^{N \times \cdots \times N}$ will be called "symmetric" if:

$$\forall (n_1, \cdots, n_Q) \in [1; Q]^Q_{\mathbb{N}}, \qquad \mathcal{T}_{\sigma(n_1), \cdots, \sigma(n_Q)} = \mathcal{T}_{n_1, \cdots, n_Q}$$

for all permutations $\sigma \in \mathfrak{S}_Q$ *.*

CANONICAL POLYADIC (CP) DECOMPOSITION

Definition (Sets)

Introduction

Let $C^{\mathbb{Q}}(\mathbb{C}^N) = \mathbb{C}^N \otimes \cdots \otimes \mathbb{C}^N$ (Q copies) be the set of all order-Q dimension-N cubical tensors. Then the set of symmetric tensors in $C^{\mathbb{Q}}(\mathbb{C}^N)$ will be denoted by $S^{\mathbb{Q}}(\mathbb{C}^N)$.

Lemma (Symmetric CP model)

Let $\mathcal{T} \in S^{\mathbb{Q}}(\mathbb{C}^{N})$. Then there exists $\mathbf{H} = (H_{n,p}) \in \mathbb{C}^{N \times P}$ and a diagonal array $\mathcal{S} \in S^{\mathbb{Q}}(\mathbb{R}^{P})$ such that [Comon et al., 2008]: $\forall (n_{1}, \cdots, n_{Q}) \in [1; Q]_{\mathbb{N}}^{\mathbb{Q}}, \quad \mathcal{T}_{n_{1}, \cdots, n_{Q}} = \sum_{n=1}^{P} \mathcal{S}_{p, \cdots, p} H_{n_{1}, p} \cdots H_{n_{Q}, p}$ (1)

Definition (Positive semi-definiteness)

An array $\mathcal{T} \in S^{\mathbb{Q}}(\mathbb{C}^N)$ is called Positive Semi-Definite (PSD) if the P components $S_{p,\dots,p}$ of the diagonal core array $S \in S^{\mathbb{Q}}(\mathbb{R}^P)$ are positive.

Introduction

CP DECOMPOSITION ALGORITHMS Iterative algorithms

- ALS [Harshman, 1970] [Bro, 1998] [Smilde, Bro and Geladi, 2004];
- Gauss-Newton, LM, CG [Tomasi and Bro, 2006] [Acar et al., 2011];
- for semi-symmetric 3rd order tensors: [Carroll and Chang, 1970] [Yeredor, 2002] [Maurandi and Moreau, 2014]
- for semi-nonnegative semi-symmetric 3rd order tensors: [Wang et al., 2013] [Coloigner et al., 2014] [Wang et al., 2014]

Semi-algebraic approaches

Idea: rewrite the CP decomposition as a matrix decomposition problem

- By congruence [De Lathauwer, 2004];
- By similarity [Roemer and Haardt, 2008] [Luciani and Albera 2011];
- For PSD symmetric even order tensors (BIOME): [Albera et al., 2004].

BIOME ALGORITHM (AT ORDER 4)

In the following we describe the real version of the BIOME (Blind Identification of Over-complete MixturEs of sources) algorithm but the complex version is almost identical.

- Let $\mathcal{T} \in S^4(\mathbb{R}^N)$ have the symmetric CP decomposition (1);
- Let $\mathbf{T} \in S^2(\mathbb{R}^{N^2})$ be the unfolding matrix of \mathcal{T} such that: $\mathbf{T} = (\mathbf{H} \odot \mathbf{H}) \mathbf{S} (\mathbf{H} \odot \mathbf{H})^{\mathsf{T}}$

with $\mathbf{S} \in S^2(\mathbb{R}^{p^2})$ the corresponding diagonal unfolding matrix of \mathcal{S} (1);

• Let $\mathbf{V}\Sigma\mathbf{V}^{\mathsf{T}}$ be its rank-*P* truncated EigenValue Decomposition (EVD).

