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Abstract-Blind Source Separation (BSS) problems, under H2) For any integer m, the components of s[m] are mutu- 
the assumption of static mixture, were extensively explored ally independent; 
from the theoretical point of view. Powerful algorithms are H3) At most one source is Gaussian; 
now at hand to deal with many concrete BSS applications. 
Nevertheless, the performances of BSS methods, for a given H4) For any integer m, the of s[m] are 
biomedical application, are rarely investigated. The aim of ally independent from the components of v[m];  
this paper ii t o  perform quantitative comparisons between H5) The vector random process { ~ [ m ] } , , ~  is stationary, 
various well-known BSS techniques. To do so, synthetic data, ergodic and Gaussian; 
reproducing real polysomnographic recordings, are considered. H6) The matrix A has a full column rank equal to P. 

I. INTRODUCTION 

In the last decade Blind Source Separation (BSS) methods 
have been widely used in the field of biomedical engineering. 
Noise reduction and useful signal extraction are among 
the most significant applications of BSS. More particularly, 
assume that one realization of N-dimensional random vector 
process { ~ [ m ] , , ~ )  with values in the real field is available, 
such as: 

Vm E IN, x[m] = As[m] + v[m] (1) 

where s[m] = [sl[m].  . . sp[m]lT is a P source vec- 
tor with statistically independent components, v[m] = 

[vl [m] . . . vN[m]lT is a N noise vector which is independent 
from the source vector and A = [al, . . . , ap] is a ( P x N )  
matrix, called mixing matrix. The BSS problem consists then 
in finding, only from the data, a ( N x P )  matrix W, called 
separator, such that: 

is an estimate of s[m] to within a trivial matrix [5], i.e. a 
matrix of the form AII where A is a diagonal matrix and 
IT is a permutation matrix. 

Up to now, the BSS problem has been extensively explored 
from the theoretical point of view and many techniques are 
available to deal with numerous concrete applications. Then 
a fundamental question needs to be addressed: which BSS 
method, or class of BSS methods to use for a given biomed- 
ical application? In this paper we address this question for a 
particular problem of electrophysiological signal separation 
encountered in ambulatory polysomnography [I I]. To do so, 
we have conducted performance comparisons on synthetic 
data, reproducing real polysomnographic observations, of 
seven BSS approaches. In the following, these hypotheses 
are assumed to be fulfilled: 
HI )  The vector random process { ~ [ m ] } , , ~  is stationary 

and ergodic; 
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11. DATA GENERATION 

The main goal is to obtain synthetic but realistic data for 
comparing the above BSS methods. To do so, we have used 
our sleep database (14 patients) [ l l ]  and an EEG model [9] 
for generating background brain activities. 

A. Generation of the source and noise data 

The simulated sources are denoted by EEGS, EOGRS, 
EOGLS and ECGS (figure l(a)). They represent brain activ- 
ity, rapid eye movements, slow eye movements and cardiac 
activity, respectively. More precisely, the EEGS source is 
simulated using the model of Jansen [9] where parame- 
ters were selected to derive a cerebral background activity. 
Note that the statistical distribution of this signal is quasi- 
Gaussian. This is in agreement with real background EEG 
data. The other sources are derived from our sleep recordings 
database presented in [ l l ] .  More precisely, the EOGRS 
source is issued from a band-pass filtering (between 1 Hz 
and 8 Hz]) of the derivation FPZ-CZ of the standard 10- 
20 system. The EOGLS source corresponds to a low-pass 
filtering of the classical derivation El-E2 with the cut-off 
frequency of 4HZ in order to reduce the effect of EEG and 
EMG interference. Finally, the ECGS source corresponds to 
a cardiac signal recorded on patients during their sleep. In 
reference to the additif noise { u [ ~ ] , ~ I N ) ,  it is modeled 
as a spatially correlated Gaussian noise with the spatial 
correlation equal to 0.5. 

