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ABSTRACT

Most of the algorithms today available to compute the canon-
ical decomposition of higher order arrays are either computa-
tionally very heavy, or are not guaranteed to converge to the
global optimum. The solution we propose in order to keep
the numerical complexity moderate is i) to stop the latter al-
gorithms once the solution belongs to the convergence region
of the global optimum, and ii) to refine the solution with a
mere gradient descent algorithm. The case of fourth order
hermitian positive semi-definite arrays with complex entries
is considered. In fact, the hermitian symmetry constraint is
taken into account by optimizing a higher order multivariate
polynomial criterion. A compact matrix form of the gradient
is then computed based on an appropriate framework allow-
ing for derivation inC whereas the cost function is not com-
plex analytic. This compact expression is perfectly suitable
for matrix-based programming environments such as MAT-
LAB where loops are to be avoided at all costs. Eventually,
computer results show a good performance of the proposed
approach.

1. INTRODUCTION

Since its first appearance (around 1927), the CANonical De-
composition (CAND) of Higher Order (HO) arrays raised an
increasing interest, first in psychometrics and independently
in phonetics [15], and later in chemistry and signal process-
ing. Indeed, its range of applications was extended to wide-
spread research areas such and biomedical engineering [9].
The goal of a CAND is to decompose a given HO array into
a sum of rank-1 HO arrays provided that the decomposition is
essentially unique (i.e. unique up to scale and permutation),
extending by this fact both the concepts of rank and Singular
Value Decomposition (SVD) of matrices to HO arrays, but
without any orthogonal constraint.

Many tools were developed in order to find the CAND
of a given HO array. Among them, iterative algorithms such
as the Levenberg-Marquardt method [6] and the well-known
Alternate Least Square (ALS) [15], or one of its variant ver-
sions [11,14,15], just to cite a few. On the other hand, and un-
der some conditions on ranks, the CAND can be transformed
into a simultaneous joint diagonalization problem giving rise
to a new class of semi-algebraic algorithms [2, 7]. The lat-
ter methods are well valued since they avoid the convergence
problems of the fully iterative approaches (slow convergence,
local minima, etc.). Some of them [2] focus on the decom-
position of even HO hermitian positive semi-definite arrays

often encountered in practice especially when resorting to
HO cumulants [3], for instance to achieve an independent
component analysis [1]. But since a relatively small num-
ber of steps is generally sufficient to reach a neighborhood of
the global optimum (the convergence region), the execution
of additional iterations to reach the optimal solution with a
good accuracy is generally prohibitive in terms of numerical
complexity.

Therefore, and in order to keep the numerical complexity
relatively low, we propose to firstly stop the considered semi-
algebraic algorithm as soon as its current solution belongs to
the convergence region, and secondly to refine the solution
with a gradient descent algorithm, much cheaper in terms of
numerical complexity. The case of Fourth Order (FO) her-
mitian positive semi-definite arrays with complex entries is
studied. In fact, the hermitian symmetry constraint is taken
into account by optimizing a higher order multivariate poly-
nomial criterion. A compact matrix form of the gradient is
then computed based on an appropriate framework allowing
for derivation inC whereas the cost function is not complex
analytic. This compact expression is perfectly suitable for
matrix-based programming environments such as MATLAB
where loops are to be avoided at all costs. Eventually, com-
puter results show a good performance of the proposed ap-
proach.

2. MATHEMATICAL TOOLS AND PROBLEM
FORMULATION

This section is devoted to some basic definitions related to
multilinear algebra operations. In the sequel, vectors, matri-
ces and arrays with more than two indices will be denoted in
bold lowercase, in bold uppercase and in bold calligraphic
uppercase, respectively. Plain uppercases will be mainly
used to denote dimensions.

