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Abstract—A new family of methods, named PEP (Phase providing a measure of slice goodness. The algorithm pre-
Estimation using Polyspectrum slices), for the reconstruction of sented in [21] proposes such a procedure, named the 1D

the Fourier phase of a complex LTI system excited by a white a4 ency content. This selection procedure potentiaifbtes
non-Gaussian input is proposed. More precisely, we propose two

subfamilies of methods, theq-PEP (¢ > 3) and (g1, qs)-PEP  US Fo avoid regipns where polys_pectrum estimates gxhigh hi
(g2 > ¢ > 3) algorithms. The ¢-PEP methods exploit the best Variance or regions where the ideal polyspectrum is exgecte
Two-Dimensional (2D) slice of the datag-th order spectrum. to be zero, as in the case of band-limited systems. Another

The originality of the (g1, ¢2)-PEP methods consist of exploiting way to describe and to differentiate algorithms named leefor
simultaneously one 1D slice of thegi-th order spectrum and  .qnqists of classifying them according to their recursive o

one 2D slice of thegs-th order spectrum. These new algorithms . .
are easy both to implement and to use. Moreover, the asymptotic "ON-récursive nature. Indeed, the algorithms [3] [1] [12][

unbiasedness and consistency of these methods are demonsgcht are recursive in nature, they calculate, sequentiallyptese
Eventually, computer simulations show that the PEP algorithms values under the assumption that the first value is equakto ze
exhibi; in general b‘ett.er performances than classical methods Methods proposed in [13] [7] [17] [19] [21] are not recursive
especially for band-limited systems. More precisely, they estimate all phase values at the sanee ti
Besides, methods presented in [3] [13] [7] [17] [19] require
an additional step of phase unwrapping, in contrast to those
introduced in [1] [10] [20] [21].

System reconstruction and especially phase recovery is @&ach of these methods present some limitations. Methods
significant problem which arises in many applications, sash which use the whole polyspectrum information [3] [1] [13]
data communications [2], seismic, speech processing,aaledi17] [19] are generally less effective on systems which have
diagnosis and other deconvolution problems [5]. More partia band-limited frequency response as shown in [21]. Besides
ularly, in astronomy, high resolution imaging from groundRangoussi et al. [17] and Lii et al. [10] have developed algo-
based telescopes involves a phase recovery to overcomeritiens which are only valid for real systems. The algorithms
severe atmospheric degradation [12]. proposed in [20] and [21] reconstruct the phase within aaline

Because physical systems are mostly non-minimum phapbase component corresponding to an integer time delay. In
we consider, in our paper, the phase retrieval problem ofha n@ddition, the method given in [20] does not allow for han-
minimum phase Linear Time Invariant (LTI) system excitedling a linear system whose input sequence is symmetrically
by an i.i.d. (independently and identically distributedro distributed. It should be noted that since methods [3] [T]] [1
mean and non-Gaussian input. In such a context, the phf&@] are recursive in nature, phase estimation errors ithative
recovery of a non-minimum phase system can be achievieelquency samples can propagate to high-frequency samples
from the output using higher order spectra (polyspectrayell. Finally, computer results presented in [20] [21] shibnat
Indeed, in opposition to the power spectrum which preservilie performances of algorithms proposed in [20] [21] depend
only the magnitude information of systems, the polyspectom the selected 1D polyspectrum slice.
also preserve the true phase character of systems. Severéh order to overcome the limitations of the previous al-
methods for phase reconstruction using polyspectra haae bgorithms, a new family of phase retrieval methods, based
developed (see [15] [16] for a review). These methods can multiple higher order spectrum slices, named PEP (Phase
be divided in two subcategories: those that use the whdistimation using Polyspectrum slices), is proposed. A paine
g-th order ¢ > 3) spectrum information [3] [1] [13] [17] algorithms which are easy to use and to implement is provided
[19] and those that use only some part of this informatiohhese algorithms can handle any kind of non-minimum SISO
such as one or two fixed One-Dimensional (1D) polyspectrugBingle Input Single output) systems, they are not recarsiv
slices [10] [7] [20] [21]. These latter assume that there isand do not estimate all the phase values at the same time.
criterion for selecting the most useful polyspectrum ragioThey estimate each phase value independently from thesother

I. INTRODUCTION



More precisely, we propose two subfamilies of methods, tifa2) {v(m)}.c Is stationary, ergodic, gaussian with com-
q-PEP ¢ > 3) and @1, ¢2)-PEP @2 > ¢ > 3) algorithms. ponents in the complex field, and independent of the
The ¢-PEP methods exploit the best Two-Dimensional (2D) input source;

slice of the datag-th order spectrum. The originality of the(A3) All ¢-th (¢ > 2) order marginal source cumulants are
(¢1, g2)-PEP methods is the simultaneous exploitation of one  absolutely summable and aill-th order spectra are
1D slice of theg;-th order spectrum and one 2D slice of the non-zero in the frequency band over which the chan-
go-th order spectrum. This joint exploitation of two distinct nel response is non-zero (higher order cumulants and
g-th order spectra allows for a better processing of band- polyspectra will be described hereafter);

limited systems. Computer results show that the 4>)-PEP (A4) The LTI system is stable (i.g.A(m)},c is absolutely
methods are less sensitive to a wrong selection of the best summable, which guarantees the existence of a bounded
polyspectrum slice. Besides, all the proposed methodsatdi frequency response) with complex taps.

