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ABSTRACT often encountered in practice especially when resorting to

Most of the algorithms today available to compute the canon'-_|o cumulants [3], for instance to achieve an independent

ical decomposition of higher order arrays are either Comput}g_:mponent analysis [1]. But since a relatively small num-

tionally very heavy, or are not guaranteed to converge to thB€" Of Steps is generally sufficient to reach a neighborhood of
global optimum. The solution we propose in order to keeg'€ global optimum (the convergence region), the execution

the numerical complexity moderate is i) to stop the latter al°! additional iterations to reach the optimal solution with a
gorithms once the solution belongs to the convergence regic91°°d accuracy is generally prohibitive in terms of numerical

of the global optimum, and ii) to refine the solution with acomplexity.

mere gradient descent algorithm. The case of fourth order Therefore, and in order to keep the numerical complexity
hermitian positive semi-definite arrays with complex entriegg|atively low, we propose to firstly stop the considered semi-
is considered. In fact, the hermitian symmetry constraint iggebraic algorithm as soon as its current solution belongs to
taken into account by optimizing a higher order multivariateihe convergence region, and secondly to refine the solution
polynomial criterion. A compact matrix form of the gradient \ith 5 gradient descent algorithm, much cheaper in terms of
is then computed based on an appropriate framework allow;,merical complexity. The case of Fourth Order (FO) her-
ing for derivation inC whereas the cost function is not com- mjiian positive semi-definite arrays with complex entries is
plex analytic. This compact expression is perfectly suitabl&gied. In fact, the hermitian symmetry constraint is taken
for matrix-based programming environments such as MATyn5 account by optimizing a higher order multivariate poly-
LAB where loops are to be avoided at all costs. Eventuallynomia| criterion. A compact matrix form of the gradient is
computer results show a good performance of the proposeflen computed based on an appropriate framework allowing
approach. for derivation inC whereas the cost function is not complex
analytic. This compact expression is perfectly suitable for
1. INTRODUCTION matrix-based programming environments such as MATLAB
. where loops are to be avoided at all costs. Eventually, com-

composition (CAND) of Higher Order (HO) arrays raised a%gé{ei::rr]esults show a good performance of the proposed ap-

increasing interest, first in psychometrics and independentl
in phonetics [15], and later in chemistry and signal process-

ing. Indeed, its range of applications was extended to wide- 2. MATHEMATICAL TOOLS AND PROBLEM
spread research areas such and biomedical engineering [9]. FORMULATION

The goal of a CAND is to decompose a given HO array intOrps section is devoted to some basic definitions related to
asum of rank-1 HO arrays provided that the decomposition ig, ijlinear algebra operations. In the sequel, vectors, matri-
essentially unique (i.e. unique up to scale and permutationyeg and arrays with more than two indices will be denoted in
extending by this fact both the concepts of rank and Singulgsg|q |owercase, in bold uppercase and in bold calligraphic

Value Decomposition (SVD) of matrices to HO arrays, but,nnercase, respectively. Plain uppercases will be mainly
without any orthogonal constraint. used to denote dimensions.

Many tools were developed in order to find the CAND ) o ] -
of a given HO array. Among them, iterative algorithms such2-1 Basic definitions in multilinear algebra
as the Levenberg-Marquardt method [6] and the well-knowrhefinition 1 A rank-1 g-way array (g> 1) 7 € CNox->Na
Altern[altf Il_zela_}LsEt)]S_qu?tre (f?LS)f [15]('30rtﬁne t?}f |tshva:j|ant \éer'equal to the outer product) o --- 0 a(® of q vectorsa(l) ¢
sions[11,14,15], just to cite a few. On the other hand, and un~n; : : : .
der some conditions on ranks, the CAND can be transforme (1=i<q) where each element of is defined by:
into a simultaneous joint diagonalization problem giving rise 1) @
to a new class of semi-algebraic algorithms [2, 7]. The lat- Tyolq = & 8 1)
ter methods are well valued since they avoid the convergence
problems of the fully iterative approaches (slow convergenceThe rank of a HO array always exists and it is defined as
local minima, etc.). Some of them [2] focus on the decom+ollows:
position of even HO hermitian positive semi-definite arrays
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Definition 2 The rank of a g-way (g 3) array .7, denoted It's noteworthy that according to definitions 5 and 4 us-
byrk(.7), is the minimal number of rankqg-way arraysthat ing (i) =1 fori e {1,---,q} and&(i) = —1 fori € {q+
yield 7 € CN>Na in a linear combination. 1,---,2q}, the matrixT is related to theN x P) loading ma-

. trix A = [ag,---,ap] in the following way:
Thus, contrary to the matrix case, the rank of a HO array can

exceed the dimensions of the latter. Using both definitions 1

= (A®9la/2) o [a/2] ©g-a/2] *0|q/2]\H
and 2, CAND of a HO array is given by: T=(A ©A JA(A OA )