2.1 Basic definitions in multilinear algebra

Definition 1 A rank-1 q-way array (q≥ 1) T ∈CN1×···×Nq is
equal to the outer producta(1) ◦ · · · ◦a(q) of q vectorsa(i) ∈
CNi (1≤ i≤q) where each element ofT is defined by:

Ti1,··· ,iq = a(1)
i1
· · ·a(q)

iq
(1)

The rank of a HO array always exists and it is defined as
follows:
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Definition 2 The rank of a q-way (q≥3) array T , denoted
byrk(T ), is the minimal number of rank-1 q-way arrays that
yieldT ∈CN1×···×Nq in a linear combination.

Thus, contrary to the matrix case, the rank of a HO array can
exceed the dimensions of the latter. Using both definitions 1
and 2, CAND of a HO array is given by:

Definition 3 CAND of a q-way (q≥3) array T is the linear
combination of P= rk(T ) rank-1 q-way arrays:

T =
P

∑
p=1

λpa
(1)
p ◦ · · · ◦a(q)

p (2)

whereλp ∈ C anda(i)
p stands for the p-th column of the well

called loading matrixA(i) def= [a(i)
1 , · · · ,a(i)

P ] associated to the
i-th (1≤ i≤q) direction ofT .

WhenT is of Hermitian symmetry, then its loading matrices
are equal up to a complex conjugate and its CAND can then
be defined by:

Definition 4 A complex q-way (q> 3) array T is called
Hermitian if it admits a CAND of the following form:

T =
P

∑
p=1

λpaξ (1)
p ◦ · · · ◦aξ (q)

p (3)

whereξ (i) = ±1 is defined such thata1 = a anda−1 = a∗
with ∗ the complex conjugate and where the P scalar values
λp are real.

It is obvious from definition 3 that the different rank-1 terms
can be permuted and scaled without modifying the sum. In
such a case, CAND is considered to be unique up to these
trivial indeterminacies. Several studies were achieved in or-
der to find the aproppriate conditions for CAND’s unique-
ness. Some of the latter [13] stated that CAND of symmetric
HO array is essentially unique with probability one when the
dimension of the latter does not exceed its order. Generally,
it can be stated that each HO array has a unique CAND if its
rank falls between its Kruskal rank defined by Kruskal’s con-
dition [12] and its generic rank defined as the rank which oc-
curs with probability one (see [6] and the references therein).

On the other hand, HO arrays can be easily manipulated
when they are transformed into matrices, for instance using
the following transformation:

Definition 5 Let T be a square2q-way (q≥2) array of di-
mensions N. Letbq/2c anddq/2e be the lower and the upper
integer part of q/2, repectively. Then the (i, j)-th component
of the (Nq×Nq) unfolding matrixT = mat(T ) is given by:

Ti, j = Tn1,···,ndq/2e,ndq/2e+1,···,nq,nq+1,···,nq+dq/2e,nq+dq/2e+1,···,n2q

where:

i =(n1−1)Nq−1+ · · ·+(ndq/2e−1)Nbq/2c+
(nq+dq/2e+1−1)Nbq/2c−1 + · · ·+(n2q−1)N+n2q

and:

j=(nq+1−1)Nq−1+ · · ·+(nq+dq/2e−1)Nbq/2c+
(ndq/2e+1−1)Nbq/2c−1 + · · ·+(nq−1)N+nq

It’s noteworthy that according to definitions 5 and 4 us-
ing ξ (i) = 1 for i ∈ {1, · · · ,q} andξ (i) = −1 for i ∈ {q+
1, · · · ,2q}, the matrixT is related to the (N×P) loading ma-
trix A = [a1, · · · ,aP] in the following way:

T = (A�q−bq/2c�A∗�bq/2c)Λ(A�q−bq/2c�A∗�bq/2c)H

(4)
where� stands for the Khatri-Rao product (column-wise
Kronecker product) [2],H is the transpose conjugate oper-
ator andΛ is a diagonal matrix whose diagonal is the vector
[λ1, · · · ,λP]. Note that, for positive semi-definite arrays, the
P valuesλp are strictly positive, then we can dropΛ in (4)
since its entriesλp can be involved in the columns ofA.