system phase within an additive constant. This result iy ver

useful when blind deconvplution of MIMQ (Multiple Input 5 cumulants and polyspectra

Multiple Output) systems is performed using the frequency- .
domain approaches. Indeed, these methods usually ingoduc-ct ¢ = (m’ﬁ""’lq—l) - C“m{xgm)’x(m""ﬁ)’ e
phase ambiguities, that is, each source is extracted within Am + rr—1) d{m + 7). . f(m + 7)) be theg-th (¢>3)

linear system whose phase is unknown [5]. A phase estimatigifier cumulant [14] of(in), wherer terms are not conjugated
r terms are conjugated. Under assumpt{@d) and

procedure has then to be used. However, the classical ngeth Bda— . : "
reconstruct each channel within a circular shift, which is 2), processia(m) }me  is stationary. Copsequently, e
real problem in operational contexts where the source "syn- order C“mﬂ'a”ts do not depend on time and can be
chronization” is required. In this case our methods are mopgnoted byCiL (mi, . .., 74—1). Then, under assumptiqA3),
appropriate. Finally, note that all the proposed methodsire it |s.p035|ble to define the-th order spectrum as following
an additional phase unwrapping step. [15]:

The paper is organized as follows: in section I, the phaseDefinition 1: Theg-th order spectrum is given by the —
recovery problem is stated and the definition of thth (; > 1)-dimensional Discrete Fourier Transform (DFT) of theth
2) order spectra is recalled. In section I, the PEP apprasichorder cumulant

presented and its asymptotic consistency analysis is gedvi

Section V gives computer results of some PEP algorithms and”SIN9 assumptiong¢Al), (A2) and the multilinearity prop-
classical methods, and a conclusion is given in section VI, €™ shared by all moments and cumulants [14],¢#th order
spectrum of the output data can be related to ¢k order

marginal source cumulant, as shown by property 1:
II. PROBLEM FORMULATION AND STATISTICS )
Property 1: Let{z(m)},,c be the discrete random pro-

cess given by (1). ltgth order spectrum satisfies the following
It is assumed throughout the paper thatcomplex samples equality:
of a discrete random proce$s(m)},.c are observed, and

A. Problem statement

that each random variablgm) satisfies the following LTI Iia (@i wem1) = O H—wn — = wg—1) Hlwn)
model: Hwr—1)H(—wr)" ... H(—wg-1)" (3)
z(m):;h(f)s(m—ﬁ)—i—b(m) @) where CZ 7" ef C150,...,0) and H denote theg-th order

marginal source cumulant associated with null delays ared th
where {s(m)}me and {{m)}..e represent the input andsystem frequency response, respectively.

additive noise sequences, respectively, and where: ) )
Note that, in practical contexts, cumulants and spectra

def 1 M?—( Jelem g @ cannot be exactly computed and they have to be estimated
wie v from data samples using some estimation procedures [14] [15

h(m)

is the m-th tap of the LTI system whose frequency response . A
is H. The problem dealt with in this paper can be formulated - ALGORITHMS
as f0||owing: A. Theq-PEP methOdSq(Z 3)
) - This approach exploits one 2D slice of the output dath
— ign (w)
Problem 1. LetH(w) [Hw)| e be the frequency order spectruni’y”," of the output sequence, that is, the matrix

response of the considered non-minimum phase LTI systeex tacted fromI'é-" by fixing q—3 frequencies and varying

g?ctjh?iuagitszgzre)%{?;%)o}f t:e system only from Sample%he two latter frequencies betweenr. Although the3-PEP
m method was briefly presented in [9] and since an extension to
The following assumptions are then placed on the system apth order ¢ >4) spectra is straightforward, we only illustrate
the signals involved in order to solve problem 1. the ¢-PEP method for =4.
Let 45, be the phase of the data trispectrdi3),. More-
(A1) {(m)}me Iis an iid. non-gaussian, stationary an@ver, we will consider discrete frequencies in the sequel, i
ergodic complex sequence; w;=(2w/N)k; with k;€{0,...,N—1} andj € {1,...,q—

o)



1}. By omitting the factoR= /N, the relationship between theit has a class of solutions, pairwise equal within a multiple
phases of the quantities involved in (3), far,r) = (4,2), is of 2x. Consequently, in the light of equation (8), the un-
given by: wrapping step can be achieved at three different leveld) eac
9 .2 one leading to a particular phase retrieval approach. Tke fir
V3 0k, ko ks) = & o + On(—kn — k2 — ks) + approach consists in applying a Three-Dimensional (3Dyeha
On(k1) — on(—k2) — dn(—ks) (4)  unwrapping scheme [6] tg3 , to obtain, for everyky, ko, k3

where¢3 , is the phase of the marginal source cumulagy. (0 < ki k2, ks < N), an estimates);;, of 43, up to an

