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ABSTRACT
A new family of methods, named 2q-ORBIT (q > 1), is
proposed in this paper in order to blindly identify poten-
tially underdetermined mixtures of statistically independent
sources. These methods are based on the canonical decom-
position of q-th order (q ≥ 2) cumulants. The latter de-
composition is brought back to the decomposition of a third
order array whose one loading matrix is unitary. Such a
decomposition is then computed by alterning and repeat-
ing two schemes until convergence: the first one consists in
solving a Procrustes problem while the second one needs to
compute the best rank-1 approximation of several q-th or-
der arrays. Computer results show a good efficiency of the
proposed methods with respect to classical cumulant-based
algorithms especially in the underdetermined case.

1. INTRODUCTION

CANonical Decomposition (CAND) of 2q-way (q > 1) su-
persymmetric arrays for Blind Mixture Identification (BMI)
is addressed in this paper. A link between CAND and both
the well-known orthogonal Procrustes problem [1] and the
best rank-1 approximation of Higher Order (HO) arrays [2]
is established.

On the one hand, while HO arrays are the HO equiv-
alent of vectors (first order) and matrices (second order),
CAND extends to HO both the Singular Value Decomposi-
tion (SVD) and the rank concept of matrices. CAND was
first introduced (around 1970) in psychometrics [3], later
it was applied in chemometrics where the term PARAFAC
is used instead. Recently, CAND has found widespread
applications in signal processing such as biomedical engi-
neering and array processing [4, 5]. On the other hand, the
BMI problem, which may require to process more sources
than sensors, is often encountered in practice. For instance
in radiocommunication contexts, the probability of receiv-
ing more sources than sensors increases with the reception
bandwidth.

Taleb and Jutten were the first who introduced identifi-
ability results in underdetermined context [6]. Since then,

and thanks to many attractive properties of HO cumulants
such as their capacity to process more sources than sensors,
many cumulant-based methods, which use explicitly or im-
plicitly CAND, were proposed [7–13]. In fact, some of the
latter methods [8, 9] achieve CAND using the well-known
Alternating Least Square (ALS) algorithm or one of its en-
hanced versions [9, 10]. Other methods look for a semi-
algebraic CAND of cumulants [7, 11–13].

In this paper, we propose iterative methods in order to
compute CAND of 2q-th (q ≥ 2) order cumulants. These
algorithms, named 2q-ORBIT (q≥2) (Orthogonal Rotation
estimation for Blind Identification of potentially underde-
Termined mixTures), allow to solve the BMI problem. In
addition the 2q-ORBIT algorithms outperform the classical
cumulant-based approaches [11–13] as shown in the com-
puter results.

2. PROBLEM FORMULATION

Vectors, matrices and arrays with more than two indexes
will be denoted in bold lowercase, in bold uppercase and in
bold calligraphic uppercase, respectively. Plain uppercases
will be mainly used to denote dimensions. The BMI prob-
lem can be expressed as following:

Problem 1 Given a random vector x, find a (N×P ) mixing
matrixA (P may be greater than N ) such that x factorizes
into As+ ν where s = [s1, · · · , sP ]T and ν are a (P ×
1) source vector with statistically independent components
and a (N × 1) Gaussian noise vector, independent from the
source vector, respectively.

Moreover, the BMI problem can be expressed using the HO
array terminology. For this purpose, a few definitions re-
lated to q-way (q≥2) arrays [2] are necessary.

Definition 1 A rank-1 q-way array T ∈CN1×···×Nq is equal
to the outer product u(1) ◦ · · · ◦u(q) of q vectors u(i) ∈CNi

(1≤ i≤q) where each element of T is defined by Ti1,··· ,iq
=

u
(1)
i1
· · ·u(q)

iq
.
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There is a major difference between matrices and multiway
arrays when rank properties are concerned.

Definition 2 The rank of a q-way (q≥2) array T , denoted
by rk(T ), is the minimal number of rank-1 q-way arrays
that yield T ∈CN1×···×Nq in a linear combination.

For instance, the rank of a multiway array can exceed its
dimensions. From definitions 1 and 2, CAND [9, 10, 14]
can be defined as following:

Definition 3 CAND of a q-way (q≥2) array T is the linear
combination of P = rk(T ) rank-1 q-way arrays that yields
T exactly.

Definition 3 shows that the different rank-1 terms can be
permuted and scaled without modifying the sum. A CAND
is then considered unique when it is only subject to these
trivial indeterminacies. Sufficient conditions [15] guarantee
the uniqueness of the CAND and can be used to adress the
identifiability issue of the ORBIT family. Let’s now intro-
duce the i-mode product of a multiway array and a matrix.