Based on the latter definitions, the problem we tackle here
can be defined as follows:

Problem 1 Let T be an even HO positive semi-definite ar-
ray of Hermitian symmetry, find its CAND with a lower com-
putational cost than semi-algebraic methods.

3. TOWARD A LOWER COST CAND

The solution proposed hereafter to solve problem 1 requires
two stages. First, minimum number of steps of a semi-
algebraic method [2, 7] is used to compute a solution in the
convergence region of the global optimum. Second, the latter
solution is then used as an initial point for a gradient descent
algorithm, which will then easily attain the optimal solution.
This strategy is two-fold. Not only, a global optimum is guar-
anteed, but the numerical complexity is reduced compared
with fully semi-algebraic schemes. For the sake of simplic-
ity, only FO arrays are considered in the sequel.

3.1 A simple Gradient descent algorithm

Gradient descent algorithms are the simplest approaches to
solve optimization problems. Besides their simplicity, they
are known to be cheap in terms of numerical complexity. Let
Ψ be a real scalar to be minimized with respect to a complex
matrix Z and let∇ZΨ(Z0) be its gradient at pointZ0, then
each iteration of the gradient algorithm is given by:

Z(it+1) = Z(it )−µ
(it )∇ZΨ(Z(it )) (5)

where parameterµ(it ) stands for the step size at theit -th itera-
tion. The main drawback of the gradient descent algorithm is
its sensitivity to initialization, especially when the cost func-
tion is not convex, because the algorithm may converge to
the closest local minimum. Therefore a good initial guess is
important in initializing the algorithm. As far as the step size
is concerned, its choice should be done in a clever way. In
fact, a small step size will lead to a slow convergence, while
an overshooting and instability preventing the convergence
occur when the step size is too large. A simple way to avoid
such situations consists of defining an optimal step computed
in an automatic way locally.

3.2 Gradient computation

Since the computation of the gradient of the objective func-
tion Ψ with respect to the considered complex variableZ is
necessary in the gradient descent rule (5), it is useful to give
insights into this computation. In the FO array case, a natural
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cost functionΨ derived from equation (4) forq = 2 is given
by:

Ψ(A,A∗) =
∥∥T− (A�A∗)(A�A∗)H

∥∥2
F (6)

whereT = mat(T ),A are two complex matrices of size
(N2×N2) and (N×P), repectively and‖.‖F is the Frobenius
norm.

As is well known, it is legitimate to considerΨ as a scalar
function of two independent complex matricesA andA∗,
being understood that this view gives a rule of thumb to cal-
culate the derivatives. In fact, consideringΨ as a function of
the real and imaginary parts ofA would be mathematically
sound, but would lead to exactly the same result, if the def-
inition below of the complex derivative of a real function is
assumed:

∂Ψ
∂z

=
∂Ψ

∂ℜ(z)
+ j

∂Ψ
∂ℑ(z)

(7)

Note that this definition is necessary, since a real function
of a complex variable is not holomorphic (i.e. the Cauchy-
Riemann conditions are not satisfied). Then the differential
of Ψ can be written as:

dΨ(A,A∗) =
DAΨ(A,A∗)dvec(A)+DA∗Ψ(A,A∗) dvec(A∗) (8)

where vec is the matrix-to-vector transformation, unvec is its
inverse such that unvec(vec(A)) = A andDAΨ(A,A∗) =
vec(∂Ψ/∂A)T ∈ C1×NP is defined as a vector presentation
of the matrix derivative∂Ψ(A,A∗)/∂A. It is worth men-
tioning that the stationary points ofΨ can be found using the
proposition below [5] [10], which is a direct consequence of
definition (7):

Proposition 1 Let h : CN×P×CN×P −→ R and g: RN×P×
RN×P → R be defined as h(Z,Z∗) = g(X,Y), whereZ =
X+ jY. In other words, g and h represent the same map,
but in a different coordinate system. A stationary point of
function h, or equivalently of g is found by one of the follow-
ing three equivalent conditions:

(i) DXg(X,Y) = 0 ∩ DYg(X,Y) = 0
(ii) DZh(Z,Z∗) = 0
(iii ) DZ∗h(Z,Z∗) = 0

where0 is an NP-dimensional row vector of zeros.

