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Fourth-Order Blind Identification of Underdetermined
Mixtures of Sources (FOBIUM)

Anne Ferréol, Laurent Albera, and Pascal Chevalier

Abstract—For about two decades, numerous methods have been
developed to blindly identify overdetermined ( ) mixtures
of statistically independent narrowband (NB) sources received
by an array of sensors. These methods exploit the informa-
tion contained in the second-order (SO), the fourth-order (FO)
or both the SO and FO statistics of the data. However, in prac-
tical situations, the probability of receiving more sources than sen-
sors increases with the reception bandwidth and the use of blind
identification (BI) methods able to process underdetermined mix-
tures of sources, for which may be required. Although
such methods have been developed over the past few years, they
all present serious limitations in practical situations related to the
radiocommunications context. For this reason, the purpose of this
paper is to propose a new attractive BI method, exploiting the in-
formation contained in the FO data statistics only, that is able to
process underdetermined mixtures of sources without the main
limitations of the existing methods, provided that the sources have
different trispectrum and nonzero kurtosis with the same sign. A
new performance criterion that is able to quantify the identification
quality of a given source and allowing the quantitative comparison
of two BI methods for each source, is also proposed in the paper. Fi-
nally, an application of the proposed method is presented through
the introduction of a powerful direction-finding method built from
the blindly identified mixture matrix.

Index Terms—Blind source identification, FO direction finding,
fourth-order statistics, performance criterion, SOBI, trispectrum,
underdetermined mixtures.

I. INTRODUCTION

FOR more than two decades and the pioneer work of Godard
[30] about blind equalization in single-input single-output

(SISO) contexts, there has been an increasing interest for blind
identification (BI) of both single-input multiple-output (SIMO)
and multiple-input multiple-output (MIMO) systems. While, in
the SISO case, blind equalization or channel identification re-
quire the exploitation of higher order (HO) statistics in the gen-
eral case of nonminimum phase systems [30], it has been shown
recently that for SIMO systems, multichannel identification may
be performed from SO statistics only under quite general as-
sumptions [39], [43], [49]. Extensions of these pioneer works
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and the development of alternative methods for both blind multi-
channel identification and equalization in MIMO finite impulse
response (FIR) systems from SO or HO statstics are presented
in [1], [23], [31], [32], and [17], [29], [35], [38], [50]–[53], re-
spectively. Other extensions to MIMO infinite impulse response
(IIR) systems or taking into account the finite-alphabet property
of the sources are presented in [34], [44] and [46], [54], respec-
tively. However, the BI or deconvolution problems in MIMO
contexts are not recent but have been considered since the pi-
oneer work of Herault and Jutten [33], [36] about blind source
separation (BSS) in 1985. Since these pioneer works, numerous
methods have been developed to blindly identify either instan-
taneous or convolutive mixtures of statistically independent
NB sources received by an array of sensors. Some of these
methods [5], [48] exploit the SO data statistics only, whereas
other methods [6], [9], [14], [22] exploit both the SO and the
FO statistics of the data or even the FO data statistics only [2].

Nevertheless, all the previous methods of either blind mul-
tichannel identification of MIMO systems or BI of instanta-
neous or convolutive mixtures of sources, either SO or HO, can
only process overdetermined systems, i.e., systems for which
the number of sources (or inputs) is lower than or equal to the
number of sensors (or outputs) , i.e., such that .

However, in practical situations such as, for example, air-
borne electronic warfare over dense urban areas, the probability
of receiving more sources than sensors increases with the recep-
tion bandwidth and the use of BI methods that are able to process
underdetermined mixtures of sources, for which , may
be required. To this aim, several methods have been developed
this last decade mainly to blindly identify instantaneous mix-
tures of sources, among which we find the methods [3], [4], [8],
[15], [16], [19]–[21], [37], [45]. Concerning convolutive mix-
tures of sources or MIMO FIR systems, only very scarce results
exist about BI of underdetermined systems, among which we
find [18] and [47]. Some of these methods focus on blind source
extraction [16], [37], which is a difficult problem since under-
determined mixtures are not linearly invertible, while others, as
herein, favor BI of the mixture matrix [3], [4], [8], [15], [16],
[18]–[21], [37], [45], [47]. The methods proposed in [8], [15],
[18]–[21], and [47] only exploit the information contained in the
FO statistics of the data, whereas the one recently proposed in
[3] exploits the sixth-order data statistics only, and its extension
to an arbitrary even order is presented in [4]. Fi-
nally, the method proposed in [45] exploits the information con-
tained in the second characteristic function of the observations,
whereas in [37], the probability density of the observations con-
ditionally to the mixture matrix is maximized. Nevertheless, all
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these methods suffer from serious limitations in operational con-
texts related to radiocommunications. Indeed, the method [8]
and its improvements for both instantaneous [21] and convolu-
tive [18] mixtures of sources remain currently mainly concep-
tual and have not yet been evaluated by any simulations. The
methods [15], [19], and [20] assume FO noncircular sources
and, thus, fail in identifying circular sources, which are om-
nipresent in practice. Besides, the theories developed in [15]
and [19] confine themselves to the three source and two sensor
cases. Although the method [37] succeeds in identifying the
steering vectors of up to four speech signals with only two sen-
sors, the authors need sparsity conditions and do not address
the general case when all sources are always present. Moreover,
the method [45] has been developed only for real mixtures of
real-valued sources, and the issue of robustness with respect to
an overestimation of the source number remains open. Although
very promizing, powerful, and easy to implement, the methods
[3] and [4] suffer a priori from both a higher variance and a
higher numerical complexity due to the use of data statistics
with an even order strictly greater than four. Finally, for instan-
taneous mixtures of sources, the method developed in [47] can
only process overdetermined systems.