B. Generation of the mixing matrix 

To derive the mixing matrix associated with the brain and 
ocular activities, a three concentric sphere head model is 
used. Four dipoles located at four fronto-parietal positions 
and a patch of two hundred dipoles (uniformly located in 
the cortex) characterize the eye movements (rapid and slow) 
and the background EEG sources, respectively. The EEG 
recording system contains four electrodes plus one reference 
electrode: two temporal sensors, in front of the higher part 
of the ears, denoted by F7m and F8m (where m stands for 
modified), two frontal sensors, above the eyes, denoted by 
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FPlm and FP2m, and the reference electrode CZ located 
at the top of the head [ l l ] .  Then the transfer formula 
[12] describing the relationship between current dipoles and 
surface observation is used to obtain the (4 x 3) mixing 
matrix A'. Since the heart contribution to the data is assumed 
to be non-uniform on all the channels, we decide to add to 
the ( 4  x 3) mixing matrix A' a fourth column vector a4 with 
different components. Note that the obtained mixing matrix 
A = [A1a4] is slightly ill-conditioned. 

111. STUDY OF SEVEN CLASSICAL BSS METHODS 

We have focused in this section on seven well-know 
BSS algorithms, namely SOBI [I], TFBSS [7], COM2 
[5], JADE [3], COMl [6], INFOMAX [lo] and FastICA 
[S]. Nevertheless, before presenting these methods, we first 
formulate the criterion allows for quantitative comparison of 
the performance given by each BSS method. 

A. Performance criterion 

In order to compare quantitatively the ability of two 
separators, W 1  and W 2 ,  to extract a source we used the 
criterion introduced by Chevalier [4]. Chevalier has shown 
that the quality of the retrieved source is directly related to 
the Signal to Interference-plus-Noise Ratio (SINR) of this 
source after separation. More precisely, the SINR of the p-th 
source at the i-th output of the separator W = [wl,  . . . , w p ]  
is defined by: 

S I N R ,  [wi] = i7, 
IwiHap12 

w i H R v p g i  
where T ,  represents the power of the p-th source, wi the 
i-th column of separator W and Rvp is the total noise 
covariance matrix for the p-th source, corresponding to the 
data covariance matrix R, in the absence of the source P. 
On the basis of these definitions, the restitution quality of 
the p-th source at the output of separator W is evaluated 
by computing the maximum of S I N R p [ w i ]  with respect to 
i ( 1  < i < P). This quantity is denoted by SINRM,.  The 
performance of a source separator W is defined by the line 
vector S I N R M ( W )  given by: 

S I N R M ( W )  = ( S I N R M 1  [W], . . . , S I N R M p [ W ] )  (4) 

in a given context, a separator W 1  is better than a sepa- 
rator W 2  for retrieving the source p, if SINRhI l , [W1]  > 
S I N R M ,  [ W z ] .  

B. Optimal source separator 

The criterion given by (4) allows for a quantification of the 
source separation performed by BSS algorithms. However, 
besides this criterion it is necessary to know its upper bound, 
which is achieved by the optimal source separator, in order 
to completely evaluate the performance of a given BSS 
method. It is shown [4] that the optimal source separator 
corresponds to the separator WsncrF whose columns are the 
Spatial Matched Filters (SMF) associated with the different 
sources. It is defined to within a trivial matrix by: 

W s n f ~  = RL'A (5) 

where R, is the covariance of { ~ [ m ] , , ~ } .  

C. Presentation of the considered BSS methods 

The BSS methods considered in the paper aim at imple- 
menting, to within a trivial matrix, an estimate WsMF = 

A -1 A 

R, A of the optimal separator (5) from both an estimate, 
R,, of the data covariance matrix R, common to all the 
methods, and the estimate, A, of A ,  computed by each 
BSS method. More precisely, in order to estimate A ,  SOBI 
(Second Order Blind Identification) [I]  exploits a set of 
delayed covariance matrices of the data. TFBSS (Time- 
Frequency Blind Source Separation) [7] can be considered 
as an extension of the SOBI algorithm in order to process 
non-stationary signals. COM2 (Contrast Maximization 2) 
[5], JADE (Joint Approximated Diagonalization of Eigen- 
matrices) [3] and COMl (Contrast Maximization 1) [6] rely 
on the maximization of a contrast criterion based on fourth 
order cumulants. INFOMAX (INFOrmation MAXimization) 
[lo] maximizes a criterion based on information theory and 
FastICA (Fast Independent Component Analysis) [8] uses 
the fixed-point algorithm to maximize a negentropy-based 
criterion. Note that we have considered two versions of 
SOBI, denoted by SOBI and SOBIR in the sequel, and two 
versions of FastICA denoted by FastICADo and FastICAso. 
The difference between SOBI and SOBIR concerns the 
whitening step. Indeed, while SOBI uses the classical whiten- 
ing [I], SOBIR exploits the robust whitening [2] which is 
not affected by a spatially correlated noise provided that this 
noise is temporally white. Concerning FastICA, DO refers to 
the Deflation Orthogonal approach (the sources are extracted 
one by one) while SO refers to the Symmetric Orthogonal 
approach (the sources are simultaneously extracted). 