Now, from (8) proposition 1, it is sufficient to compute
DAΨ(A,A∗) in order to find the global minimum ofΨ.
Since matrixT is Hermitian, the objective functionΨ (6)
can be rewritten as:

Ψ(A,A∗)=Tr(THT)−2fT(A,A∗)+g(A,A∗) (9)

where Tr(Z) is the trace of the square matrixZ and where
fT(A,A∗)=Tr(A2

HTA2), A2 = A�A∗ andg(A,A∗)=
Tr(A2A2

HA2A2
H). Then we get:

dΨ(A,A∗)=−2dfT(A,A∗)+dg(A,A∗) (10)

and consequently:

DAΨ(A,A∗)=−2DA fT(A,A∗)+DAg(A,A∗) (11)

In order to compute the right hand side of (11), useful prop-
erties below are recalled:

vec(FZ) = (IP⊗F)vec(Z) (12)

vec(FZ) = (ZT⊗ IP)vec(F) (13)

vec(FT) = UPN vec(F) (14)
vec(F�G) = diag[vec(F)⊗1L](UNP⊗ IL)×

(1P⊗ INL)vec(G) (15)
vec(F�G) = diag[vec(1P⊗G)](IPN⊗1L)vec(F) (16)

Tr(FZ) = vec(FH)Hvec(Z) (17)

Tr(FZ) = vec(FT)Tvec(Z) (18)

(F⊗D)T = FT⊗DT (19)

whereF∈CP×N,Z∈CN×P,G∈CL×N,D∈CL×M,⊗ is the
Kronecker product operator andUPN is a permutation matrix
of size (PN×PN) defined by:

UPN =
P

∑
p=1

N

∑
n=1

E(P×N)
pn ⊗E(N×P)

np (20)

with E(P×N)
pn a (P×N) elementary matrix of zeros except for

the (p,n)-th position which is set to one. In addition, diag(v)
is a diagonal matrix whose diagonal is vectorv, IN is the
(N×N) identity matrix and1N is anN-dimensional column
vector of ones.

Let’s begin to computeDA fT, which appears in the right
hand side of (11). This requires to compute the differential
of fT given by:

d fT(A,A∗) = DA2 fT(A,A∗)dvec(A2)
+DA∗

2
fT(A,A∗)dvec(A∗

2) (21)

where:

dvec(A2) = DAA2dvec(A)+DA∗ A2dvec(A∗)(22)
dvec(A∗

2) = DAA∗
2dvec(A)+DA∗ A∗

2dvec(A∗)(23)

That is to say, inserting (22) and (23) into (21):

d fT(A,A∗) = (DA2 fT(A,A∗)DAA2 +
DA∗

2
fT(A,A∗)DAA∗

2)dvec(A)+

(DA2 fT(A,A∗)DA∗A2 +
DA∗

2
fT(A,A∗)DA∗A∗

2)dvec(A∗) (24)

Now since the differential offT is related toDA fT in the
following way:

d fT(A,A∗) = DA fT(A,A∗)dvec(A)+
DA∗ fT(A,A∗)dvec(A∗) (25)

we get from (24):

DA fT(A,A∗) = DA2 fT(A,A∗)DAA2+
DA∗

2
fT(A,A∗)DAA∗

2 (26)

As a result, we need to compute the four derivatives
DA2 fT,DA2 A2,DA∗

2
A2 andDA2 A

∗
2 in order to know ex-

actly DA fT. Using (17), (13), (14), (19),fT can be written
by:

fT(A,A∗)=vec(A2)TUT
N2P(TT⊗ IP)UN2Pvec(A∗

2)
(27)
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Then (21) can be expressed as follows:

d fT(A,A∗) =
(vec(A∗

2)
TUN2P

T(T⊗ IP)UN2P)dvec(A2)+
(vec(A2)TUT

N2P(TT⊗ IP)UN2P)dvec(A∗
2) (28)