In order to overcome these limitations for underdetermined
systems, the purpose of this paper is to propose a new BI
method, exploiting the information contained in the FO data
statistics only that is able to process both over and underdeter-
mined instantaneous mixtures of sources without the drawbacks
of the existing methods of this family but assuming the sources
have a different trispectrum and have nonzero kurtosis with
the same sign (the latter assumption is generally verified in
radiocommunications contexts). This new BI method, which
is called the Fourth-Order Blind Identification of Underde-
termined Mixtures of sources (FOBIUM), corresponds to the
FO extension of the second-order blind idenification (SOBI)
method [5] and is able to blindly identify the steering vectors
of up to sources from an array of sensors with
space diversity only and of up to sources from an array of

different sensors. Moreover, this method is asymptotically
robust to an unknown Gaussian spatially colored noise since
it does not exploit the information contained in the SO data
statistics. To evaluate the performance of the FOBIUM method
and, more generally, of all the BI methods, a new performance
criterion that is able to quantify the identification quality of the
steering vector of each source and allowing the quantitative
comparison of two methods for the blind identification of a
given source is also proposed. Finally, an application of the
FOBIUM method is presented through the introduction of a
FO direction-finding method, built from the blindly identified
mixing matrix and called MAXimum of spatial CORrelation
(MAXCOR), which is shown to be very powerful with respect
to SO [42] and FO subspace-based direction-finding methods
[7], [13], [40]. Note that an extension of the FOBIUM method
to HO statistics remains possible.

After the problem formulation and an introduction of some
notations, hypotheses and data statistics in Section II, the
FOBIUM method is presented in Section III. The associated
conditions about the identifiability of the mixture matrix are
then analyzed in Section IV. The new performance criterion is

presented in Section V. The application of the FOBIUM method
to the direction-finding problem through the introduction of the
MAXCOR method is described in Section VI. All the results
of the paper are illustrated in Section VII through computer
simulations. The numerical complexity of the FOBIUM method
compared with the one of some existing methods is briefly
presented in Section VIII. Finally, Section IX concludes this
paper. Note that the results of the paper have been partially
presented in [11] and [25].

II. PROBLEM FORMULATION, HYPOTHESES,
AND DATA STATISTICS

A. Problem Formulation

We consider an array of NB sensors, and we call the
vector of complex amplitudes of the signals at the output of these
sensors. Each sensor is assumed to receive the contribution of
zero-mean stationary and stastistically independent NB sources
corrupted by a noise. Under these assumptions, the observation
vector can be written as follows:

(1)

where is the noise vector that is assumed to be zero-mean,
stationary, and Gaussian, the complex envelope of the source ,

, is the th component of the vector that is assumed
zero-mean and stationary, corresponds to the steering vector
of the source , and is the mixture matrix whose
columns are the vectors . The instantaneous mixture model
defined by (1) have already been considered in numerous pa-
pers [2]–[12], [14]–[16], [19]–[22], [24]–[28], [33], [36], [37],
[45], [48] and is perfectly suitable for applications such as, for
example, airborne or satellite electronic warfare.

Under these assumptions, the problem addressed in this paper
is that of FO blind identification of the mixture matrix . It
consists of estimating, from the FO data statistics, the mixing
matrix to within a invertible diagonal matrix and
a permutation matrix .

B. Statistics of the Data

Under the previous assumptions, the SO statistics of the data
used in the paper are characterized by the correlation or covari-
ance matrix , which is defined by

(2)

where is the power of source received by
an omnidirectional sensor, is the mean of the noise power
per sensor, is the spatial coherence of the noise such that
Tr , where Tr means Trace, is
the correlation matrix of the source vector , and the symbol

means transpose and complex conjugate.
The FO statistics of the data used in the paper are char-

acterized by the quadricovariance matrices
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, whose elements
are defined by

Cum (3)

where means complex conjugate, and is the com-
ponent of . Using (1) into (3) and assuming that

is the element
of the matrix , we obtain the expression of the
latter, which is given, under a Gaussian noise assumption, by

(4)

where is the quadricovariance matrix
of , and is the Kronecker product.

Under the assumption of statistically independent sources, the
matrix contains at least zeros, and ex-
pression (4) degenerates in a simpler one given by

(5)

where is the matrix defined by
, is the

diagonal matrix defined by
Diag , and is
defined by

Cum (6)

Expression (5), which has an algebraic structure similar to
that of data correlation matrices [5], is the starting point of the
FOBIUM method, as it will be shown in Section II-C. To sim-
plify the notations, we note in the following ,

, and , and we obtain from
(5)

(7)

C. Statistics Estimation

In situations of practical interests, the SO and FO statistics
of the data, which are given by (2) and (3), respectively, are not
known a priori and have to be estimated from samples of
data , , where is the sample period.
For zero-mean stationary observations, using the ergodicity
property, empirical estimators [26] may be used since they
generate asymptotically unbiased and consistent estimates of
the data statistics. However, in radiocommunications contexts,
most of the sources are no longer stationary but become cyclo-
stationary (digital modulations). For zero-mean cyclostationary
observations, the statistics defined by (2) and (3) become
time dependent, and the theory developed in the paper can be
extended without any difficulties by considering that and

are, in this case, the temporal means
and over an infinite interval duration of the
instantaneous statistics and defined by

(2) and (4), respectively. In these conditions, using a cyclo-er-
godicity property, the matrix can still be estimated from
the sampled data by the SO empirical estimator [26], but the
matrix has to be estimated by a nonempirical
estimator presented in [26], taking into account the SO cyclic
frequencies of the data. Note, finally, that this extension can
also be applied to nonzero mean cyclostationary sources, such
as some nonlinearly digitally modulated sources [41], provided
that nonempirical statistics estimators, which are presented in
[27] and [28] for SO and FO statistics, respectively, are used.
Such SO estimators take into account the first-order cyclic
frequencies of the data, whereas such FO estimators take into
account both the first and SO cyclic frequencies of the data.