Definition 4 The i-mode product of a q-way array T ∈
CN1×···×Nq and a matrix U ∈ CJi×Ni is a q-way array of
CN1×···×Ni−1×Ji×Ni+1×···×Nq given by:

(T×iU)n1,···,ni−1,ji,ni+1,···,nq=
∑Ni

ni=1Tn1,···,ni,···,nqUji,ni

This special product will be as useful in section 3 in order to
describe the 2q-ORBIT methods as the following multiway
array-to-matrix transformations:

Definition 5 Let T be a square 2q-way (q≥2) array of di-
mensionN . Let bq/2c and dq/2e be the lower and the upper
integer part of q/2, repectively. Then the (i, j)-th compo-
nent of the unfolding matrix mat1(T ) of size (Nq ×Nq) is
given by:

(mat1(T ))i,j =
Tn1,···,ndq/2e,ndq/2e+1,···,nq,nq+1,···,nq+dq/2en2q+dq/2e+1,···,n2q

where i = (n1 − 1)Nq−1 + · · · + (ndq/2e − 1)Nbq/2c +
(nq+dq/2e+1−1)Nbq/2c−1+· · ·+(n2q−1)N+n2q and j=
(nq+1−1)Nq−1+· · ·+(nq+dq/2e−1)Nbq/2c+(ndq/2e+1−
1)Nbq/2c−1 + · · ·+ (nq − 1)N + nq .

Another way to unfold HO arrays is presented hereafter:

Definition 6 Let T ∈ CN1×···×Nq be a q-way (q ≥ 3) ar-
ray. Then the (ni,m)-th component of the unfolding matrix
mat(i)2 (T ) ∈ CNi×Ni+1···NqN1···Ni−1 associated to the i-th
mode (1≤ i ≤q) of T is given by:

(mat(i)2 (T ))ni,m = Tn1,··· ,ni−1,ni,ni+1,··· ,nq

where m = (ni+1 − 1)Ni+2 · · ·NqN1 · · ·Ni−1 + (ni+2−
1)Ni+3 · · ·NqN1 · · ·Ni−1+· · · +(nq−1)N1N2 · · ·Ni−1+
(n1−1)N2N3 · · ·Ni−1+(n2−1)N3N4 · · ·Ni−1+· · ·+ni−1.

Now, let’s consider the 2q-th order (q > 1) cumulant array,
C2q, x [11] of the random vector x (see problem (1)) whose
entries are denoted by:

Cnq+1,··· ,n2q
n1,··· ,nq,x = Cum{xn1 , · · · , xnq

, x∗nq+1
, · · · , x∗n2q

} (1)

where ∗ is the complex conjugate operator. Moreover, due
to the multilinearity property enjoyed by cumulants, C2q, x

has the following canonical form:

C2q, x =
∑P

p=1 C
p,··· ,p
p,··· ,p,s ap

◦q ◦ a∗p
◦q (2)

where ap
◦q =ap◦· · ·◦ap, is the q-time outer product of the

p-th column vector of the mixture A, Cp,··· ,p
p,··· ,p,s is the 2q-th

order marginal cumulant of the p-th source. Consequently,
problem 1 can be reformulated as following:

Problem 2 Given the 2q-th order (q > 1) cumulant array
C2q, x of x, find its CAND.

3. ALGORITHM

The 2q-ORBIT (q > 1) method is presented here in order
to solve problem 2. This method consists, firstly, in finding
the P q-way rank-1 arrays A(p) given by A(p) = ap

◦dq/2e ◦
a∗p
◦bq/2c and secondly in identifying matrixA.

3.1. First step: estimation of the P rank-1 arrays A(p)

According to equation (2) and definition 5, the (Nq×Nq)
unfolding matrix of C2q, x, C2q,x = mat1(C2q, x), can be
written as following:

C2q,x = Aq ζ2q,s Aq
H (3)

whereAq =A�dq/2e�A∗bq/2c, � is the Khatri-Rao prod-
uct (columns-wise kronecker product) operator [11], � is
the Khatri-Rao power operator [11] and ζ2q,s the diagonal
matrix diag{[C1,··· ,1

1,··· ,1,s, · · ·, C
P,··· ,P
P,··· ,P,s]}. Now, assume that

the 2q-th order marginal source cumulants are non-zero and
have the same sign ε=±1 and if Aq is full column rank P ,
and construct the (Nq×P ) matrix C2q,x

1/2 =EsL
1/2
s where

L
1/2
s ,Es are the square root of the real-valued diagonal ma-

trix of the P non-zero eigenvalues of εC2q,x and the corre-
sponding unitary (Nq×P ) eigenmatrix, repectively. Then
we have the following proposition:

Proposition 1 Under the previous assumptions, C2q,x
1/2 is a

square root of εC2q,x and B = (L1/2
s )−1Es

HAqζ
1/2
2q,s is a

(P ×P ) unitary matrix, which is real when q is even and
where the diagonal matrix ζ 1/2