(4)
Definition 3 CAND of a g-way (¢ 3) array .7 is the linear where ® stands for the Khatri-Rao product (column-wise
combination of P=rk(7) rank-1 g-way arrays: Kronecker product) [2]" is the transpose conjugate oper-

ator andA is a diagonal matrix whose diagonal is the vector
7 P talo. . 0a® @ [A1,---,Ap]. Note that, for positive semi-definite arrays, the
= Z pap p P valuesA,, are strictly positive, then we can drapin (4)
p=1 since its entried, can be involved in the columns &.

wherel, € C andag) stands for the p-th column of the well Based on the latter definitions, the problem we tackle here

called loading matrixA® 2'a{) ... al)] associated to the " be defined as follows:

th (1<i<q) direction of.7". Problem 1 Let.Z be an even HO positive semi-definite ar-

When.7 is of Hermitian symmetry, then its loading matrices ray of Hermitian symmetry, find its CAND with a lower com-
are equal up to a complex conjugate and its CAND can thefutational cost than semi-algebraic methods.
be defined by:

Definition 4 A complex g-way (g 3) array .7 is called 3. TOWARD A LOWER COST CAND

Hermitian if it admits a CAND of the following form: The solution proposed hereafter to solve problem 1 requires
P two stages. First, minimum number of steps of a semi-

T — Z Aeat@o. .. 0a2@ 3) algebraic method [2, 7] is used to compute a solution in the

=1 PP P convergence region of the global optimum. Second, the latter

solution is then used as an initial point for a gradient descent
whereé (i) = +1 is defined such thai! = a anda=1 = a*  algorithm, which will then easily attain the optimal solution.

with * the complex conjugate and where the P scalar valued his strategy is two-fold. Not only, a global optimum is guar-
Ap are real. anteed, but the numerical complexity is reduced compared

i _ o _ with fully semi-algebraic schemes. For the sake of simplic-
It is obvious from definition 3 that the different rank-1 termsity, only FO arrays are considered in the sequel.

can be permuted and scaled without modifying the sum. In

such a case, CAND is considered to be unique up to thesg1 A simple Gradient descent algorithm

trivial indeterminacies. Several studies were achieved in or- , ) ,

der to find the aproppriate conditions for CAND’s unique- Gradient descent algorithms are the simplest approaches to
ness. Some of the latter [13] stated that CAND of symmetri¢0lve optimization problems. Besides their simplicity, they
HO array is essentially unique with probability one when theare known to be cheap in terms of numerical complexity. Let
dimension of the latter does not exceed its order. Generally¥ be a real scalar to be minimized with respect to a complex
it can be stated that each HO array has a unique CAND if it§"atrix Z and letlz ¥ (Zo) be its gradient at poiriZo, then
rank falls between its Kruskal rank defined by Kruskal's con-€ach iteration of the gradient algorithm is given by:

dition [12] and its generic rank defined as the rank which oc- _ , _ ‘

curs with probability one (see [6] and the references therein). Z(t+) — 7 _ u“t) DZ\II(Z“I)) (5)

On the other hand, HO arrays can be easily manipulated (it) , ,
when they are transformed into matrices, for instance usin}yhere parametgr'’ stands for the step size at theh itera-
the following transformation: on. The main drawback of the gradient descent algorithm is

its sensitivity to initialization, especially when the cost func-
Definition 5 Let.7 be a square2g-way (o> 2) array of di-  tion is not convex, because the algorithm may converge to
mensions N. Ldtd/2| and[q/2] be the lower and the upper the closest local minimum. Therefore a good initial guess is
integer part of ¢(2, repectively. Then the,()-th component important in initializing the algorithm. As far as the step size
of the (W x N9) unfolding matrixT = mat(.7) is given by:  is concerned, its choice should be done in a clever way. In
fact, a small step size will lead to a slow convergence, while
Tij= %17”'7n(q/2}7n(q/2}+1-r"'aHQvnq+1~”'-,nq+(q/2}vnq+(q/2}+1-,"'vn2q an overshooting and instability preventing the convergence
occur when the step size is too large. A simple way to avoid
such situations consists of defining an optimal step computed
i=(n— NG 1. 4 (Nrq/21 — 1)Nla/2) in an automatic way locally.