D. Hypotheses

In Sections III–VIII, we further assume the following
hypotheses:

H1) .
H2) is full rank.
H3) (i.e., no source is Gaussian).
H4) , , (i.e., sources have FO

autocumulant with the same sign).
H5) , , such that

(8)

Note that hypothesis H4 is not restrictive in radiocommunica-
tion contexts since most of the digitally modulated sources have
negative FO autocumulant. For example, -PSK constellations
[41] have a kurtosis equal to for and to for

. Continuous phase modulation (CPM) [41], among which we
find, in particular, that the Continuous Phase Frequency Shift
Keying (CPFSK), the Minimum Shift Keying (MSK), and the
Gaussian Minimum Shift Keying (GMSK) modulation (GSM
standard) have a kurtosis lower than or equal to . Moreover,
note that (8) requires, in particular, that the sources have a dif-
ferent normalized tri-spectrum, which prevents us, in particular,
from considering sources with both the same modulation, the
same baud rate, and the same carrier residue.

III. FOBIUM METHOD

The purpose of the FOBIUM method is to extend the SOBI
method [5] to the FO. It first implements an FO prewhitening
step aimed at orthonormalizing the so-called virtual steering
vector [12] of the sources, corresponding to the columns of .
Second, it jointly diagonalizes several well-chosen prewhitened
quadricovariance matrices in order to identify the matrix.
Then, in a third step, it identifies the mixing matrix from the

matrix. The number of sources able to be processed by this
method is considered in Section IV.

A. FO Prewhitening Step

The first step of the FOBIUM method is to orthonormalize,
in the matrices (5), the columns of , which
can be considered to be virtual steering vectors of the sources
for the considered array of sensors [12]. For this purpose, let us
consider the eigendecomposition of the Hermitian matrix ,
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whose rank is under the assumptions H1 to H3, which is given
by

(9)

where is the real-valued diagonal matrix of the
nonzero eigenvalues of , and is the matrix of
the associated orthonormalized eigenvectors.

Proposition 1: Assuming sources with nonzero kurtosis
having the same sign (i.e., ), it is straigth-
forward to show that the diagonal elements of are not zero
and also have the same sign corresponding to .

We deduce from Proposition 1 that , which contains the
nonzero eigenvalues of , has square root decompositions
such that , where is a
square root of , and . Thus, the
existence of this square root decomposition requires assump-
tion H4. Considering the prewhitening matrix
defined by

(10)

where is the inverse of , we obtain, from
(7) and (9)

(11)

where is the identity matrix and where
Diag . Expression (11) shows that the
matrix is a unitary matrix , and
we obtain

(12)

which means that the columns of have been orthonormal-
ized to within a diagonal matrix.

B. FO Blind Identification of

The second step of the FOBIUM method is to blindly iden-
tify the matrix from some FO statistics of the data. For this
purpose, we deduce from (5) and (12) that

(13)

which shows that the unitary matrix diagonalizes the matrices
whatever the set of delays , and

the associated eigenvalues correspond to the diagonal terms of
the diagonal matrix .

For a given set and a given order of the
sources, is unique to within a unitary diagonal ma-
trix if and only if the diagonal elements of the matrix

are all different. If it
is not the case, following the results of [5], we have to consider
several sets , , such that for each couple
of sources , there exists at least a set , such
that (8) is verified for this set, which corresponds to hypothesis
H5. Under this assumption, the unitary matrix becomes, to
within a permutation and a unitary diagonal matrix, the only one
that jointly diagonalizes the matrices .

In other words, the unitary matrix , which is solution to the
previous problem of joint diagonalization, can be written as

(14)

where and are unitary diagonal and permutation matrices,
respectively.

Noting , the pseudo-inverse of , such
that , we deduce from (14) that

(15)

and using (10) and (12) into (15), we obtain

(16)
From (7) and (9), we deduce that Span Span ,
which implies that the orthogonal projection of on the space
spanned by the columns of , corresponds to .
Using this result in (16), we finally obtain

(17)

which shows that the matrix can be identified to within a
diagonal and a permutation matrix from the matrix .

C. Blind Identification of

The third step of the FOBIUM method is to identify the
mixing matrix from . For this purpose, we note from (17)
and the definition of that each column
of corresponds to a vector ,

, where , such that , is an element of
the diagonal matrix . Thus, mapping the components of each
column of into an matrix such that

, , consists of building
the matrices , . We then deduce that
the steering vector of the source corresponds, to within a
scalar, to the eigenvector of associated with the eigenvalue
having the strongest modulus. Thus, the eigendecomposition of
all the matrices allows the identification of to
within a diagonal and a permutation matrix.

D. Implementation of the FOBIUM Method

The different steps of the FOBIUM method are summarized
hereafter when snapshots of the observations

are available.

Step 1 Estimation of the matrix from the snapshots
using a suitable estimator of the FO cumulants

[26], [27];
Step 2 Eigen Value Decomposition (EVD) of the matrix .
• From this EVD, estimation of the number of

sources by a classical source number detection
test;

• Evaluation of the sign of the eigenvalues;
• Restriction of this EVD to the principal compo-

nents: , where is the diagonal ma-
trix of the eigenvalues with the strongest modulus,
and is the matrix of the associated eigenvectors.