2q,s denotes a square root of
ζ2q,s.
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Proof is derived from [13, Theorem 2]. The first result of
proposition 1 derives from the eigenvalue decomposition of
εC`

2q,x. The second result comes from equation (3) and the
fact that two square root matrices are equal up to an orthog-

onal matrix. Now, the (P ×Nq) matrix (C`
2q,x

1/2
)T can be

seen as the unfolding matrix associated to the second mode
of a 3-way array T of size (Nq−1×P×N ) (see definition
6) whose CAND is then given by:

T =
∑P

p=1 aq−1,p ◦ b∗p ◦ dp (4)

where aq−1,p =a⊗d(q−1)/2e
p ⊗ a∗p

⊗b(q−1)/2c is the p-th col-
umn of matrix Aq−1, ⊗ is the Kronecker product operator,
a⊗` is the `-time Kronecker product of a [11]. In addition,
bp and dp are the p-th columns of B and D, respectively,
where the (N×P ) matrix D is given by D=Aζ2q,s

1/2. Thus,
each n-th frontal slice of T can be written as following:

T (:, :, n)=Aq−1diag{D(n, :)}BH (5)

where D(n, :) denotes the n-th row of D. Then, equation
(5) can be seen as the core equation of an extended version
of the following Procrustes problem:

Problem 3 Given two matrices G and F of the same size,
find a unitary matrixB such thatG=FBH.

The solution of the latter constrained problem is given by
B = UV H, where Uand V are the left and right singu-
lar matrices of matrix GHF respectively [1]. Nevertheless,
such a solution cannot be directly used since, according
to (5), the N matrices Fn = Aq−1diag{D(n, :)} are un-
known. So, how can we solve this more generalized Pro-
crustes problem? The solution proposed in this paper con-
sists in identifying iteratively the unknown matrices Aq−1,
D and B. First, with matrix B fixed to an initial value, the
p-th column vector, aq−1,p, of matrix Aq−1 is computed
as the left singular vector associated to the largest singular
value of the p-th vertical slice, T 1(:, p, :), of the 3-way ar-
ray T1 = T ×2B

T. Indeed, each p-th vertical slice of the
latter 3-way array T1 can be written as a rank-1 matrix of
the following form:

T1(:, p, :) = Aq−1diag{IP (p, :)}DT =aq−1,p dp
T (6)

where IP is the (P×P ) identity matrix. Secondly, the n-th
row of matrix D is obtained by taking the diagonal of the
n-th frontal slice of the 3-way array T 2 =T ×1A

]
q−1×2B

T

where ] denotes the pseudo-inverse operator. Indeed, we
have:

T 2(:, :, n)=A]
q−1T (:, :, n)B=diag{D(n, :)} (7)

Thirdly, according to the solution of Procrustes problem
mentionned above, the orthogonal matrix B is obtained by

computing the Singular Value Decomposition (SVD) of ma-
trix

∑N
n=1(diag{D(n,:)})HT3(:, :, n) where T3(:, :, n) is the

n-th frontal slice of the 3-way array T3 = AH
q−1×1T . Next,

repeat the same previous steps until convergence. This ap-
proach describes the first step of the 2q-ORBIT1 method.
Another solution consists in computing each column vector
of D by taking the right singular vector associated to the
largest singular value of each vertical slice of T1. The latter
approach does not require to compute the 3-way array T2

and will be referred to as 2q-ORBIT2 in the sequel. Now,
once the unitary matrix B is identified, the (n1, · · · , nq)-th
component, A(p)

n1,··· ,nq , of the p-th (1≤ p≤P ) rank-1 array
A(p) can be computed by taking the (nq +(nq−1−1)N+
· · ·+(n1−1)Nq−1)-th component of the p-th column vector

of C`
2q,x

1/2
B.

3.2. Second step: identification of mixtureA

Two ways to identify mixtureA are proposed hereafter. The
first one consists in taking matrix D since D = Aζ2q,s

1/2 ,
which leads up to the 2q-ORBIT1a and 2q-ORBIT2a. The
second one consists in canonically decomposing each rank-
1 array A(p) (1≤ p≤ P ) in order to identify each column
vector ap of A. The HO power iteration method [2] allows
for such a decomposition. Let {w(i)

it } be the set of q N -
dimensionnal vectors computed during the it-th iteration of
the HO power method applied to A(p). Vectorw(i)

it+1 is then
given by the following equation:

w
(i)
it+1 = A(p)×1(w(1)

it+1)T×2 · · ·×i−1(w(i−1)
it+1 )T

×i+1(w(i+1)
it )T×i+2 · · ·×q (w(q)

it )T
(8)

and then converges to vectors ap and a∗p for (1≤ i≤ q) and
(q + 1≤ i≤2q), respectively. This procedure leads us up to
the 2q-ORBIT1b and 2q-ORBIT2b methods.