Then it exists a non-singular matrix $\mathbf{W} \in \mathbb{R}^{P \times P}$ such that:

$$(\mathbf{H} \odot \mathbf{H}) \mathbf{S}^{1/2} = \mathbf{V} \Sigma^{1/2} \mathbf{W}$$
 and $\mathbf{S}^{1/2} (\mathbf{H} \odot \mathbf{H})^{\mathsf{T}} = \mathbf{W}^{-1} \Sigma^{1/2} \mathbf{V}^{\mathsf{T}}$ (3)

(2)

The (modified) BIOME algorithm $_{\circ\circ\circ}$	THE JET APPROACH 0	APPLICATION TO ICA
000	000	00
BIOME and its modified version		

Let $\phi^{(1)}, \dots, \phi^{(N)}$ be the diagonal matrices built from the rows of matrix **H**.

$$\mathbf{S}^{1/2} \left(\mathbf{H} \odot \mathbf{H} \right)^{\mathsf{T}} = \left[\Phi^{(1)} \mathbf{H}^{\mathsf{T}}, \cdots, \Phi^{(N)} \mathbf{H}^{\mathsf{T}} \right]$$
(4)

$$\Sigma^{1/2} \mathbf{V}^{\mathsf{T}} = \left[\underbrace{\mathbf{W} \Phi^{(1)} \mathbf{H}^{\mathsf{T}}}_{\Gamma^{(1)\mathsf{T}}}, \cdots, \underbrace{\mathbf{W} \Phi^{(N)} \mathbf{H}^{\mathsf{T}}}_{\Gamma^{(N)\mathsf{T}}} \right]$$
(5)

Defining $\mathbf{M}^{(k_1,k_2)} = \Gamma^{(k_1)\sharp}\Gamma^{(k_2)}$ and $\Lambda^{(k_1,k_2)} = \Phi^{(k_1)^{-1}}\Phi^{(k_2)}$, we have:

$$\forall (k_1, k_2) \in [1; N]^2_{\mathbb{N}}, \ k_2 > k_1, \qquad \mathbf{M}^{(k_1, k_2)} = \mathbf{W}^{-\mathsf{T}} \Lambda^{(k_1, k_2)} \mathbf{W}^{\mathsf{T}}$$
(6)

Joint EVD (JEVD) problem

- \mathcal{T} is PSD \Rightarrow **W** \in O(P);
- Orthogonal JEVD computed using the JAD (Joint Approximate Diagonalization) algorithm [Cardoso and Souloumiac, 1996].

THE (MODIFIED) BIOME ALGORITHM	THE JET APPROACH	APPLICATION TO ICA
000 000	0 000	000
BIOME and its modified version		

Let $\phi^{(1)}, \dots, \phi^{(N)}$ be the diagonal matrices built from the rows of matrix **H**.

$$\mathbf{S}^{1/2} (\mathbf{H} \odot \mathbf{H})^{\mathsf{T}} = \begin{bmatrix} \mathbf{S}^{1/2} \Phi^{(1)} \mathbf{H}^{\mathsf{T}}, \cdots, \mathbf{S}^{1/2} \Phi^{(N)} \mathbf{H}^{\mathsf{T}} \end{bmatrix}$$
(7)
$$\Sigma^{1/2} \mathbf{V}^{\mathsf{T}} = \begin{bmatrix} \underbrace{\mathbf{W} \Phi^{(1)} \mathbf{H}^{\mathsf{T}}}_{\Gamma^{(1)\mathsf{T}}}, \cdots, \underbrace{\mathbf{W} \Phi^{(K)} \mathbf{H}^{\mathsf{T}}}_{\Gamma^{(N)\mathsf{T}}} \end{bmatrix}$$
(8)