Step 3 Estimation of the prewhitening matrix by
;
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Step 4 Selection of appropriate set of delays
, . For

example, one may choose these sets such that
and or such that ,
where may be lower than or equal to , where

is an estimate of the observation bandwidth ;
Step 5 Estimation of the matrices

for the delays sets using a suitable
estimator;

Step 6
• Computation of the matrices ,

.
• Estimation of the unitary matrix from

the joint diagonalization of the matrices
(the joint diagonalization

process is decribed in [5] and [9]);
Step 7 Computation of ;
Step 8
• Mapping each column of

into an matrix .
• EVD of the matrices
• An estimate of the mixing matrix to within a di-

agonal and a permutation matrix is obtained by con-
sidering that each of the columns of corresponds
to the eigenvector of a matrix
associated with the eigenvalue having the strongest
modulus.

IV. IDENTIFIABILITY CONDITIONS

Following the developments of the previous section, we de-
duce that the FOBIUM method is able to identify the steering
vectors of sources from an array of sensors, provided hy-
potheses H1 to H5 are verified. In other words, the FOBIUM
method is able to identify non-Gaussian sources
having different trispectrum and kurtosis with the same sign,
provided that the matrix has full rank , i.e., that the vir-
tual steering vectors for the considered
array of sensors remain linearly independent. However, it has
been shown in [24] and [12] that the vector can also be
considered as a true steering vector but for an FO virtual array
of different sensors, where is directly related
to both the pattern of the true sensors and the geometry of the
true array of sensors. This means, in particular, that
components of each vector are redundant components
that bring no information. As a consequence, rows
of the matrix bring no information and are linear combina-
tions of the others, which means that the rank of cannot be
greater than . In these conditions, the matrix may have
a rank equal to only if . Conversely, for an FO vir-
tual array without any ambiguities up to order , sources
coming from different directions generate an matrix with
a full rank as long as . Thus, the FOBIUM method
is able to process up to sources, where is the number
of different sensors of the FO virtual array associated with the
considered array of sensors. For example, for a uniform linear
array (ULA) of identical sensors, , whereas for
most of other arrays with space diversity only,

[12]. Finally, for an array with sensors having all a different
angular and polarization pattern, [12].

V. NEW PERFORMANCE CRITERION

Most of the existing performance criterions used to evaluate
the quality of a blind identification method [14], [15], [45] are
global criterions, which evaluate a distance between the true
mixing matrix and its blind estimate . Although useful, a
global performance criterion necessarily contains implicitly a
part of arbitrary considerations in the manner of combining the
distances between the vectors and , for , to gen-
erate a unique scalar criterion. Moreover, it is possible to find
that an estimate of is better than an estimate , with re-
spect to the global criterion, while some columns of estimate
the associated true steering vectors in a better way than those of

, which may generate some confusion in the interpretations.
To overcome these drawbacks, we propose in this section a

new performance criterion for the evaluation of a blind identifi-
cation method. This new criterion is no longer global and allows
both the quantitative evaluation of the identification quality of
each source by a given method and the quantitative comparison
of two methods for the blind identification of a given source.
It corresponds, for the blind identification problem, to a per-
formance criterion similar, with respect to the spirit, to the one
proposed in [10] for the extraction problem. It is defined by the
following -uplet

(18)

where , , such that , is defined by

Min (19)

where is the pseudo-distance between the vectors and
, which is defined by

(20)

Thus, the identification quality of the source is evaluated by
the parameter , which decreases toward zero as the identifi-
cation quality of the source increases. In particular, the source

is perfectly identified when . Although arbitrary, we
consider in the following that a source is blindly identified
with a very high quality if , with a high quality if

, with a good quality if , and with a poor
quality otherwise. Besides, we will say that a method M1 is
better than a method M2 for the identification of the source
if (M1) (M2), where (Mi) corresponds to the param-
eter generated by the method Mi. Moreover, we will say that
a method M1 is better than a method M2 if it is better for each
source, i.e., if (M1) (M2) for . Finally, we
verify that, whatever the diagonal matrix and per-
mutation matrix , we obtain

(21)

which means that two mixing matrix estimates that are equal to
within a diagonal and a permutation matrix generate the same
performance for all the sources, which is satisfactory.
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VI. APPLICATION OF THE FOBIUM METHOD: DIRECTION

FINDING WITH THE MAXCOR METHOD

Before presenting some computer simulations in Section VII,
we propose, in this section, an application of the FOBIUM
method that is usable when the array manifold is known or
estimated by calibration. This application consists to find the
direction of arrival (DOA) of the detected sources directly from
the blindly identified mixing matrix, allowing better DOA esti-
mations than the existing ones in many contexts. Besides, for a
given array of sensors, this application allows the interpretation
of the coefficient, introduced in the previous section to
evaluate the identification quality of the source , in terms of
angular precision.

A. Existing Direction-Finding Methods

When the array manifold is known or estimated by calibra-
tion, each component of the steering vector

may be written as a function of the DOA
of the source , where and are the azimuth and the eleva-
tion angles of source , respectively (see Fig. 1). The function

is the th component of the steering vector for
the direction . In particular, in the absence of modeling
errors such as mutual coupling, the component can
be written, under the far field assumption and in the general
case of an array with space, angular, and polarization diversity,
as [12] (22), shown at the bottom of the page, where is the
wavelength, are the coordinates of sensor of the
array, and is a complex number corresponding to the
response of sensor to a unit electric field coming from the
direction . Using the knowledge of the array manifold

, it is possible to estimate the DOA of the sources from
some statistics of the data such as the SO or the FO statistics
given by (2) and (7), respectively.