So, comparing (28) with (21) and using (13) and (14), we
have:

DA2 fT(A,A∗) = vec(TTA∗
2)

DA∗
2

fT(A,A∗) = vec(TA2) (29)

Moreover, from (15) and (16), we get:

DAA2 = diag(vec(1N⊗A∗))(INP⊗1N) (30)
DAA∗

2 = diag(vec(A∗)1N)(UPNIN)(INP⊗1N) (31)

Thus, according to the latter equations, we obtain:

DA fT(A,A∗) = (vec(TTA∗
2)

Tdiag(vec(1N⊗A∗))×
(INP⊗1N)+vec(TA2)Tdiag(vec(A∗)⊗1N)×

(UPN⊗ IN)(1N⊗ INP))
(32)

Now, we have just to compute the derivativeDAg to get the
entier expression of the gradient (11) ofΨ with respect to
vec(A). We derive from (9) and (18):

g(A,A∗) = vec(A2A2
H)H vec(A2A2

H) (33)

Now, following the same procedure used to derive (24) from
(25)-(23), we get, if we provisionnally denoteY = A2A2

H:

DAg(A,A∗) = DYg(A,A∗)DA2YDAA2+
DY∗g(A,A∗)DA2Y

∗DAA2+
DYg(A,A∗)DA∗

2
YDAA2+

DY∗g(A,A∗)DA∗
2
Y∗DAA2 (34)

Consequently, it is easy to deduce the following results:

DYg(A,A∗) = vec(Y)H (35)
DY∗g(A,A∗) = vec(Y)T (36)

Also, using equations (12), (13), we have:

DA2Y = (A∗
2⊗ IN2) (37)

DA∗
2
Y = (IN2 ⊗A2)UN2P (38)

and:

DA2Y
∗ = (IN2 ⊗A∗

2)UN2P (39)
DA∗

2
Y∗ = (A∗

2⊗ IN2) (40)

Then using equations (34)-(40) and equations (15), (16), we
obtain the following derivative ofg:

DAg(A,A∗) = 2vec(A∗
2A2

TA∗
2)

Tdiag(vec(1N⊗A∗))

×(INP⊗1N)+2vec(A2A2
HA2)Tdiag(vec(A∗)⊗1N)
×(UPN⊗ IN)(1N⊗ INP)

(41)

(a) Using FOOBI1 (b) Using FOOBI2

Figure 1: The median of the objective functionΨ over 1000
realizations, as a function of the number of iterations when
a gradient descent is used to refine the convergence, starting
from an initial guess estimated by a FOOBI method.

4. COMPUTER RESULTS

The performance of the proposed approach is studied here-
after. A matrixA of size (N×P) is generated modeling the
propagation ofP = 4 angularly well-separated sources im-
pinging on a uniform linear array ofN = 3 sensors. A FO
positive semi-definite array with hermitian symmetry is com-
puted, based on equation (3) forq= 4 andλ1 = · · ·= λ4 = 1.
A noise array uniformly distributed in[0,1] is added to the
resulting FO array in order to produce a noisy hermitian
positive semi-definite FO arrayT . As pointed out in sec-
tion 3, our approach uses the first steps of a semi-algebraic
method as an initial guess to attain the convergence region of
the global minimum. We propose to use either the first im-
plementation of FOOBI [8], namely FOOBI1 or its second
implementation, called FOOBI2, as semi-algebraic method.
The different steps of FOOBI1 are summarized below:

Step1 Build the (N2×N2) hermitian positive semi-definite
matrixT = mat(T ).

Step2 Compute the EVDT =EΛEH and a square rootH =
EΛ1/2. Next, normalize the eigenvectors such that theP
matricesHp = unvec(hp) of size (N×N) are hermitian.