Defining $\mathbf{M}^{(k_1,k_2)} = \Gamma^{(k_1)\sharp}\Gamma^{(k_2)}$ and $\Lambda^{(k_1,k_2)} = \Phi^{(k_1)^{-1}}\Phi^{(k_2)}$, we have:

$$\forall (k_1, k_2) \in [1; N]^2_{\mathbb{N}}, \ k_2 > k_1, \qquad \mathbf{M}^{(k_1, k_2)} = \mathbf{W}^{-\mathsf{T}} \mathbf{\Lambda}^{(k_1, k_2)} \mathbf{W}^{\mathsf{T}}$$
(9)

Joint EVD (JEVD) problem

- \mathcal{T} is not PSD \Rightarrow **W** $\in \mathbb{R}^{P \times P}$;
- Need for an efficient non-orthogonal JEVD solver!

The (modified) BIOME algorithm $^{\circ\circ\circ}_{\circ\circ\circ}$

THE JET APPROACH

APPLICATION TO ICA

OUTLINE

2 JET: A SOLUTION TO THE JEVD PROBLEM

The JEVD problem Two algorithms based on the **LU** decomposition

The (modified) BIOME algorithm	THE JET APPROACH	APPLICATION TO ICA
000		000
The IEVD problem		

Problem formulation

Find a non-singular matrix $\mathbf{A} \in \mathbb{R}^{P \times P}$ from a set of non-defective matrices $\mathbf{M}^{(k)}$ so that:

$$\forall k \in [1; K]_{\mathbb{N}}, \qquad \mathbf{M}^{(k)} = \mathbf{A} \mathbf{D}^{(k)} \mathbf{A}^{-1}$$
(10)

where the *K* matrices $\mathbf{D}^{(k)} \in \mathbb{R}^{P \times P}$ are diagonal and unknown.

State of the art

All these algorithm resort to a Jacobi-like iterative procedure.

- sh-rt [Fu, 2006] based on the polar decomposition of A.
- JUST [Iferroudjene, 2009] based on the polar decomposition of A.
- JDTM [Luciani and Albera, 2010] based on the polar decomposition of A.
- JET (JET-U and JET-O) [Luciani and Albera, 2011 and 2015] based on the LU decomposition of **A**.
- JDTE [André, 2015] global estimation of A at each iteration.

The (modified)	BIOME	ALGORITHM
000		

Two algorithms based on the LU decomposition

LU decomposition

Due to the indeterminacies of the JEVD problem, the matrix **A** (12) can be chosen of the form $\mathbf{A} = \mathbf{LU}$ (without any loss of generality) with:

- L: unit lower triangular matrix (1 on the diagonal)
- U: unit upper triangular matrix (1 on the diagonal)

Joint triangularization

Let $\mathbf{R}^{(k)}$ be given by $\mathbf{R}^{(k)} = \mathbf{U}\mathbf{D}^{(k)}\mathbf{U}^{-1}$ for any $k \in [1; K]_{\mathbb{N}}$.

• Joint triangularization of the *K* matrices **M**^(*k*) by **L**:

$$\forall k \in [1; K]_{\mathbb{N}}, \qquad \mathbf{M}^{(k)} = \mathbf{L} \mathbf{R}^{(k)} \mathbf{L}^{-1}$$

• Direct computation of the unit upper triangular matrix **U** from the set of matrices **R**^(*k*) (component by component).

Two algorithms based on the LU decomposition

Definition (elementary lower triangular matrix)

An elementary lower triangular matrix $\mathbf{L}^{(i,j)}(a)$ is a unit lower triangular matrix with only one non-null off-diagonal component a located at the *i*-th row and the *j*-th column.

Lemma (LU factorization)

Any unit lower triangular matrix **L** of size $(P \times P)$ can be factorized as a product of M = P(P-1)/2 elementary lower triangular matrices:

$$\mathbf{L} = \prod_{j=1}^{P-1} \prod_{i=j+1}^{P} \mathbf{L}^{(i,j)}(\ell_{i,j})$$

Algorithm (Jacobi-like procedure)

Repeat several times a series (called "sweep") of M sequential optimizations with respect to only one parameter.