(nq+(q/2W+1— l)NLq/ZJ_l"F R (n2q - 1)N+n2q

where:

3.2 Gradient computation

and: Since the computation of the gradient of the objective func-

i _\Na-1a _ 1Nla/2) tion ¥ with respect to the considered complex varigbles
J=(ngra — N+ ﬂ(qr}gﬂ‘i/ 22— DN + necessary in the gradient descent rule (5), it is useful to give
(Nfg/2141 = LN +--+(g—YN+ng  jnsights into this computation. In the FO array case, a natural
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cost function® derived from equation (4) faq = 2 is given  In order to compute the right hand side of (11), useful prop-

by: erties below are recalled:
* * * 2
Y(AA)=[T-(A0A)(ACA)E (6 vedFZ) = (Ip @ F) veqZ) (12)
where T = mat(.7), A are two complex matrices of size veqFZ) = (Z" @ Ip)vedF) (13)
(N2xN2) and (N x P), repectively and|. || is the Frobenius veqFT) = UpnvedF) (14)
norm. P
_ o - . vedF © G) =diagvedF) @ 1] (Unp @I ) x
As is well known, it is legitimate to considdr as a scalar (1p®In)VedG) (15)

function of two independent complex matricAsand A*,
being understood that this view gives a rule of thumb to cal- vedF o G)

diagved1p ® G)|(Ipn® 1) vedF) (16)

culate the derivatives. In fact, considerigas a function of Tr(FZ) = veqF™)"'veq Z) (17)
the real and imaginary parts & would be mathematically T
sound, but would lead to exactly the same result, if the def- Tr(FZ) = vedF") vedZ) (18)
inition below of the complex derivative of a real functionis  (F®D)'=F'@D" (19)
assumed: )
ov ¥ . v whereF € CPN Z ¢ CN*P G e CVN, D e €M @ is the
9z o0(2) +l o0(2) () Kronecker product operator afidby is a permutation matrix

. o ) . of size PNxPN) defined by:
Note that this definition is necessary, since a real function

of a complex variable is not holomorphic (i.e. the Cauchy- PN (PxN) (NxP)
Riemann conditions are not satisfied). Then the differential Upn = Z Z Epn 7 @ Enp (20)
of ¥ can be written as: p=in=1

AT (A, A") = with E(pF,;XN) a (P x N) elementary matrix of zeros except for

g i . the (p, n)-th position which is set to one. In addition, diag
DaW(A,A%)dveqA)+Da-W(A,A")dveqA”) (8) s a diagonal matrix whose diagonal is vectarIy is the
(N x N) identity matrix andly is anN-dimensional column

where vec is the matrix-to-vector transformation, unvec is it§/ector of ones

inverse such that unveeqA)) = A andDa P (A, A*) = , i ) ) _
vedqd W /dA)T € CI*NP s defined as a vector presentation,  Let'S begin to comput® 4 fr, which appears in the right
of the matrix derivatived® (A, A*)/dA. It is worth men- hand side of (11). This requires to compute the differential

tioning that the stationary points @ can be found using the ©f fr given by:
proposition below [5] [10], which is a direct consequence ofgfy (A, A*) = Da, fr(A,A*)dveqAy)

definition (7): +Da; fr(A,A")dved A3) (21)
PT\lopPosition 1Leth: CV" xC"P — Rand g: RVPx where:
R™" — R be defined as (Z,Z*) = 9(X,Y), whereZ = dveqAs) — Da ArdveqA)+ Da- Ardved A*Y22)

X +jY. In other words, g and h represent the same map, - - h i
but in a different coordinate system. A stationary point of ~dveqAj3) = Da AjdveqA)+Da+AjdveqA™)(23)

function h, or equivalently of g is found by one of the foIIow-That is to say, inserting (22) and (23) into (21):

ing three equivalent conditions:
dfp(A,A") = (Da, fr(A,A")Da Ao+

(i) Dx9(X,Y)=0nNDyg(X,Y)=0 Da; fr(A,A*)Da A3)dveqA) +

(i) Dzh(z.2) =0 (Da, fr(A,A*)Da-Ag +

(i) Dz-h(Z,Z")=0 Da; fr(A,A*)Da-Aj) dveqA*) (24)
where0 is an NP-dimensional row vector of zeros. Now since the differential ofr is related toD A fr in the

Now, from (8) proposition 1, it is sufficient to compute following way:

DaAY(A,A") in order to find the global minimum of. dfr(A,A*) =Dy fr(A,A*)dvedA) +

Since matrixT is Hermitian, the objective functio@ (6) . % *

can be rewritten as: Da- fr(A,A%)dveqA”) (25)
we get from (24):

T(A,A*)=Tr(T"T) - 2fr(A,A*) +g(A,A* 9

where T(Z) is the trace of the square matrkand where Daj fr(A,A")Da A5 (26)
fr(A,A*)=Tr(A2"TA), A, = A®A* andg(A,A*)=
Tr(A2A2M A2ALM). Then we get: As a result, we need to compute the four derivatives