Step3 Compute theP(P+ 1)/ FO arraysLst = Φ(Hs,Ht)
for 1≤ s≤ t ≤P whereΦ(1)(X,Y) ∈ CN×N×N×N is a
rank-1 detecting device defined for matricesX andY
of size (N×N) in element-way manner as follows:

Φ(1)(X,Y)i jk` = Xi jY
∗
k` +Yi j X

∗
k`−XikY

∗
i` −XikX∗

j` (42)

and stack the results in matrix M =
[vec(L11),vec(L22), · · · ,vec(LPP),vec(L12),vec(L13),
· · · ,vec(L1P),vec(L23), · · · ,vec(L2P), · · · ,vec(LP−1P)]
of size (N4×P(P+1)/2).

Step4 Compute theP right singular vectorsup of M
that correspond to the smallest singular values. Stack
these vectors inP upper triangular matricesUp such
thatup = [Up,11,Up,22, · · · ,Up,PP,Up,12,Up,13, · · · ,Up,1P,
Up,23, · · · ,Up,2P, · · · ,Up,P−1P]T whereUp,i j is the (i, j)-
th entry of matrixUp. Then compute theP matrices
Wp = (Up +Up

T)/2.

518



Step5 Compute the orthogonal matrixQ that simultane-
ously diagonalizes theP matricesWp, for instance using
the JAD algorithm [4].

Step6 Compute an estimate,̂A2, of matrix A2 as Â2 =
EΛ1/2Q.

Step7 Estimate one column vector of matrixA as the domi-
nant left singular vector of unvec(â2,p) whereâ2,p is one
of theP column vectors of̂A2.

As far as FOOBI2 is concerned, it follows the previous
steps but with a different rank-1 detecting device noted
Φ(2)(X,Y) ∈ CN×N defined by:

Φ(2)(X,Y) = XY−Tr(X)Y+YX+Tr(Y)X (43)

and using a variant of JAD in order to identifyQ. More
precisely, we propose i) to run steps 1 to 6 using either
FOOBI1 or FOOBI2 in order to compute an estimate,̂A2,
of the (N2×P) matrix A2 and then ii) to use one of theN
matrix blocksΣ∗

n = ADnΠ of size (N×P) obtained from
Â2 = [Σ1

T,Σ2
T, · · · ,ΣN

T]T, whereDn,Π are diagonal and
permutation matrices, respectively.

Figures 1(a) and 1(b) display the variations of the me-
dian of the objective functionΨ calculated over 1000 inde-
pendent realizations as a function of the number of iterations.
In fact, each figure shows the performance of a gradient de-
scent named “Descentn”, initialized with then-th blockΣ∗

n.
These descents are compared to the performance of a com-
plete FOOBI method. As already pointed out, only the first
six steps of FOOBI1 and FOOBI2 are run to initialize our
three descents in figures 1(a) and 1(b), respectively. Note that
whatever the FOOBI method, only some FOOBI steps fol-
lowed by a gradient descent are necessary, and hence should
be preferred instead of a complete execution of FOOBI.

5. CONCLUSION

A novel approach to compute the CAND of FO hermitian
positive semi-definite arrays has been proposed. It proceeds
in two main stages. The first one consists of a rough cal-
culation of the CAND using some steps of an appropriate
semi-algebraic method so that the solution obtained lies in
the neighborhood of the global optimum. The second one
consists of using the latter solution as an initial guess for a
gradient descent algorithm in order to reach the global op-
timum, with no significant additional computational burden.
Expressions of the gradients have been provided; the diffi-
culty to obtain their expressions was mainly coming from the
fact that variables were complex, and that the optimization
criterion enjoyed some symmetry properties. Computer re-
sults showed the good performance of the proposed method.
A generalization to higher orders will be given in a longer
version of this paper. Moreover, our approach will be com-
pared with other CAND methods in terms of computational
complexity, which is more meaningful than the number of
iterations.
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