Note that¢3 , is a multiple ofr sinceC? , is necessarily a real additive constant:

number. Letks be fixed to an integery € {0,1,..., N — 1}, T2u N2

using a simple measure of 2D slice go;{)dness which \}vill be V5 2 (k1 ko, ks) = 05 (K1, ke, k) + 271, (20)

presented in section 11I-C. Because the-periodicity of # wherel, is an unknown integer constant. An estimatg, of

implies the NV-periodicity of its discrete phasgy, the sum of ¢, up to an additive constani(a)=¢&3 ,—¢(—a)+27L,, may

V3 ,(.,.,«) over the discrete frequenciés (0 <k, < N) is then be derived by i) fixing: to a, ii) summing overk, and

given for each discrete frequengy (0<k; <N) by: i) dividing by N. A second solution can be obtained using a
2D phase unwrapping process [8] of the functifzi)m(., Q)

N—-1
Z w%x(klr ko, a) = N(pn(k1) + €§s — ¢n(—a)) (5) Wherea is fixed. Then, we get, for every, ks (0 < k1, ks <

P N), an estimate&%ﬁ(., . a) of 93 (.,.,) up to an additive
Although equation (5) seems to provide a solution for th%onstant.
estimation of¢;, from 3, it is not a convenient formula 'J’%Z(klak%a) = 7/’%z(k1ak2704) + 27l () (11)

for phase retrieval. Indeed, the trispectrum phase, is

~ !/ H H H
generally estimated by its principal valué? ,, given, for where I; (o) is an unknown integer constant. An estimate,

everyky, ks, ks (0 < ky, ko, ks < N), by: Ons 0f_¢h can thus be derived, from (11), using the following
~ equation, for everys; (0 < k; < N):
w%z(klak%]%) = 1 N—1
arctan(S(T3 , (k1, ko, ks)), R(TS (k1. k2, k3)))  (6) (k) & N D3k ke, a) = ¢u(k) + d'(a)  (12)

where®t and & refer to as the real and imaginary parts, and k=0

arctan is the four-quadrant arc tangent operator that forceghere constani’(«) is given by a/(a) = &5, — ¢(—a) +
the angle functiony3 , to lie between+tr radians. These 271, (). The third and last approach consists of applying a
principal values are also calledrappedphase values becauselD phase unwrapping procedure to the left term of equation
the absolute phase is wrapped into the intefval 7] by the (8) and dividing the result byN. We then obtain a new
following non-linear process: estimate ¢, of ¢, up to an additive constant’ (o) =&, —
d(—a)+27 " () /N wherel”(«) is an unknown integer. For
(kv ko, ks) € {0, 1, N = 1} the sazke of convenience, the thre®EP approaches presented
03 (K1, ko, k) = 3 (K1, ko, ks) + 2n1(k1, ko, k3) - (7)  previously will be referred, in the sequel, to 4PERp, 4-
PERp and4-PERp respectively. Besides, sincegath order
spectrum ¢ > 3) may contain several 2D slices of sufficient
goodness, an improved final phase estimate can be obtained
by averaging. In such a case, the averaging can be done in

where [ is an integer function that forcaé%z to belong to
Fr, 7. Thus, fixingks to « in (7), summing the result over
the discrete frequenciels, (0 < ko < N) and using (5), we

< : . o L .
have for fzverykl 0k <N) the e domain just before the division by . Moreover, if the
Zﬁ;é V3 (k1 ko, ) = N(on(k1) + &5 o — dn(—)) 8 filter impulse response has taps with values in the complex
+or ZQ’;B Ik, ko, @) ®) field, a non-zero value has to be chosendoindeed, ifa is

he di h ¢ . h ¢ nul equation (5) shows thaf,(0) cannot be estimated. On the
The discrete phase functiop, can thus be extracted from ., . hand, when the system is real,(0) is equal to zero.

equation (8) provided that phase unwrappingscheme is Consequentlyo can be set to zero and the constaats),

performed before extraction. In other words, the foIIowing,(O) or a”(0) can be deduced fronﬁh(o). Note that for real

phase unwrapping problem has to be solved: systems, the constani$0) anda’(0) are necessarily multiples
Problem 2: Let; and ¢ be a non-zero integer and a phasef 7 since&s , is a multiple ofr.

function of {0,1,..., N—1}7 into [—7, 7], respectively, find

the phase jump functiod of {0,1,...,N—1}7into such g The G1, ¢2)-PEP methodsgb > q1 > 3)

that the unwrapped phase functiart g|~ven by: The originality of this algorithm is the joint exploitation