The JET Approach $\stackrel{\circ}{_{\circ\circ\circ}}$

APPLICATION TO ICA

Two algorithms based on the LU decomposition

Update of the matrices to be triangularized

$$\forall (i,j) \in [1;P]_{\mathbb{N}}^{2}, \ i > j, \ \forall k \in [1;K]_{\mathbb{N}}, \ \mathbf{M}^{(k)} \leftarrow \left(\mathbf{L}^{(ij)}(x_{i,j})\right)^{-1} \mathbf{M}^{(k)} \mathbf{L}^{(ij)}(x_{i,j}) \quad (11)$$

- Each of these updates only depends on one parameter *x*_{*i*,*j*};
- Each parameter $x_{i,j}$ is computed in order to sequentially improve the upper triangular structure of the $\mathbf{L}^{(i,j)}(x_{i,j})$ -updated matrices.

Objective functions

$$\zeta_{O}(x_{i,j}) = \sum_{k=1}^{K} \sum_{q=1}^{P-1} \sum_{p=q+1}^{P} \left(M_{p,q}^{(k)} \right)^{2}$$
(12)
$$\zeta_{U}(x_{i,j}) = \sum_{k=1}^{K} \left(M_{i,j}^{(k)} \right)^{2}$$
(13)

The (modified) BIOME algorithm $^{\circ\circ\circ}_{\circ\circ\circ}$

THE JET APPROACH

 $\operatorname{Application}_{\stackrel{\circ\circ\circ}{\circ}}_{\circ\circ}$

OUTLINE

Cumulant-based ICA Computer results

Definition (Independent Component Analysis (ICA))

ICA of a *N*-dimensional random vector \mathbf{x} of finite covariance matrix \mathbf{C}_x is given by a pair of matrices (\mathbf{H}, \mathbf{C}_x) such that:

- the covariance matrix C_x factorizes into $C_x = HC_s H^T$ where C_s is diagonal real positive and is full column rank P;
- We the random vector x can be written as x = Hs where s is a P-dimensional random vector with covariance C_s and whose components are "the most independent possible".

Interest

Cumulant-based ICA

Solving Blind Source Separation (BSS) or blind source subspace identification problems as those encountered in biomedical engineering.

The (modified) BIOME algorithm	The JET Approach	$\begin{array}{c} \text{APPLICATION TO ICA} \\ \circ \bullet \circ \\ \circ \circ \end{array}$
Cumulant-based ICA		

Definition (Cumulants)

Let $\Psi_{\mathbf{x}}$ be the second characteristic function of a real-valued random vector \mathbf{x} defined by $\Psi_{\mathbf{x}}(\mathbf{u}) = \log(\mathsf{E}[e^{i\mathbf{u}^{\mathsf{T}}\mathbf{x}}])$, where $\mathsf{E}[z]$ denotes the mathematical expectation of z. The the Q-th order ($Q \ge 1$) cumulant array $C_{Q,\mathbf{x}} = (C_{n_1,\dots,n_Q,\mathbf{x}})$ of \mathbf{x} is then defined by:

$$\left(\mathcal{C}_{n_1,\dots,n_Q,\mathbf{x}}\right) = (-i)^Q \frac{\partial^Q \Psi_{\mathbf{x}}(\mathbf{u})}{\partial u_{n_1} \cdots \partial u_{n_Q}} \bigg|_{\mathbf{u}=\mathbf{0}}$$
(14)

Definition (Leonov-Shirayev formula)

There is a link between Q-th order cumulants and moments of order less than Q. For instance, the components of the FO cumulant array of a zero-mean random vector \mathbf{x} are given by:

$$\begin{aligned} \mathcal{C}_{n_1,n_2,n_3,n_4,\mathbf{x}} &= \mathsf{E}[x_{n_1}x_{n_2}x_{n_3}x_{n_4}] - \mathsf{E}[x_{n_1}x_{n_2}]\mathsf{E}[x_{n_3}x_{n_4}] \\ &- \mathsf{E}[x_{n_1}x_{n_3}]\mathsf{E}[x_{n_2}x_{n_4}] - \mathsf{E}[x_{n_1}x_{n_4}]\mathsf{E}[x_{n_2}x_{n_3}] \end{aligned}$$

The	(MODIFIED)	BIOME	ALGORITHM
000 000			

Cumulant-based ICA

Some properties...

