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ABSTRACT

For about two decades, numerous methods have been developed to blindly identify overdetermined (P <
N) mixtures of P statistically independent narrow band sources received by an array of N sensors. These methods
exploit the information contained in the Second Order (SO), the Fourth Order (FO) or both the SO and FO
statistics of the data. However in practical situations, the probability of receiving more sources than sensors
increases with the reception bandwidth and the use of Blind Identification (BI) methods able to process
underdetermined mixtures of sources, for which P > N, may be required. Although such methods have been
developed these last years, they all present serious limitations in practical situations related to the
radiocommunications context. For this reason, the purpose of this paper is to propose a new attractive BI
method, exploiting the information contained in the FO data statistics only, able to process underdetermined
mixtures of sources without the main limitations of the existing methods, provided that the sources have different
trispectrum and non zero kurtosis with the same sign. A new performance criterion, able to quantify the
identification quality of a given source and allowing the quantitative comparison of two BI methods for each
source, is also proposed in the paper. Finally, an application of the proposed method is presented through the
introduction of a powerful direction finding method built from the blindly identified mixture matrix.
Keywords : Blind source identification, Underdetermined mixtures, Fourth Order statistics, SOBI,

Trispectrum, Performance criterion, FO direction finding



I. INTRODUCTION

For more than two decades and the pioneer work of Godard [30] about blind equalization in
SISO (Single Input Single Output) contexts, there has been an increasing interest for BI of both SIMO
(Single Input Multiple Outputs) and MIMO (Multiple Inputs Multiple Outputs) systems. While in the
SISO case, blind equalization or channel identification require the exploitation of higher order (HO)
statistics in the general case of non-minimum phase systems [30], it has been shown recently that for
SIMO systems, multichannel identification may be performed from SO statistics only, under quite
general assumptions [39] [43] [49]. Extensions of these pioneer works and development of alternative
methods for both blind multi-channel identification and equalization in MIMO FIR systems from SO
or HO statstics are presented in [1] [23] [31-32] and [17] [29] [35] [38] [50-53] respectively. Other
extensions to MIMO IIR systems or taking into account the finite-alphabet property of the sources are
presented in [34] [44] and [46] [54] respectively. However, the BI or deconvolution problems in
MIMO contexts are not recent but have been considered since the pioneer work of Herault and Jutten
[33] [36] about Blind Source Separation (BSS) in 1985. Since these pioneer works, numerous
methods have been developed to blindly identify either instantaneous or convolutive mixtures of P
statistically independent narrow band sources received by an array of N sensors. Some of these
methods [5] [48] exploit the SO data statistics only whereas other methods [6] [9] [14] [22] exploit
both the SO and the FO statistics of the data or even the FO data statistics only [2].

Nevertheless, all the previous methods of either blind multichannel identification of MIMO
systems or BI of instantaneous or convolutive mixtures of sources, either SO or HO, can only process
overdetermined systems, i.e. systems for which the number of sources (or inputs), P, is lower than or
equal to the number of sensors (or outputs), V, i.e. such that P < V.

However in practical situations such as, for example, airborne electronic warfare over dense
urban areas, the probability of receiving more sources than sensors increases with the reception
bandwidth and the use of BI methods, able to process underdetermined mixtures of sources, for which
P > N, may be required. To this aim, several methods have been developed this last decade mainly to
blindly identify instantaneous mixtures of sources, among which we find the methods [3-4] [8] [15-
16] [19-21] [37] [45]. Concerning convolutive mixtures of sources or MIMO FIR systems, only very

scarce results exist about BI of underdetermined systems, among which we find [18] [47]. Some of



these methods focus on blind source extraction [16] [37], which is a difficult problem since
underdetermined mixtures are not linearly invertible, while others, as herein, favour BI of the mixture
matrix [3-4] [8] [15-16] [18-21] [37] [45] [47]. The methods proposed in [8] [15] [18-21] [47] only
exploit the information contained in the FO statistics of the data whereas the one recently proposed in
[3] exploit the Sixth order data statistics only and its extension to an arbitrary even order 2¢q (g > 2) is
presented in [4]. Finally, the method proposed in [45] exploits the information contained in the
second characteristic function of the observations whereas in [37], the probability density of the
observations conditionally to the mixture matrix is maximized. Nevertheless, all these methods suffer
from serious limitations in operational contexts related to radiocommunications. Indeed, the method
[8] and its improvements for both instantaneous [21] and convolutive [18] mixtures of sources remain
currently mainly conceptual and has not yet been evaluated by any simulations. The methods [15]
[19-20] assume FO non circular sources and thus fail in identifying circular sources, omnipresent in
practice. Besides, the theories developed in [15] and [19] confine themselves to the three sources and
two sensors case. Although the method [37] succeeds in identifying the steering vectors of up to four
speech signals with only two sensors, the authors need sparsity conditions and do not address the
general case when all sources are always present. Moreover, the method [45] has been developed only
for real mixtures of real-valued sources and the issue of robustness with respect to an over estimation
of the source number remains open. Although very promizing, powerful and easy to implement, the
methods [3-4] suffer, a priori, from both a higher variance and a higher numerical complexity due to
the use of data statistics with an even order strictly greater than four. Finally, for instantaneous
mixtures of sources, the method developed in [47] can only process overdetermined systems.