IV. SIMULATION RESULTS 

A comparative performance study on synthesized sleep 
recording data, of the considered seven algorithms is pro- 
posed in this section. To do so, two studies are envisaged. 
For each one, the performance criterion is averaged over two 
hundred runs. Figures l(b) and l(c) illustrate an example of 
the observations obtained from the generated mixing matrix 
and the sources presented in figure ](a) (with a high SNR) 
and the results of the separation using FastICADo, of the 
EEGS, EOGRS, EOGLS and ECGS signals , respectively. 
Clearly, we observe that cerebral activity (see yq), and the 
cardiac activity (see y2) are well recovered. Regarding eye 
movements, yl and y~ show rapid eye movements and 
slow eye movements, respectively. However, a few rapid 
eye mouvements also appear on y ~ ,  which implies that the 
separation is not perfect. 

A. Injuence of the data length for a $.xed SNR 

In this experiment, we set the Signal to Noise Ratio (SNR) 
to 15 dB for each source. The S I N R M p  criterion 1 < p < 4 
at the output of the SOBI, SOBIR, TFBSS, COM2, COMI, 
JADE, FastICADo, FastICAso and INFOMAX, is computed 
as a function of the number of samples M (with a sampling 
rate of 256 Hz). Figure 2 shows the separation results of 
the EEGS, EOGRS, EOGLS and ECGS. COM2, COMI, 
JADE, FastICADo and FastICAso lead to good behaviors, 
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dB. SOBI and SOBIR present nearly optimal performances 
for the four sources when the SNR is lower than -5 dB. 
In addition, the convergence of the SINRM at the output 
of SOBI and SOBIR is also stopped as soon as the SNR 
increases beyond 30 dB. Note that for a SNR higher than 
-5 dB, SOBI and SOBIR provide a poor separation of the 
ocular sources. 
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Fig. 3. Variations of each source SINRhf (in dB) as a function of a SNR. 

V. DISCUSSION AND CONCLUSION 

The two studies have shown that, globally, the SINRM 
of the studied methods are lower than the optimal SMF 
minus 2 dB, except for the ECG source (it appears on 
figure 3 providedthat a zoom of the figure is performed). 
This result is due to the fact that the additive noise is 
spatially correlated and all the studied methods require a 
prior spatial whitening based on second order statistics. This 
stage theoretically needs the perfect knowledge of the noise 
covariance. Now, if we compare the performances provided 
by each method, it appears that COM2, COM1, JADE, 
FastICADO and FastICAso globally (when all the sources 
are considered) gives the best results. However, COMI, 
which requires that all the sources have kurtosis (normalized 
marginal fourth order cumulants) with the same sign, is 
slightly affected by the presence of the EORLS source when 
only few samples are available. Computer results have shown 
that the probability of the EOGLS source to have an esti- 
mated kurtosis with a different sign is inversely proportional 
to the number of snapshots. The INFOMAX and TFBSS 
algorithms are slightly less effective for separating the EEGS, 
EOGRS and EOGLS sources but their performances are still 

acceptable comparing to those obtained by other methods. 
Regarding the SOBI algorithm, its performances are poor 
for all the sources. One of the reasons could be the fact 
that the noise is spatially correlated. Indeed, the obtained 
results show that for EEGS and ECGS sources, SOBIR, 
which is not affected by the spatially correlated noise, has a 
better behavior. Another reason is the fact that some sources, 
especially EOGRS and EOGLS, seem to be poorly tempo- 
rally correlated. In fact, for these two sources SOBIR also 
provides lower performances in comparison to those obtained 
by COM2, COM1, JADE, FastICADO and FastICAso. To 
conclude, the selection of a BSS method should be driven by 
hypotheses and considerations issued from application objec- 
tives such some statistical/physiological prior information on 
the sources (temporal color, non-gaussianity, sign of kurtosis, 
... ) and the additive noise. 
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