Vk e {0,1,...,N =1}, ¢%(k)=1(k)+2xJk) (9) of a 1D slice of oney;-th order spectrum and one 2D slice
of the g»-th order spectrunig, > ¢; > 3). As an example,
the approach is presented hereafter using the foyith-@)
Some methods can be found in the literature in order solaed sixth ¢, = 6) order spectra, named trispectrum and
problem 2 (see [8] and [6] fog =2 and g =3, respectively). quintuspectrum of the data respectively. The method usiag t
However, note that problem 2 has not a unique solution, hihiird and the fourth orders was briefly investigated in [YheT

is as continuous (smooth) as possible.



extension to theqy, g2)-th order, such asq1,q2) = (4,5) impulse response are in the complex field, a non-zero value
orgs > q1 > 5, can be easily realized from the followinghas to be chosen foy in order to be able to estimatg, (0).
discussion.

For (q2,m2) = (6,3), property 1 implies, for every c. Toward a 2D frequency content criterion
< : N .
v ko, ks, kas s (0 < Ky ba, g, B, s < N): One of the particularities of the PEP methods with regard
wg Ak1, ks, ks, ka, ko) =on(—k1 —ks —ks—ks—ko)+ to the others is the need of a "good” 2D polyspectrum slice.

(k (k5) — bn(—ks) — dn(—ka) — dn(—ka)+E3, (13 Therefore, we decided to extend the criterion proposed by
o 31)+_¢h( ) = nlHa) ¢h(_ 4) = onk2) 6‘?‘ (13) Pozidis et al. [21, eq. 25] for the selection of the best 1Desli
whereys . is the phase of the discrete output quintuspectrufjore precisely, in order to select the appropriatéh order

I3, and &, is the phase associated with the marging); - 3) 2D slice, we propose to choose the set,( .., o, 3)
source cumulan; .. According to the cumulant definition, it yhich maximizes the following criterion:

appears that’s _ is a real number and thu;‘és is a multiple

s N—-1N-1
of =. Based on the difference between equations (13) and (%) 1 r
) CQD (Otl,. .. ,Oéq_g) :722 Z ‘Fg,;r (khkg,al,. .. ,aq_3)|
we get: N k1 =0ko=0
wi m(kli k57 k37 k47 k2) _¢§ z(k17 k27 kd) 2533; s _é-%. s + (16)

This procedure implies the estimation of all the¢h order 2D
On(—hn—ks— ks —ka—h2) = on(—Hn—ka—ka) + (14)  gueos” Another way, less expensive in terms of computation

On(ks) — dn(—ka) cost, consists of i) choosing the frequency indexvhich

Next, ks, ks andk, have to be fixed to particular frequenciednaximizes the modulus of the power spectriin, and ii)

a, 8 andy (0<a, 3, < N) respectively, chosen using bothfixing the set {1, . . aq-3) to (a,_. ..,a). This idea was first

the 1D and 2D frequency content criteria defined in sectigiyggested by Pozidis et al. [21] in order to select the st

I1I-C. Summing (14) over all the discrete frequencigs(0< order 1D slice.

k1 <N —1), it can be easy shown that, for evety (0 < k5 <

N): IV. AN ANALYSIS OF ASYMPTOTIC CONSISTENCY OF THE
N o - B PEPAPPROACH
2k=0 Y3 (kL 5’]5(’(;’(2))__% J(“<_ 1)’1’?3) ~ &) (15)  We provide, in this section, an analysis of the asymptotic
s M) T35 TS0 behavior of the4-PERp and @,6)-PERp methods when

Therefore, the phase respongecould be estimated from the Flynn’s algorithm is used in order to achieve a 2D phase
previous equation. However, as it was said in section Ill-Aynwrapping [8]. Indeed, Flynn’s method is one of the most ro-
the output polyspectrum phase has to be estimated througfst algorithms with respect to false discontinuities {@fich

its principal value. So, in order to obtain the true phase wuld appear in the wrapped phase because, for instance, of a

to an additive constant, we must perform an additional stgpor frequency sampling of the corresponding polyspectrum
of phase unwrapping (see problem 2). This problem can be
resolved_in several ways, d_epending on the Iev_el where tRe Preliminary results
unwrapping scheme is applied to the output quintuspectrum ) , .

and trispectrum phases. For the sake of convenience, in thiéo‘S a first result, let's recall the following one [4]:

section we only present two different approaches. The firstLemma 1: Letfgﬁ;f be the estimate of the-th order

one consists of applying a 2D phase unwrapping method (ip > 2) spectrum,I'/"", of a stationary-ergodic process
function 43 (., ., 8,7, ) defined from¢3 , by fixing some {i(m)},,c , defined as a weighted smoothing of the
frequencies tg3,y7 and « respectively. In fact, sincé}iz is a th order periodogram. By properly choosing the weighting
function of five variables;&gm(.,.,ﬁ,%a) is obtained from sequence with increasing sample size, and under suitable
¢3 . by fixing its three last variables, namely, k, and regularity conditions, the estimatéy " is asymptotically

k (see equation (14)), 1@, v and o respectively. So the unbiased and consistent.