Among the existing SO direction-finding methods, the
so-called High-Resolution (HR) methods, which have been
developed from the beginning of the 1980s, are the most pow-
erful in multisource contexts since they are characterized by
an asymptotic resolution that becomes infinite, whatever the
source signal-to-noise ratio (SNR). Among these HR methods,
the subspace-based methods such as the MUSIC method [42]
are the most popular. Recall that after a source number estima-
tion , the MUSIC method consists of finding the couples

, minimizing the pseudo-spectrum defined by

(23)

where is the steering vector for the direction and

, where is the identity

matrix, and is the matrix of the orthonormalized

Fig. 1. Incoming signal in three dimensions.

eigenvectors of the estimated data correlation matrix asso-
ciated with the strongest eigenvalues.

One of the main drawbacks of the SO subspace-based
methods such as the MUSIC method is that they are not able
to process more than sources from an array of
sensors. Mainly to overcome this limitation, but also to still
increase the resolution with respect to that of SO methods for a
finite duration observation, higher order HR direction-finding
methods [7], [13], [40] have been developed during these two
last decades, among which the extension of the MUSIC method
to the FO [40], which is called MUSIC4, is the most popular.
Recall that after a source number estimation , the MUSIC4
method consists of finding the couples minimizing
the pseudo-spectrum defined by

(24)

where , and

, where is the identity matrix,

and is the matrix of the orthonormalized
eigen vectors of the estimated data quadricovariance matrix
associated with the strongest eigenvalues. Moreover, it has
been shown in [12] that the MUSIC4 method is able to process
up to sources where corresponds to the number of
different sensors of the FO virtual array associated with the
considered array of sensors.

B. Application of the FOBIUM Method:
The MAXCOR Method

Despite the interests of both the SO and FO HR
subspace-based direction-finding methods described in
Section VI-A, the latter keep a source of performance limitation
in multisource contexts for a finite duration of observation since
they may be qualified as multidimensionnal methods insofar as
they implement a procedure of searching multiple minima of a
pseudo-spectrum function. This multidimensionality character

(22)
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of these methods generates interaction between the sources
in the pseudo-spectrum, which is a source of performance
limitation, for a finite duration observation, in the presence of
modeling errors or for poorly angularly separated sources, for
example.

To overcome the previous limitation, it is necessary to trans-
form the multidimensional search of minima into monodi-
mensional searches of optima, which can be easily done from
the source steering vector estimates and is precisely the phi-
losophy of the new proposed method. More precisely, from the
estimated mixture matrix , the new proposed method called
MAXCOR (search for a MAXimum of spatial CORrelation),
consists of solving, for each estimated source ,
a mono-dimensional problem aiming at finding the DOA
that maximizes the square modulus of a certain spatial correla-
tion coefficient, which is defined by

(25)

where

(26)

which is equivalent to minimizing the pseudo-spectrum defined
by

(27)

It is obvious that the performance of the MAXCOR method
is directly related to those of the BI method, which generates
the estimated matrix . Performance of the MAXCOR method
from a generated by the FOBIUM method are presented in
Section VII and compared with those of MUSIC2 and MUSIC4,
both with and without modeling errors. Note that following the
FOBIUM method, the MAXCOR method is able to process up
to statistically independent non-Gaussian sources, whereas
MUSIC4 can only process sources [12].

VII. COMPUTER SIMULATIONS

Performances of the FOBIUM method are illustrated in
Section VII-A, whereas those of the MAXCOR method are
presented in Section VII-B. Note that the sources considered
for the simulations are zero-mean cyclostationary sources cor-
responding to quadrature phase shift keying (QPSK) sources,
which is not a problem for the FOBIUM method, according
to Section II-C, provided the sources do not share the same
trispectrum. Nevertheless, for complexity reasons, the empir-
ical estimator of the FO data statistics is still used, despite the
cyclostationarity of the sources. This is not a problem since it
is shown in [26] that for SO circular sources such as QPSK
sources, although biased, the empirical estimator behaves
approximately like an unbiased estimator. Finally, the elevation
angle of the sources is assumed to be zero.

Fig. 2. � as a function of L. (a) JADE. (b) SOBI. (c) FOBIUM. P = 2,
N = 3, ULA, � = 90 , � = 131:76 , SNR = 10 dB.

Fig. 3. � as a function of L, (a) JADE. (b) SOBI. (c) FOBIUM. P = 2,
N = 3, ULA, � = 90 , � = 131:76 , SNR = 0 dB.

A. FOBIUM Method Performance

The performances of the FOBIUM method are presented in
this section both for the overdetermined and underdetermined
mixtures of sources.

1) Overdetermined Mixtures of Sources: To illustrate the
performance of the FOBIUM method for overdetermined
mixtures of sources, we assume that two statistically indepen-
dent QPSK sources with a raise cosine pulse shape filter are
received by a ULA of omnidirectional sensors spaced
half a wavelength apart. The two QPSK sources have the same
symbol duration (where is the sample period), the
same roll-off , the same input SNR and have a carrier
residue such that , , and a DOA
equal to and , respectively. The performance for the source
, is computed and averaged over 300 realizations.

Under these assumptions, Figs. 2–5 show, for several con-
figurations of SNR and spatial correlation between the sources,
the variations of ( behaves in a same way) at the output
of both Joint Approximated Diagonalization of Eigenmatrices
(JADE) [9], SOBI [5], and FOBIUM methods, as a function of
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Fig. 4. � as a function of L. (a) JADE. (b) SOBI. (c) FOBIUM. P = 2,
N = 3, ULA, � = 90 , � = 82:7 , SNR = 10 dB.

Fig. 5. � as a function of L. (a) JADE. (b) SOBI. (c) FOBIUM. P = 2,
N = 3, ULA, � = 90 , � = 82:7 , SNR = 0 dB.

the number of snapshots . For Figs. 2 and 3, the sources are
well angularly separated ( , ) and such
that their SNR is equal to 10 and 0 dB, respectively. For Figs. 4
and 5, the sources are poorly angularly separated ( ,

) and such that their SNR is equal to 10 and 0 dB,
respectively. For the SOBI method, delays,

are considered such that , whereas for the FOBIUM
method, delays set, are taken into account
such that and .