Da, fr,Da, Ao, DAE A andDa, A3 in order to know ex-
d¥(A,A%)=—2dfr(A,A")+dg(A,A")  (10) actlyD, fr. Using (17), (13), (14), (19)f+ can be written
by:
fr(A,A%)=vedAz) " Ul\zp(TT @ Ip) UyzpVed A3)
DaW(A,A%)=—2DA fp(A,A*)+Dag(A,A%) (1) 27)

and consequently:
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Then (21) can be expressed as follows:

dfr(A,A*) =
(Ve AS)"Upzp (T @Ip)Upzp)dveq Ay) +

(Ve A) Ulpp(TT @ Ip) Uyzp)dveq A})  (28)

So, comparing (28) with (21) and using (13) and (14), we

have:

Da, fr(A,A") = veqTTAj)

Da; fr(A,AY) veq'TA>) (29)
Moreover, from (15) and (16), we get:
DaA; = diagved1n®A¥))(Inp®1N) (30)
DaA; = diagved A")1nN)(UpnIN)(Ine®1N)  (31)

Thus, according to the latter equations, we obtain:

Da fr(A,A") = (veqTTAE)Tdiag(veo(lN ®A"))x
(Inp®1N) +veo(TA2)Tdiag(vecJ(A*) ®1N) X
(Upn®@1In) (1N ®INP)232)

Now, we have just to compute the derivativg g to get the
entier expression of the gradient (11) Wf with respect to
veq A). We derive from (9) and (18):

g(A,A") = veq AA") veq A ALY (33)
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Figure 1: The median of the objective functi@nover 1000
realizations, as a function of the number of iterations when
a gradient descent is used to refine the convergence, starting
from an initial guess estimated by a FOOBI method.

4. COMPUTER RESULTS

The performance of the proposed approach is studied here-
after. A matrixA of size (N x P) is generated modeling the
propagation ofP = 4 angularly well-separated sources im-
pinging on a uniform linear array dff = 3 sensors. A FO
positive semi-definite array with hermitian symmetry is com-
puted, based on equation (3) ip= 4 andA; = --- = A4 = 1.

A noise array uniformly distributed ifD, 1] is added to the
resulting FO array in order to produce a noisy hermitian
positive semi-definite FO array’. As pointed out in sec-

Now, following the same procedure used to derive (24) froniion 3, our approach uses the first steps of a semi-algebraic

(25)-(23), we get, if we provisionnally deno¥ = A, A,™:

Dag(A,A*) = Dyg(A,A*)Da, Y DaAp+
Dyg(A,A*)Das YDA At

Dy-g(A,A")Das;Y"'DaA2  (34)

Consequently, it is easy to deduce the following results:

Dyg(A,A") = veqY)" (35)
Dy-g(A,A") = veqY)' (36)

Also, using equations (12), (13), we have:
Da,Y = (A5®1I\2) (37)
DAEY = (INZ ®A2)UN2p (38)

and:

DAZY* (INZ ® AE)UNZP (39)
D A;Y* (A5 ®1I52) (40)

method as an initial guess to attain the convergence region of
the global minimum. We propose to use either the first im-
plementation of FOOBI [8], namely FOOBDbr its second
implementation, called FOOBJ as semi-algebraic method.
The different steps of FOOBlre summarized below:

Step1 Build the (N2 x N2) hermitian positive semi-definite
matrix T = mat.7).

Step2 Compute the EVOI = EAE" and a square rodi =
E AY2. Next, normalize the eigenvectors such thatRhe
matricesH, = unvech,) of size (N x N) are hermitian.

Step3 Compute theP(P+ 1)/ FO arrays%s = ®(Hs, Hy)
for 1<s<t <P where®®(X,Y) € CN*NxNxN g 5
rank-1 detecting device defined for matricksand Y
of size (N x N) in element-way manner as follows:

O (X, Y )ije = Xij Yieo + i Xep — XacYis — XaXfy (42)

and stack the results in matrix M =
[ved211),ved %22),- - ,ved Zpp), veq L12), veq £13),
-, veq ZLp), ved.La3), - Ve Lop), -, ved Lp_1p)]
of size N* x P(P+1)/2).

Then using equations (34)-(40) and equations (15), (16), wgtep4 Compute theP right singular vectorsup of M

obtain the following derivative of:

Dag(A,A*) = 2ved A3AT A3)diagved 1y ® A*))
X (INp® 1N) + 2ved A2A S A,) "diagveq A*) @ 1)
)

X (Upn®@IN)(IN @ Inp
(41)

that correspond to the smallest singular values. Stack
these vectors irP upper triangular matrice®J, such
thatup = [Up,lla Up,22; e aUp,PP7 Up,127 Up,l3a e 7Up,lPa
Up,237 e 7Up,2P7 U 7Up,P—lP]T WhereUle is the (7 J)_

th entry of matrixUp. Then compute thé matrices
Wp=(Up+Up')/2.
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