unwrapped function)s (., ., 8,7, a) and 43 (., v, 8) (Where Now, what happens as far as the wrapped phagg), of ['4-"

¥3 (., o, B) is obtained fromy3 , by fixing k, andks to a s concerned? Does it converge in probability to the wrapped
and 3, respectively) are subtracted and then they are summsigthsez»d,", of 972 If it does, is it asymptotically unbiased
over all the frequencies; (0<k; <N—1). Finally, the result and consistent? The answer ensues from the following sesult
is divided by N in order to estimatep;, up to an additive _

constant. The second approach consists of i) summing up! "€0f€m 1. Under the assumptions of lemma 1, the
the function3 (..., 3,7,a) — 93 (.,a, 3) with respect to Wrapped phase)7.", of I'l%" converges in probability to the

its first variable,k;, over all the discrete values belonging tovrapped phasey;”", of Il

{0,1,..., N —1}, i) unwrapping the result using a 1D phase noof is given in appendix VII-A. The following corollary

unwrapping process, and ii) d}V|d|ﬂg the result By In the  ,ses from theorem 1.

sequel, these two methods will be referred to as th&)¢

PERp and ¢, 6)-PERp algorithms respectively. Corollary 1: Under the assumptions of lemma 1, the
Moreover, as explained in the previous section, one showdapped phasez];;{jf, of f‘?.:f is asymptotically unbiased and

be cautious about the choice of Indeed, if the taps of the consistent.



The proof is then straightforward since the phase estimatiand
error is bounded. Before analyzing the asymptotic progerti  , . 2 ~ 9

2 N°E ks) — on(k =
of the estimateV ¢;, of N¢;, when4-PEBp and 4, 6)-PEBp [(@nlks) = énlks))"]

- . ) N—-1N-1
are used, let's consider the following result: Z Z E[V k1, ks)V (K, k)] —E[V (kv ks)W (K})] -
Theorem 2: Leta = (v1,...,qq-3), Y47, .,a) and "=%1=0

E[W (k)W (k1)] — E[W (k1)V (K1, k5)]) (20)

wrapped phases computed by applying Flynn’s method to th&pectively. Then, using proposition 1 it appears that pog-
wrapped phasesﬁg;r(,7 .,a) and 7];;{7(,, ., a), respectively. vious equations converge to zero, which show the consigtenc
v of the 4-PERp and @, 6)-PEBp algorithms.

:‘1*’“’“(., .,a) be ag—3-tuple of{0,1,..., N—1}973, the un-

Under the assumptions of lemma 1, the estirrial;g’“(., o)
of 1477%(., ., ) is asymptotically unbiased and consistent.
/ V. COMPUTER SIMULATIONS
A proof is given in appendix VII-B. The objective of this section is twofold: i) to demonstrate
. the performances of the proposed PEP algorithms, applied to
Now let W (k) ?nd V(k,k’)Nbe random variables de- band-limited systems, comparing them with those of some
fined by W(k) = o2."(k, 8) —¢f,"(k,8) and V(k, k') = efficient phase retrieval techniques, referred to as e/
153.&’"“(’% k’,a)—zﬁg;"“(k,k’,a), respectively, wherék, k)e  [20] and g-Pozi/Petro [21] =3 and ¢ =4 when the output
{0;, S N=1P, B=(B1,.--,04-2) anda = (a1, ..., aq_3). bispectrum and trispectrum are used respectively) andii) t
Next, let L?(©2,7,P) be the Hilbert space of second ordephow that the PEP methods are more robust to a wrong choice
random variables. Sincl/ (k) and V (k, k) are elements of Of the polyspectrum slices used in the reconstruction phoee
L?*(Q,7,P), using corollary 1, theorem 2 and Schwarz’s¢ompared to methods quoted previously. Note that, although
inequality we get the following proposition. the Pozi/Petro approach [21] allows for complete system
reconstruction, we only evaluate its ability in recoverithg
Proposition 1:  Under the assumptions of lemma Jystem phase. Moreover, we decided to show the performances
E[W (k)W (K], E[V(kk)V(kE)], E[V(kE)V(K, k)], ofthe PER, methods, that is, the PEP algorithms which
E[V(k, k)W (K')] and E[W (k)V (k' k)] converge to zero, use a 2D unwrapping scheme, since simulations proved their
whereE denotes the mathematical expectation operator.  superiority over the other PEP approaches. Recall thatnFyn
minimum discontinuity method [8] was used, as far as the 2D
unwrapping processing is concerned. D.C. Ghiglia et al. [8,
B. About thel-PERp and {,6)-PERp methods pp.151-177] show that this finds a solution that minimizes
the discontinuities. The algorithm achieves this goal bpagis

According to equation (12) and using the notations of t . . 7
a tree-growing approach that traces paths of discontesuiti

?;e\\/;v%u;est?bsecuon' for every belonging to{0, 1., N the phase, detects the paths that form loops, and adds lasiltip
’ of 27 to the phase values enclosed by the loops to minimize the
. N-—1 discontinuities. This process is performed iterativelyilumo
N (¢n(ky) — dn(k1)) = Z V(ky, ka) (17) more loops are detected. The process is guaranteed to genver
ka=0 to a "minimum discontinuity” solution.