Figs. 2 and 3 show that for well angularly separated non-
Gaussian sources having different spectrum and trispectrum, the
JADE, SOBI, and FOBIUM methods succeed in blindly iden-
tifying the sources steering vectors with a very high quality
( , ) from a relatively weak number of snap-
shots and even for weak sources ( for SNR dB
and for SNR dB). Nevertheless, in such situ-
ations, we note the best behavior of the SOBI method with re-
spect to FO methods and the best behavior of JADE with respect
to FOBIUM, whatever the source SNR and the number of snap-
shots, due to a higher variance of the FO statistics estimators.

Fig. 4 confirms the very good behavior of the three methods
from a very weak number of snapshots even when

Fig. 6. � (1 � p � 5) as a function of L at the output of FOBIUM, P = 5,
N = 3, ULA, � = 90 , 120.22 , 150.65 , �52:05 , and �76:32 .

the sources are poorly angularly separated, provided the SNR is
not too low (SNR dB for Fig. 4). However, Figs. 4 and
5 show that for poorly angularly separated sources, there ex-
ists a number of snapshots increasing with the source SNR
( for SNR dB and for SNR dB),
over which the FOBIUM method becomes much more efficient
than the JADE and SOBI methods. In such situations, the reso-
lution gain obtained with FOBIUM is higher than the loss due
to a higher variance in the statistics estimates. In particular, for
sources with an SNR equal to 0 dB, Fig. 5 shows a very high
source identification quality ( , ) with
the FOBIUM method for , whereas the JADE and
SOBI methods generate coefficients only around 0.05 for

.
2) Underdetermined Mixtures of Sources: To illustrate the

performance of the FOBIUM method for underdetermined mix-
tures of sources, we assume first that five statistically indepen-
dent QPSK sources with a raised-cosine pulse shape filter are
received by an array of omnidirectional sensors. The
five QPSK sources have the same symbol duration , the
same roll-off , the same input SNR of 20 dB, a carrier
residue such that , ,

, , and , and a DOA given
by , , , , and

, respectively. The performance for the source ,
is still computed and averaged over 300 realizations. For the

FOBIUM method, delays set, are taken into
account such that , and .
Under these assumptions, Figs. 6 and 7 show the variations of
all the coefficients at the output of the FOBIUM
method, as a function of the number of snapshots . For Fig. 6,
a ULA of three sensors spaced half a wavelength apart is con-
sidered, whereas for Fig. 7, the array of sensors corresponds to
a uniformly circular array (UCA) such that ( is the
radius, and is the wavelength). Note that the two considered
arrays of sensors have the same aperture on the -axis if the sen-
sors of the ULA lie on this axis.
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Fig. 7. � (1 � p � 5) as a function of L at the output of FOBIUM, P = 5,
N = 3, UCA, � = 90 , 120.22 , 150.65 , �52:05 , and �76:32 .

Figs. 6 and 7 show that for both the ULA and UCA arrays,
as long as ( for the ULA and for
the UCA), the FOBIUM method succeeds in blindly identifying
the source steering vectors with a high quality ( ,

) in underdetermined contexts as soon as there are
enough snapshots ( for the ULA and for
the UCA). Nevertheless, the comparison of Figs. 2 and 6 shows
that for a given array of sensors, the number of snapshots re-
quired to obtain a high BI quality of all the source steering vec-
tors increases with the number of sources ( for
and for for a ULA of three sensors). On the
other hand, the comparison of Figs. 6 and 7 show that for a given
number and scenario of sources, the required number of snap-
shots ensuring a high quality of source steering vector iden-
tification increases as the quantity decreases. Note that
the quantity (0 for the ULA and two for the UCA) cor-
responds to the number of degrees of freedom in excess for the
FO virtual array associated with the considered array of sensors.

We now decide to add one QPSK source with a raised-cosine
pulse shape filter to the five previous ones. Source 6 has the
symbol duration , the same roll-off , the same
input SNR of 20 dB, a carrier residue such that ,
and a DOA given by . For the FOBIUM method,
a delays set, , are still taken into account
such that , and . Under these new
assumptions, Figs. 8 and 9 again show the variations of all the
coefficients at the output of the FOBIUM
method, as a function of the number of snapshots . For Fig. 8,
a ULA of three sensors is considered, whereas for Fig. 9, the
UCA of three sensors is considered.

The comparison of Figs. 7 and 9 confirms, for a given array
of sensors and as long as , the increasing value of
required to obtain a good blind identification of all the source
steering vectors ( , ) as the number of
sources increases ( for and for

for a UCA of three sensors). However, the comparison
of Figs. 6 and 8, for the ULA with three sensors, shows off the
limitations of the FOBIUM method and the poor identification
quality of some sources ( such that ), even for large
values of as soon as .

Fig. 8. � (1 � p � 6) as a function of L at the output of FOBIUM, P = 6,
N = 3, ULA, � = 90 , 120.22 , 150.65 ,�52:05 ,�76:32 , and 66.24 .

Fig. 9. � (1 � p � 6) as a function of L at the output of FOBIUM, P = 6,
N = 3, UCA, � = 90 , 120.22 , 15.65 ,�52:05 ,�76:32 , and 66.24 .

B. MAXCOR Method Performance

The performance of the MAXCOR method, which extracts
the DOA of the sources from the source steering vectors blindly
identified by the FOBIUM method, are presented in this section
both in the absence and in the presence of modeling errors.