3.3. Identifiability

The number maximal Pmax of sources which can be pro-
cessed using the ORBIT approach is briefly presented here-
after. We can show that this number is generically equal to
Nq−1. Recall that a property is called generic when it holds
everywhere except for a set of Lebesgue mesure 0. As far as
radiocommunication contexts are concerned, Pmax is equal
to N b(q−1)/2c

2(q−1) where N bq/2c
2q denotes the number of differ-

ent virtual sensors of the more ‘efficient’ q-th order virtual
array associated with the true array ofN sensors [16]. Word
‘efficient’ has to be interpreted in terms of maximal number
of sources which can be processed at the concerned statisti-
cal q-th order (more details are given in [16]). For lack of
place, the computation of Pmax is not detailed in this sec-
tion and will be addressed in a longer paper. Even so, we
can say that the proof lies in part on the theoretical results
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(a) source 1 (b) source 2 (c) source 3

Fig. 1. Criteria αi (1 ≤ i ≤ 3) at the output of the 6-ORBIT methods and four classical cumulant-based methods, for a ULA
of N = 2 sensors and P = 3 equispaced (∆θ = 30◦) QPSK sources with the same SNR= 20dB.

proposed in [15]. Besides, in order to illustrate this upper
bound in radiocommunications, table 1 gives it for differ-
ent cumulant-based methods, namely 6-BIOME [11], FO-
BIUM [12], FOOBI1 [13], FOOBI2 [13] and 6-ORBIT, as
a function of the number N of sensors of a Uniform Linear
Array (ULA).

N 2 3 4 5 6 7 8
FOOBI1 2 4 7 9 11 13 15
FOOBI2 3 5 7 9 11 13 15

Pmax FOBIUM 3 5 7 9 11 13 15
6-BIOME 3 5 7 9 11 13 15
6-ORBIT 3 5 7 9 11 13 15

Table 1. Pmax for a ULA of N sensors

4. COMPUTER RESULTS

A comparative study between the 2q-ORBIT methods for
q = 3) and classical cumulant-based methods such as 6-
BIOME [11], FOBIUM [12], FOOBI1 [13], FOOBI2 [13]
is presented hereafter. A ULA of N = 2 sensors and P = 3
QPSK sources linearly modulated with pulse shape filter
corresponding to a 1/2 Nyquist filter with a roll-off equal
to 0.3 are used. In addition, all sources have the same sym-
bol period Ts = 5Te and the same Signal-to-Noise Ratio
(SNR), where Te denotes the sample period. The source di-
rection angles are θ1 = 10◦, θ2 = 40◦ and θ3 = 70◦. The
source carrier residuals are such that fc1Te =0, fc2Te =0.3
and fc3Te = 0.6. Noise is assumed to be Gaussian, tem-
porally and spatially white. Eventually, the simulation re-
sults are averaged over 200 trials wherein the sources and
the noise are resampled at each trial. A distance criterion
between mixture A and its estimate Â is used as a per-
formance criterion, that is, D(A, Â ) = (α1, α2, · · · , αP )

with αp = min1≤i≤P {d(ap, âi)} where d is the pseudo-
distance between vectors [12] and defined by d(u,v) =
1 − |uHv|2/(||u|| ||v||). Figure 1 shows the variation of
αi (1 ≤ i ≤ 3) at the output of the considered methods as
a function of data samples for a SNR of 20 dB. We note
a faster convergence of the 6-ORBIT methods with respect
to the other algorithms. Figure 2 shows the variation of αi

(1≤ i≤3) as a function of SNR and for 1000 data samples.
We note a good robustness of the 6-ORBIT method to a low
SNR and a very good behaviour, especially for 6-ORBIT1a,
when SNR increases.

5. CONCLUSION

We propose a new family of methods, named 2q-ORBIT
(q > 1), in order to solve the BUMI problem. These algo-
rithms are based on a CAND of a special semi-definite posi-
tive (or negative) 2q-th order cumulant array. In fact, the lat-
ter decomposition is brought back to the decomposition of a
third order array whose one loading matrix is unitary. Such
a decomposition is thus performed in two steps: the first one
consists in solving a generalized Procrustes problem while
the second one needs to compute the best rank-1 approxi-
mation of several q-th order arrays. Computer results show
the efficiency of the 6-ORBIT methods with respect to clas-
sical cumulant-based methods. An identifiability study will
be more detailed in a longer version of this paper in order
to compute the maximum number of sources which can be
processed by the 2q-ORBIT method family. Moreover, ad-
ditional simulations will show the efficiency of 2q-ORBIT
algorithms compared to the ALS-based BUMI approaches
especially in terms of resolution and convergence speed.
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