_ ) So, four computer experiments are presented in the fol-
thus we deduce from (17), theorem 2 and the linearity @dwing subsections in order to compare the RERethods
the mathematical expectation that the estimated phage, with the Petro/Pozi3-Pozi/Petro and-Pozi/Petro algorithms.
obtained by thel-PEBp method is asymptotically unbiased.n each experiment, two stationary processes were gederate
The same result is also true for thg ¢)-PERp algorithm. In  using two non-minimum phase bandlimited systems defined
fact, the following equation can be easily derived from isgst  py:

[1I-B and IV-A: m
Vm € {=9,---,6}, hi(m)=0.77"%1 cos(0.497wm)
= ~ — m| . ™
N (@n(ks) = on(ks)) = S o (V (kv ks) = W (k1)) a5 +0.8(0.65) % [sin(0.387 + )
The asymptotically unbiasedness/gfis then directly deduced N
from (18), corollary 1, theorem 2 and the linearity of thep,(») =1 —1.25:7' +1.75272 — 5.25.73 — 12.5.~*
mathemz;tlcal expectatlofg. . i . 4118275 4956 _ 986 x 10527 4 5.25:~8
Now the variances ofp;, associated to the-PEBp an 9 _10
(4,6)-PEBp methods are given by: 0702 L0z
where h; and H, represent the impulse response of a band-

N?E[(éh(h) — (k1)) pass filter and the transfert function of a proakis-a channel

Z

N— respectively. It should be noted that the discrete-timekism
E[V (k1,k2)V (k1,k5)] (19) achannelis typical of the response of a good quality telepho
k2 =0 k=0 channel [22]. Next an additive zero-mean white gaussiasenoi



was added to the outputs. The noisy sequence is then dividednpared again. As in the previous experiment, two kinds
to records of 256 samples, and an indirect method is usefdresults were obtained: those associated with a zero-mean
to estimate the polyspectra, with a DFT size6df samples. exponentially distributed i.i.d. sequence, plotted in ffeggu2(a)

As a performance index of the phase estimation methods, amd 2(b) and those dealing with a BPSK, shown in figures 2(c)
used the Normalized Mean-Squared Error (NMSE) critericand 2(d). It appears in figures 2(a) and 2(b) that the,BEP
[5, eq. 53] between the true channel impulse response andnitsthods lead to better results, especially for low SNR &lue
estimated impulse response. Note that the estimated impul$ie superiority of the PEB approach is even more obvious
response was computed in time-domain using the true filierfigures 2(c) and 2(d), whatever the SNR value.

magnitude combined with the recovered phase.

Petro/Pozi

0.6 Petro/Pozi 1.2 -
3-Pozi/Petro 3-Pozi/Petro
—~, 0! 1
A. Data length effects = (3.4)-PER,
(L}.I) 0.4 (3'4)7PEF2’D 90.&
In this experiment, we set the Signal to Noise Ratio (SNR) = o3 5 .
to 15 dB and varied the data length. Two different studieswer “ -PER, = Z“ 0
then conducted. The first one relates to non-symmetric input | ot S,

sources (we used a zero-mean exponentially distributet i.i
sequence) and the second one deals with symmetrically dis- (a) (b)

tributed sources (a Binary Phase Shift Keying (BPSK) source  ; .

in baseband with a square transmit filter and a symbol rate oo A-Pozifpetro b A-PozilPetrb
equal to the sample rate was then used). Consequently, since %”“5 o

the i.i.d. exponential sequence has a non-zero skewness, th ‘é’ o Pt & o

first study allows to compare the performance of 3FREBRp, 02 20 = °“ A-PERp
(3,4)-PERp, Petro/Pozi and th8-Pozi/Petro algorithms. On i SEPEESE— S S N
the other hand, since the BPSK signal is symmetrically dis- SNR (dB) SNR (dB)
tributed, the trispectrumg=4) of the observations was used (c) (d)

in the second study in order to compare the performancesF(l)f

. . g. 2. NMSE as a function of the SNR: (a) and (b) for an exptinén
the 4-PEBp and4-Pozi/Petro techniques. distribution and (c) and (d) a BPSK.