1) Performance Criterion: For each of the considered
sources and for each of the three considered direction finding
methods, two criterions are used in the following to quantify the
quality of the associated DOA estimation. For a given source,
the first criterion is a probability of aberrant results generated
by a given method for this source, and the second one is an
averaged Root Mean Square Error (RMSE), computed from
the nonaberrant results, generated by a given method for this
source.

More precisely, for a given method, a given number of snap-
shots , and a particular realization of the observation vectors

, the estimation of the DOA of the source
is defined by

Min (28)

where, for the MUSIC2 and MUSIC4 methods, the quantities
correspond to the minima of the pseudo-spec-
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Fig. 10. RMS error of the source 1 and p(� � �) as a function of
L. (a) MAXCOR. (b) MUSIC2. (c) MUSIC4. P = 2, N = 3, ULA,
SNR = 10 dB, � = 90 , and � = 131:76 ; no modeling errors.

trum , and , respectively, which are
defined by (23) and (24), and where, for the MAXCOR
method, corresponds to the minimum of ,

. To each estimate , we associate
the corresponding value of the pseudo-spectrum, which is
defined by for MUSIC2,
for MUSIC4, and for MAXCOR, where

is the integer that minimizes . In this context, the
estimate is considered to be aberrant if , where is a
threshold to be defined. In the following, .

Let us now consider realizations of the observation vec-
tors . For a given method, the probability of
abberant results for a given source , is defined by the
ratio between the number of realizations for which is aber-
rant, and the number of realizations. From the nonaberrant
realizations for the source , we then define the averaged RMS
error for the source (RMSE ) by the quantity

RMSE (29)

Fig. 11. RMS error of the source 1 and p(� � �) as a function of
L. (a) MAXCOR. (b) MUSIC2. (c) MUSIC4. P = 2, N = 3, ULA,
SNR = 10 dB, � = 90 , � = 82, 7 ; no modeling errors.

where is the number of nonaberrant realizations for the
source , and is the estimate of for the nonaberrant re-
alization .

2) Absence of Modeling Errors: To illustrate the perfor-
mance of the MAXCOR method in the absence of modeling
errors, we consider the scenarios of Figs. 2 and 4, respectively,
for which two QPSK sources that are well and poorly angularly
separated, respectively, and such that SNR dB, are
received by an ULA of three sensors.

Under the assumptions of Fig. 2 (sources with a large an-
gular separation), Fig. 10 shows the variations, as a function of
the number of snapshots , of the RMS error for the source 1
( ) and the associated probability of nonabberant results

(we obtain similar results for the source 2), estimated
from realizations at the output of the MAXCOR,
MUSIC2, and MUSIC4 methods. Fig. 11 shows the same vari-
ations as those of Fig. 10 but under the assumptions of Fig. 4
(sources with a weak angular separation).

Fig. 10(b) shows that the probability of aberrant realizations
for source 1 is zero for all the methods as soon as becomes
greater than 120. In this context, Fig. 10(a) shows that for well
angularly separated non-Gaussian sources having different
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spectrum and trispectrum and a SNR equal to 10 dB, the three
methods succeed in estimating the DOA of the two sources with
a high precision (RMSE , ) from a relatively
weak number of snapshots ( for MUSIC2 and
for MUSIC4 and MAXCOR). Nevertheless, in such situations,
we note the best behavior of the MUSIC2 method with respect
to HO methods MUSIC4 and MAXCOR, which give the same
results, due to a higher variance of the FO statistics estimators.

Fig. 11(b) shows that the probability of aberrant realizations
for the source 1 is equal to 0 for MAXCOR, whatever the value
of , but remains greater than 20% for for MUSIC2
and MUSIC4. Both in terms of probability of nonaberrant re-
sults and estimation precision, Fig. 11(a) and (b) shows, for
poorly angularly separated sources, the best behavior of the
MAXCOR method, which becomes much more efficient than
the MUSIC4 and MUSIC2 methods. Indeed, MAXCOR suc-
ceeds in estimating the DOA of the two sources with a high
precision (RMSE , ) from a relatively
weak number of snapshots , whereas MUSIC4 and
MUSIC2 require and snapshots, respec-
tively, to obtain the same precision. In such situations, the reso-
lution gain obtained with MAXCOR and MUSIC4 with respect
to MUSIC2 is higher than the loss due to a higher variance in the
statistics estimates. Besides, the monodimensionality character
of the MAXCOR method with respect to MUSIC4 jointly with
the very high resolution power of the FOBIUM method explain
the best behavior of MAXCOR with respect to MUSIC4.

3) Presence of Modeling Errors: We now consider the sim-
ulations of Section VII-B2 but with modeling errors due for in-
stance to a nonperfect equalization of the reception chains. In the
presence of such errors, the steering vector of the source is
not the known function of the DOA but be-
comes an unknown function
of , where is a modeling error vector. In such
conditions, the previous HR methods lose their infinite asymp-
totic resolution, and the question is to search for a method that
presents some robustness to the modeling errors. To solve this
problem, we assume that the vector is a zero-mean,
Gaussian, circular vector with independent components such
that . Note that for omnidirec-
tional sensors and small errors, is the sum of the phase and
amplitude error variances per reception chain. For the simula-
tions, is chosen to be equal to 0.0174, which corresponds, for
example, to a phase error with a standard deviation of 1 with
no amplitude error.

In this context, under the assumptions of Fig. 10 (sources with
a large angular separation) but with modeling errors, Fig. 12
shows the variations, as a function of the number of snapshots

, of the RMS error for the source 1 ( RMSE ) and the asso-
ciated probability of nonabberant results (we obtain
similar results for the source 2) estimated from real-
izations at the output of the MAXCOR, MUSIC2, and MUSIC4
methods. Fig. 13 shows the same variations as those of Fig. 12
but under the assumptions of Fig. 11 (sources with a weak an-
gular separation) with modeling errors.

