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Introduction

TENSORS WITH SOME STRUCTURE

Definition (cubical array)
A Q-way (Q≥ 2) array T ∈ CN1×···×NQ is "cubical" if all its Q dimensions are
identical, i.e. N1 = · · ·= NQ = N

Definition (symmetric array)
Let SQ be the symmetric group of permutations on J1,QK. A cubical Q-way
(Q≥ 2) array T ∈ CN×···×N will be called "symmetric" if:

∀(n1, · · · ,nQ) ∈ [1;Q]
Q
N
, Tσ(n1),··· ,σ(nQ) = Tn1,··· ,nQ

for all permutations σ ∈SQ.

We define the subset [m;n]N of integers by Jm,nK = {m,m+1, . . . ,n}= [m,n]
⋂
N. 4 / 22
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Introduction

CANONICAL POLYADIC (CP) DECOMPOSITION

Definition (Sets)
Let CQ(CN) = CN⊗·· ·⊗CN (Q copies) be the set of all order-Q dimension-N
cubical tensors. Then the set of symmetric tensors in CQ(CN) will be denoted by
SQ(CN).

Lemma (Symmetric CP model)
Let T ∈ SQ(CN). Then there exists H = (Hn,p) ∈ CN×P and a diagonal array
S ∈ SQ(RP) such that [Comon et al., 2008]:

∀(n1, · · · ,nQ) ∈ [1;Q]
Q
N
, Tn1,··· ,nQ =

P

∑
p=1

Sp,··· ,p Hn1,p · · ·HnQ,p (1)

Definition (Positive semi-definiteness)
An array T ∈ SQ(CN) is called Positive Semi-Definite (PSD) if the P components
Sp,··· ,p of the diagonal core array S ∈ SQ(RP) are positive.
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Introduction

CP DECOMPOSITION ALGORITHMS
Iterative algorithms
• ALS [Harshman, 1970] [Bro, 1998] [Smilde, Bro and Geladi, 2004];

• Gauss-Newton, LM, CG [Tomasi and Bro, 2006] [Acar et al., 2011];

• for semi-symmetric 3rd order tensors: [Carroll and Chang, 1970]
[Yeredor, 2002] [Maurandi and Moreau, 2014]

• for semi-nonnegative semi-symmetric 3rd order tensors: [Wang et al.,
2013] [Coloigner et al., 2014] [Wang et al., 2014]

Semi-algebraic approaches
Idea: rewrite the CP decomposition as a matrix decomposition problem

• By congruence [De Lathauwer, 2004];

• By similarity [Roemer and Haardt, 2008] [Luciani and Albera 2011];

• For PSD symmetric even order tensors (BIOME): [Albera et al., 2004].
6 / 22
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BIOME and its modified version

BIOME ALGORITHM (AT ORDER 4)
In the following we describe the real version of the BIOME (Blind Identification of
Over-complete MixturEs of sources) algorithm but the complex version is almost
identical.

• Let T ∈ S4(RN) have the symmetric CP decomposition (1);

• Let T ∈ S2(RN2
) be the unfolding matrix of T such that:

T = (H�H)S(H�H)T (2)

with S ∈ S2(RP2
) the corresponding diagonal unfolding matrix of S (1);

• Let VΣVT be its rank-P truncated EigenValue Decomposition (EVD).

Then it exists a non-singular matrix W ∈ RP×P such that:

(H�H)S1/2 = VΣ
1/2 W and S1/2 (H�H)T = W−1

Σ
1/2 VT (3)

� denotes the Khatri-Rao operator.
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BIOME and its modified version

Let φ(1), · · · ,φ(N) be the diagonal matrices built from the rows of matrix H.

S1/2 (H�H)T =
[
Φ

(1)HT, · · · ,Φ(N)HT
]

(4)

Σ
1/2 VT =

WΦ
(1)HT︸ ︷︷ ︸

Γ(1)T

, · · · ,WΦ
(N)HT︸ ︷︷ ︸

Γ(N)T

 (5)

Defining M(k1,k2) = Γ
(k1)]Γ

(k2) and Λ
(k1,k2) = Φ

(k1)
−1

Φ
(k2), we have:

∀(k1,k2) ∈ [1;N]2
N
, k2 > k1, M(k1,k2) = W−TΛ

(k1,k2)WT (6)

Joint EVD (JEVD) problem

• T is PSD⇒W ∈O(P);
• Orthogonal JEVD computed using the JAD (Joint Approximate

Diagonalization) algorithm [Cardoso and Souloumiac, 1996].