Figures 1(a), 1(b) and figures 1(c), 1(d) display the obthine
results corresponding to the exponentially distributed se-
guence and to the BPSK source, respectively. In both cdses, t
variations of the NMSE criterion for both impulse responses. 1D or 2D slice selection effects
h, andh, as a function of the data length show clearly that the |n this experiment, the data length and the SNR were
PEP methods perform better than the other methods, excggth fixed to 2048 samples and 15 dB, respectively and
in figure 1(b) where the performance of th&4)-PEBp for two different kinds of input sequence, namely the zero-mean
hs, Petro/Pozi and-Pozi/Petro methods are equivalent.  exponentially distributed i.i.d. signal and the BPSK seurc
were considered again. The NMSE of the output of the
Petro/Pozi,3-Pozi/Petro,4-Pozi/Petro,4-PERp, (3,4)-PEBp
and the ¢,6)-PEBp methods were computed as a function of
the used polyspectrum slice(@ € {1, ..., N—1}) introduced
in section IlI-C. The results are presented, in figures 3(a) a

Petro—-Pozi 0.2
0.25 3-Pozi/Petro

02 (3.4)-PER,

Petro/Pozi

1024 2048 4096
Data Length

(@

8192

4-PEPR

4-Pozi/Petro

0.2 2D

1024 2048 4096
Data Length

©

Fig. 1. NMSE as a function of the data length: (a) and (b) foexmonential

8192

1024 2048 4096
Data Length

(b)

A4-Pozi/Petro

4-PER,

distribution and (c) and (d) for a BPSK.

B. Signal to noise ratio effects

We generated 2048 samples of data and varied the SNIRase systems. These methods, exploit only 1D and 2D slices
Then the performance of the six methods cited in V-A weref higher order spectra. They can be divided in two classes:

1024 20% patdTength

(d)

8192

3(b) for an exponentially distributed i.i.d. sequence and i
figures 3(c) and 3(d) for the BPSK source, in parallel with the
Magnitude Response (MR) of the corresponding filter. Note
that, in order to improve the readability of the results, ke

was normalized with respect to the maximum value of NMSE
obtained at the output of the different algorithms. Cleahly
(3,4)-PEBp and @,6)-PEBp methods seem to offer a much
greater flexibility with respect to the polyspectrum slietes-

tion and they seem to be more robust when the chosen slice
corresponds to a region where the noise contribution to the
polyspectrum output dominates the input signal contrduuti

VI. CONCLUSION

We propose in this paper a new family of methods, called
PEP (Phase Estimation using Polyspectrum slices) methods,
order to solve the phase estimation problem for non-minimum



VII. APPENDIX

A. Proof of theorem 1

For the sake of readability and clarity, we omitted tlhel”-
tuple (k1,...,ks—1) in the sequel, that is to say, the point

10 20 30 40 50 60 10 20 30 40 50 60

Frequencies Frequencies (k1,...,kq—1) where the functionf is evaluated is omitted
®) and valugf(kl,...,{cq,l)_ is simply den_oted byf. Indeed,
the following proof is valid from any ppm(k:h v kgo1) €

{0,1,...,N—1}4=1 Then, leta, b, a, b, Sa and éb be the
real part of['{".", the imaginary part of 7", the real part of
i 47", the imaginary part of'¢;", the differencea — a and

] the differenceb — b, respectively. Let’s recall that/ denotes
S the number of samples used to estimBfe;".

Now, let's consider the wrapped phaéé;;”. Since it may

NMSE (h)
NMSE (h)

10 20 30 40 50 60 o W
Frequencies Frequencies

c d . . . 5 .
© @ be neartm and since its estimatey?." is also a wrapped
Fig. 3. NMSE as a function of the frequency slice, with a datagth of

:q—r P ~ ~
2048 samples and SNR=15 dB: (a) and (b) for an exponentiaildison and .phase;l/}“ o Can be decomposed @3 x +01+2m wheredy)
(c) and (d) for a BPSK. is the smallest phase error such thabelongs to{—1,0, 1}.

The purpose of this appendix consists then in showingdtat
converges in probability to zero.

For any strictly positive constarnt,, it exists at least one
couple (¢4, ;) belonging to *2 such that if|da| < ¢, and
|0b] < ¢, then|dy| < €. Indeed, it suffices to take, = ¢, =

Va2 + b2 sin(es, )|/v/2 as shown in figure VII-A.
the ¢-PEP ¢ > 3) methods, which use one particular 2D slice

of the ¢-th order spectrum, and the@;( ¢2)-PEP {2 >q1 >3)
methods, based on the joint exploitation of one special ide sl

of the ¢;-th order spectrum and one particular 2D slice of the
go-th order spectrum. There are some important differences
between our methods and those proposed by Petropulu et al
[20] and by Pozidis et al. [21]. Indeed, while the Petro/Pozi
[20] is a recursive method and the Pozi/Petro [21] can be con-
sidered as a block method; our methods estimate each phas
value independently from the others. Contrary to Petrd/Poz
and Pozi/Petro which are based on two 1D slices of the g-th
order spectrum, the q-PEP approaches exploit one 2D slice
g-th order spectrum. Regarding thg ,(¢2)-PEP methods, its
originality is the simultaneous exploitation of one 1D sliaf
q1-th order spectrum and one 2D slicegfth order spectrum.
This joint exploitation of one 1D slice and one 2D slice h
never been proposed in literature. An important result & th

joint exploitation of two distinct g-th order spectra is the Now, let's recall that convergence in mean square implies
flexibility of the (g1, ¢2)-PEP methods regarding the frequenc¥onvergence in probability according to Tchebycheff iragu
slice selection compared to the classical methods. Morgovigy [18]. Consequently, sincég__;f is asymptotically unbiased

in opposition to the majority of the existing methods, whicland consistent according to lemma 1, béthandéb converge
reconstruct the phase up to a linear phase, the PEP methigdsrobability to zero.