Fig. 12(b) shows that the probability of aberrant realizations
for the source 1 is zero for all the methods as soon as be-
comes greater than 135. In this context, comparison of Figs. 10

Fig. 12. RMS error of the source 1 and p(� � �) as a function of
L. (a) MAXCOR. (b) MUSIC2. (c) MUSIC4. P = 2, N = 3, ULA,
SNR = 10 dB, � = 90 , and � = 131:76 ; with modeling errors.

and 12 show a degradation of the performance of each method
in the presence of modeling errors. However, for well angularly
separated sources, MUSIC2 is more affected by the presence
of modeling errors than FO methods as soon as the number of
snapshots is sufficient. Indeed, while MUSIC2 remains better
than FO methods for a relatively weak number of snapshots

, due to a higher variance of HO methods, MUSIC4
and MAXCOR, which are equivalent to each other, become
better than MUSIC2 as soon as the number of snapshots is suffi-
cient . In this latter case, the higher number of sensors
of the FO virtual array with respect to that of the true
array reduces the effect of modeling errors on the per-
formances of FO methods.

Fig. 13(b) shows that the probability of aberrant realizations
for the source 1 is equal to 0 for MAXCOR, whatever the value
of , but remains greater than 20% for for MUSIC2
and MUSIC4. Both in terms of probability of nonaberrant re-
sults and estimation precision, comparison of Figs. 11 and 13
again show a degradation of the performance of all the methods
in the presence of modeling errors. However, for poorly angu-
larly separated sources, whatever the value of the number of
snapshots, MUSIC2 is much more affected by the modeling er-
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Fig. 13. RMS of the source 1 and p(� � �) as a function ofL. (a) MAXCOR.
(b) MUSIC2. (c) MUSIC4. P = 2, N = 3, ULA, SNR = 10 dB, � = 90 ,
� = 82, 7 ; with modeling errors.

rors than FO methods, as soon as , due to a greater aper-
ture and number of sensors of the FO virtual array with respect
to the true array. Note again, in the presence of modeling errors,
the best performance of MAXCOR with respect to MUSIC4 for
poorly angularly separated sources.

Fig. 14. Minimum numerical complexity as a function of P . (a) JADE.
(b) SOBI. (c) FOBIUM.

VIII. NUMERICAL COMPLEXITY COMPUTATION

This section aims at giving some insight into the relative nu-
merical complexity of the SOBI, JADE, and FOBIUM methods
for given values of , , , and the number of sweeps re-
quired by the joint diagonalization process [5], [9]. The nu-
merical complexity of the methods is presented in terms of the
number of floating complex operations (Flocops) required to
identify the mixture matrix from snapshots of the data. Note
that a flocop corresponds to the sum of a complex multiplication
and a complex addition.

The number of flocops required by the JADE, SOBI, and FO-
BIUM methods for given values of , , , and are given
by (30)–(32), shown at the bottom of the page, where is the
number of correlation and quadricovariance matrices jointly di-
agonalized by the SOBI and FOBIUM methods, respectively.

For a given number of sources , the minimum complexity
of the previous methods is obtained by minimizing the values
of , , , and , ensuring the good identification of the mix-
ture matrix . It is said in [14] that the minimum value of is

Int , where Int means integer part. The min-
imum value of depends on the spectral difference between

Comp JADE Min Min

(30)

Comp SOBI

(31)

Comp FOBIUM

(32)
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the sources and is chosen to be equal to in the fol-
lowing. The minimum value of is equal to for
JADE and SOBI, whereas for FOBIUM, assuming an array with
space diversity only, it corresponds to the minimum value ,
such that . Finally, the minimum
value of depends on several parameters such as , , the FO
autocumulant, and the SNR of the sources…. For this reason,
is chosen to be the same for all the methods in the following.

Under these assumptions, Fig. 14 shows the variations of the
minimum numerical complexity of JADE, SOBI, and FOBIUM
as a function of the number of sources for . Note
the higher complexity of FOBIUM with respect to JADE and
SOBI, which requires about 1 Mflocops to process four sources
from 1000 snapshots.

IX. CONCLUSION

A new BI method that exploits the FO data statistics only
(called FOBIUM) has been presented in this paper to process
both overdetermined and underdetermined instantaneous mix-
tures of statistically independent sources. This method does not
have the drawbacks of the existing methods that are capable
of processing underdetermined mixtures of sources and is able
to put up with any kind of sources (analogical or digital, cir-
cular or not, i.i.d or not) with potential different symbol du-
ration … It only requires non-Gaussian sources having kur-
tosis with the same sign (practically always verified in radio-
communications contexts) and sources having different trispec-
trum, which is the only limitation of the method. The FOBIUM
method is capable of processing up to sources
from an array of sensors with space diversity only and up
to sources from an array of different sensors. A con-
sequence of this result is that it allows a drastic reduction or
minimization in the number of sensors for a given number of
sources, which finally may generate a receiver that is much
less expensive than a receiver developed to process overdeter-
mined mixtures only. The FOBIUM method has been shown
to require a relatively weak number of snapshots to generate
good output performances for currently used radiocommunica-
tions sources, such as QPSK sources. Besides exploiting the FO
data statistics only, the FOBIUM method is robust to the pres-
ence of a Gaussian noise whose spatial coherence is unknown.
Finally, an application of the FOBIUM method has been pre-
sented through the introduction of a new FO direction-finding
method that is built from the blindly identified mixing matrix
and called MAXCOR. The comparison of this method to both
the SO and FO HR subspace-based direction-finding methods
shows better resolution and better robustness to modeling errors
of the MAXCOR method with respect to MUSIC2 and MUSIC4
and its ability to process underdetermined mixtures of up to
statistically independent non-Gaussian sources.
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