O(P) and ] denote the group of orthogonal P×P matrices and the Moore-Penrose matrix inverse operator, respectively. 8 / 22
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BIOME and its modified version

Let φ(1), · · · ,φ(N) be the diagonal matrices built from the rows of matrix H.

S1/2 (H�H)T =
[
S1/2

Φ
(1)HT, · · · ,S1/2

Φ
(N)HT

]
(7)

Σ
1/2 VT =

WΦ
(1)HT︸ ︷︷ ︸

Γ(1)T

, · · · ,WΦ
(K)HT︸ ︷︷ ︸

Γ(N)T

 (8)

Defining M(k1,k2) = Γ
(k1)]Γ

(k2) and Λ
(k1,k2) = Φ

(k1)
−1

Φ
(k2), we have:

∀(k1,k2) ∈ [1;N]2
N
, k2 > k1, M(k1,k2) = W−TΛ

(k1,k2)WT (9)

Joint EVD (JEVD) problem

• T is not PSD⇒W ∈ RP×P;

• Need for an efficient non-orthogonal JEVD solver!
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The JEVD problem

Problem formulation
Find a non-singular matrix A ∈ RP×P from a set of non-defective matrices
M(k) so that:

∀k ∈ [1;K]N, M(k) = AD(k)A−1 (10)

where the K matrices D(k) ∈ RP×P are diagonal and unknown.

State of the art
All these algorithm resort to a Jacobi-like iterative procedure.

• sh-rt [Fu, 2006] based on the polar decomposition of A.

• JUST [Iferroudjene, 2009] based on the polar decomposition of A.

• JDTM [Luciani and Albera, 2010] based on the polar decomposition of A.

• JET (JET-U and JET-O) [Luciani and Albera, 2011 and 2015] based on the LU
decomposition of A.

• JDTE [André, 2015] global estimation of A at each iteration.

11 / 22



THE (MODIFIED) BIOME ALGORITHM THE JET APPROACH APPLICATION TO ICA

Two algorithms based on the LU decomposition

LU decomposition
Due to the indeterminacies of the JEVD problem, the matrix A (12) can be
chosen of the form A = LU (without any loss of generality) with:

• L: unit lower triangular matrix (1 on the diagonal)

• U: unit upper triangular matrix (1 on the diagonal)

Joint triangularization
Let R(k) be given by R(k) = UD(k)U−1 for any k ∈ [1;K]N.

• Joint triangularization of the K matrices M(k) by L:

∀k ∈ [1;K]N, M(k) = LR(k) L−1

• Direct computation of the unit upper triangular matrix U from the set
of matrices R(k) (component by component).

12 / 22
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Two algorithms based on the LU decomposition

Definition (elementary lower triangular matrix)
An elementary lower triangular matrix L(i,j)(a) is a unit lower triangular matrix
with only one non-null off-diagonal component a located at the i-th row and the j-th
column.

Lemma (LU factorization)
Any unit lower triangular matrix L of size (P×P) can be factorized as a product of
M = P(P−1)/2 elementary lower triangular matrices:

L =
P−1

∏
j=1

P

∏
i=j+1

L(i,j)(`i,j)

Algorithm (Jacobi-like procedure)
Repeat several times a series (called "sweep") of M sequential optimizations with
respect to only one parameter.
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Two algorithms based on the LU decomposition

Update of the matrices to be triangularized

∀(i, j) ∈ [1;P]2
N
, i > j, ∀k ∈ [1;K]N, M(k)←

(
L(ij)(xi,j)

)−1
M(k)L(ij)(xi,j) (11)

• Each of these updates only depends on one parameter xi,j;

• Each parameter xi,j is computed in order to sequentially improve the
upper triangular structure of the L(i,j)(xi,j)-updated matrices.