give an estimated phase up to an additive constant. Thi# resuconsequently, for a high enough value df, we have

confers a useful propriety to our methods, especially in “T'@a| < € and |0b] < €,. Then the following implication is
case of MIMO systems where the sources synchronizatigge:

is required. It is also shown in this paper that the PEP
methods are easy to implement and they are appropriate in
any kind of system, whether real or complex. In addition, theni-h implies the following inequality:

recovered phases are shown to be asymptotically consistent

The good behavior of the PERRis confirmed through several P(|da| < e, and |0b] < &) < P(|6¢] < ey)
computer simulations. Indeed, for band-limited systerhs, t

PEBp methods provide superior performance, as compar&tierefore, using the convergence in probability of bgit|
with the classical algorithms, for both symmetrically amthn and |§b| to zero, we get that the probabiliti(|6y)| < €)
symmetrically distributed sources. converges to one wheh/ goes to infinity.

a@g. 4. A geometric proof

|da] < €, and |0b] <€ = [0Y] < €y



B. Proof of theorem 2 with:

Let 7 and I be the phase jump functions computed byA(ki, ks, @) = (n(k1, ke, @) + I(ki, ko, cx)

Flynn's method from the wrapped phaseg;’(.,.,a) and  —n(ki + 1, ko, @) — I(ky + 1, ko, @) + Int(¥(ky, k2, )
b37(., ., ), respectively, such that, for evefy,, ko, ) of ~ T0V(k1, k2, @) —dh(ki + 1, bz, @) = 09 (ky + 1, ks, ) /2m)
{0,1,...,N —1}2: B(ky, k2, ) = (n (khkz,a) + I(ky, k2, ) R
B 77](](71, k2 +1 Oé) I(kh kg +1 a)) + Int(d)(kl, kg, a)
DAL (K Ry @) = O (ke ko, @) 2 (Ko ko, @) (1) 484 (ka, ko, ) — (ki ko + 1, @) — 60 (kr, ko + 1, ) /27)
(29)
and: In fact, we deduce from theorem 1 that both variables
o . (5’(;(k1,k2,a) — (51;(k11 + 1,]62,0) and (51;(]{?1,]@,(1) —
I (R by, @) = f{}r(kl»kzaa)+27T1(k17k2»04) (22)  54(ky, ko + 1, ) converge in probability to zero. Conse-
. ) . ) quently, if we assume that both variablés(ky, ks, ) —
with, according the notations of appendix VII-A: Ok + 1,ko, @)| and [d(ky, ko, @) — (k1 ka+ 1, )| are not
2 . . exactly equal tor, we can asymptotically neglect the effect
o (R, ko, o) = 10 (ks ko, @) + 66U (k1 ke, ) (23)  of the phase error terméy in equation (29), which leads

+2mn(ky, ko, @) asymptoatically:

We know that Flynn’s method finds the phase jump function Ak, ko, @) = (K1, k2, @) + (k1 ko, @)
of (21) by minimizing, with respect td in (21), the following —n(k1 +1,k2,0) — I(ky + 1, k2, )+
global criterion: Int(¢(ky, k2, @) = (k1 + 1, k2, @) /27)
B(ky, ko, 0) = (n(ky, ko, 00) + I(ky, ko, o)
T(I) - ~ 777(]431,](124’1 a) (kl,k2+1 Ot))+
S 4y kg, @) — 3Lk +1,k2,a))| (24) Int () (k1, ko, @) — (K, ko + 1, a)/27(r)0)
2
Ky, k2 T Then, by identifying (26) and (30), we find, for every
gzr,u ki, ko, a) — ¢;{;T’u(k1, ko +1, Ot) (/ﬁ, ko, Cl), that:
+ D [t o ) :
k1,k2 I(kl7k2aa) :I(kl7k27a) _n(kthaa) (31)
whereInt(.) denotes the function that rounds to the neare§p, inserting (23) and (31) into (22), we have:
integer. Inserting (21) into (24), we get the following ghdb - o - -
criterion: DIk, ko, @) = DLk ko, @) + 0 (K, k2, o) (32)
_ Z Aky b, )| + Z By, b, o) 25) éci:(rnidmg to 'theorem 1, 'th|s last gquatlon cIearIy. shows tha
o o Pa"u(., ., o) is asymptotically unbiased and consistent when
’ ’ Flynn’s method is used.
with:
Ak, Ky, 00) = (I(ky, Ky, ) = I(ky + 1, Ky, )+ REFERENCES
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