- Symmetry of a cumulant array;
- Diagonality of the cumulant array of a random vector for which components are mutually independent;
- Additivity: $C_{Q,x_1+x_2} = C_{Q,x_1} + C_{Q,x_2}$ if x_1 and x_2 are independent;
- Cancellation of the *Q*-th (*Q* > 2) cumulant array of a Gaussian vector;
- Multi-linearity of the cumulant function $C_{n_1,...,n_O,(\cdot)}$ such that:

$$\mathcal{C}_{n_1,\dots,n_Q,\mathbf{x}} = \sum_{p_1=1}^P \dots \sum_{p_Q=1}^P \mathcal{C}_{p_1,\dots,p_Q,\mathbf{s}} H_{n_1,p_1} \dots H_{n_Q,p_Q} \text{ if } \mathbf{x} = \mathbf{Hs}$$

Very useful for ICA...

ICA can be performed by computing the rank-*P* symmetric CP decomposition (with modified BIOME) of $C_{Q,x}$. Indeed we have:

$$\mathcal{C}_{n_1,\ldots,n_Q,\mathbf{x}} = \sum_{p=1}^{P} \mathcal{C}_{p,\ldots,p,\mathbf{s}} H_{n_1,p} \ldots H_{n_Q,p}$$

The	(MODIFIED)	BIOME	ALGORITHM
000			

Computer results

ICA of ECoG signals: a biomedical engineering BSS problem

Figure: A. In vivo placement of the electrode grid in a 3x3cm area of cortex and the relative electrode, gyri, sulci, and vasculature relationships. B. Electrode placement. From [Gunduz et al., 2008] with permission.

- Design of neuroprosthesis from some brain electrical sources recorded by means of subdural electrodes, i.e. from ElectroCorticoGraphy (ECoG) signals;
- Coruption of the sources of interest, for instance the Mu rhythm, by epileptic activities.

THE JET APPROACH

APPLICATION TO ICA $\circ \circ \circ$

4-BIOME

[Albera et al., 2004]

Computer results

(a) Simulated half-sphere-like cortex.

(b) Global estimation error of **H**.

CoM2 [Comon, 1994]

$$\mathbf{x}[m] = \mathbf{H}\,\mathbf{s}[m] + \mathbf{v}[m] \tag{15}$$

- Simulation of N = 36 electrodes recording ECoG data;
- Simulation of one epileptic activity in the left parietal lobe and one Mu activity in the somatosensory area (i.e. *P* = 2 sources);
- Gaussian additive noise with an unknown covariance matrix.

The (modified) BIOME algorithm $_{\circ\circ\circ}^{\circ\circ\circ}$

THE JET APPROACH

APPLICATION TO ICA

OUTLINE

Conclusion

- How to relax the positive semi-definiteness assumption of BIOME;
- Reformulating the symmetric CP decomposition as a non-orthogonal JEVD problem;
- Proposition of two JEVD algorithms based on the LU factorization for real- and complex-valued matrices;
- Application to ICA in order to process mixtures of sources involving a Gaussian noise with an unknown covariance matrix.

[Luciani and Albera, 2015] X. Luciani and L. Albera, "Joint eigenvalue decomposition of non-defective matrices based on the LU factorization with application to ICA," to appear in IEEE Transactions on Signal Processing.

Perspectives

- Extension of the modified BIOME algorithm to the case of non-symmetric arrays (presented in one minute);
- Reformulating the symmetric CP decomposition as a J-unitary JEVD problem.

A matrix A is J-unitary if $AJA^{H} = J$ where J is a sign diagonal matrix.