Objective functions

ζO(xi,j) =
K

∑
k=1

P−1

∑
q=1

P

∑
p=q+1

(
M(k)

p,q

)2
(12)

ζU(xi,j) =
K

∑
k=1

(
M(k)

i,j

)2
(13)
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Cumulant-based ICA

Definition (Independent Component Analysis (ICA))
ICA of a N-dimensional random vector x of finite covariance matrix Cx is given by
a pair of matrices (H,Cx) such that:

1 the covariance matrix Cx factorizes into Cx = HCs HT where Cs is diagonal
real positive and is full column rank P;

2 the random vector x can be written as x = Hs where s is a P-dimensional
random vector with covariance Cs and whose components are "the most
independent possible".

Interest
Solving Blind Source Separation (BSS) or blind source subspace
identification problems as those encountered in biomedical engineering.
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Cumulant-based ICA

Definition (Cumulants)
Let Ψx be the second characteristic function of a real-valued random vector x defined
by Ψx(u)= log(E[eiuTx]), where E[z] denotes the mathematical expectation of z. The
the Q-th order (Q≥ 1) cumulant array CQ,x=

(
Cn1,...,nQ,x

)
of x is then defined by:

(
Cn1,...,nQ,x

)
= (−i)Q ∂QΨx(u)

∂un1 · · ·∂unQ

∣∣∣∣∣
u=0

(14)

Definition (Leonov-Shirayev formula)
There is a link between Q-th order cumulants and moments of order less than Q.
For instance, the components of the FO cumulant array of a zero-mean random
vector x are given by:

Cn1,n2,n3,n4,x = E[xn1xn2xn3xn4 ]−E[xn1xn2 ]E[xn3xn4 ]

−E[xn1xn3 ]E[xn2xn4 ]−E[xn1xn4 ]E[xn2xn3 ]
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Cumulant-based ICA

Some properties...
• Symmetry of a cumulant array;

• Diagonality of the cumulant array of a random vector for which
components are mutually independent;

• Additivity: CQ,x1+x2 = CQ,x1 +CQ,x2 if x1 and x2 are independent;

• Cancellation of the Q-th (Q > 2) cumulant array of a Gaussian vector;

• Multi-linearity of the cumulant function Cn1,...,nQ,(·) such that:

Cn1,...,nQ,x = ∑
P
p1=1. . .∑

P
pQ=1 Cp1,...,pQ,s Hn1,p1 . . .HnQ,pQ if x = Hs

Very useful for ICA...
ICA can be performed by computing the rank-P symmetric CP
decomposition (with modified BIOME) of CQ,x. Indeed we have:

Cn1,...,nQ,x = ∑
P
p=1 Cp,...,p,s Hn1,p . . .HnQ,p
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Computer results

ICA of ECoG signals: a biomedical engineering BSS problem

Figure: A. In vivo placement of the electrode grid in a 3x3cm area of cortex and the relative electrode, gyri, sulci, and

vasculature relationships. B. Electrode placement. From [Gunduz et al., 2008] with permission.

• Design of neuroprosthesis from some brain electrical sources
recorded by means of subdural electrodes, i.e. from
ElectroCorticoGraphy (ECoG) signals;

• Coruption of the sources of interest, for instance the Mu rhythm,
by epileptic activities.
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Computer results

(a) Simulated half-sphere-like cortex. (b) Global estimation error of H.

x[m] = Hs[m]+ν[m] (15)

• Simulation of N = 36 electrodes recording ECoG data;
• Simulation of one epileptic activity in the left parietal lobe and

one Mu activity in the somatosensory area (i.e. P = 2 sources);
• Gaussian additive noise with an unknown covariance matrix.
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Conclusion
• How to relax the positive semi-definiteness assumption of BIOME;

• Reformulating the symmetric CP decomposition as a non-orthogonal
JEVD problem;

• Proposition of two JEVD algorithms based on the LU factorization for
real- and complex-valued matrices;

• Application to ICA in order to process mixtures of sources involving a
Gaussian noise with an unknown covariance matrix.

[Luciani and Albera, 2015] X. Luciani and L. Albera, "Joint eigenvalue decomposition of non-defective matrices based on the LU
factorization with application to ICA," to appear in IEEE Transactions on Signal Processing.

Perspectives

• Extension of the modified BIOME algorithm to the case of
non-symmetric arrays (presented in one minute);

• Reformulating the symmetric CP decomposition as a J-unitary JEVD
problem.

A matrix A is J-unitary if AJAH = J where J is a sign diagonal matrix. 22 / 22
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