In order to overcome these limitations for underdetermined systems, the purpose of this paper
is to propose a new Bl method, exploiting the information contained in the FO data statistics only,
able to process both over and underdetermined instantanecous mixtures of sources without the
drawbacks of the existing methods of this family, but assuming the sources have different trispectrum
and have non zero kurtosis with the same sign (the latter assumption is generally verified in
radiocommunications contexts). This new BI method, called FOBIUM (Fourth Order Blind
Identification of Underdetermined Mixtures of sources), corresponds to the FO extension of the SOBI
method [5] and is able to blindly identify the steering vectors of up to N-N+1 sources, from an

array of N sensors with space diversity only, and of up to stources, from an array of N different



sensors. Moreover, this method is asymptotically robust to an unknown Gaussian spatially colored
noise since it does not exploit the information contained in the SO data statistics. To evaluate the
performance of the FOBIUM method and, more generally, of all the BI methods, a new performance
criterion, able to quantify the identification quality of the steering vector of each source and allowing
the quantitative comparison of two methods for the blind identification of a given source, is also
proposed. Finally, an application of the FOBIUM method is presented through the introduction of a
FO direction finding method, built from the blindly identified mixing matrix and called MAXCOR
(MAXimum of spatial CORrelation), which is shown to be very powerful with respect to SO [42] and
FO subspace-based direction finding methods [7] [13] [40]. Note that an extension of the FOBIUM
method to HO statistics remains possible.

After the problem formulation and an introduction of some notations, hypotheses and data
statistics in section II, the FOBIUM method is presented in Section IIl. The associated conditions
about the identifiability of the mixture matrix are then analysed in Section IV. The new performance
criterion is presented in Section V. The application of the FOBIUM method to the direction finding
problem through the introduction of the MAXCOR method is described in section VI. All the results
of the paper are illustrated in section VII through computer simulations. The numerical complexity of
the FOBIUM method compared with the one of some existing methods is briefly presented in section
VIII. Finally section IX concludes this paper. Note that the results of the paper have been partially
presented in [25] and [11].

II. PROBLEM FORMULATION, HYPOTHESES AND DATA STATISTICS
A. Problem formulation

We consider an array of N narrow-band (NB) sensors and we call x(#) the vector of complex
amplitudes of the signals at the output of these sensors. Each sensor is assumed to receive the
contribution of P zero-mean stationary and stastistically independent NB sources corrupted by a

noise. Under these assumptions, the observation vector, x(¢), can be written as follows :

P A
x() = Y, myDa, + b(e) = Am@) + b(r) (1) .

p=1



where b(t) is the noise vector, assumed zero-mean, stationary and Gaussian, the complex envelope of
the source p, my(?), is the p-th component of the vector m(¢), assumed zero-mean and stationary, a,
corresponds to the steering vector of the source p and 4 is the (N X P) mixture matrix whose columns
are the vectors a,. The instantaneous mixture model defined by (1) have already been considered in
numerous papers [2-12] [14-16] [19-22] [24-28] [33] [36-37] [45] [48] and is perfectly suitable for
applications such as, for example, airborne or satellite electronic warfare.

Under these assumptions, the problem addressed in this paper is that of FO blind identification
of the mixture matrix 4. It consists to estimate, from the FO data statistics, the mixing matrix 4 to

within a (P X P) invertible diagonal matrix A and a (P X P) permutation matrix I1.

B. Statistics of the data

Under the previous assumptions, the SO statistics of the data used in the paper are
characterized by the correlation or covariance matrix, Ry, defined by
A H & H A H
R, = Ex(Hx(t)'] = z T,apa, + B = AR,4 +m2 B ().

p=1

A
where 7, =E[| mp(t)|2 ] is the power of source p received by an omnidirectional sensor, 1, is the

mean of the noise power per sensor, B is the spatial coherence of the noise such that Tr[B] = N,
where Tr[.] means Trace, R, = E[m(¢) m(t)H] is the correlation matrix of the source vector m(f) and
the symbol H means transpose and complex conjugate.

The FO statistics of the data used in the paper are characterized by the (N? x N?)
quadricovariance matrices Oy(t1, T2, 13), whose elements, O,(t1, 12, T3)[i, j, &, [] (1 <4, j, k, [ £ N),

are defined by

A * * 3
O(t1, 1 i ko ] = Cum(ee), xi(t — 1) x4t — 1) > x4(t — 13)) ).

where * means complex conjugate and x;(f) is the component i of x(¢). Using (1) into (3) and
assuming that Q,(t1, 12, ©3)[i, J, &, [] is the element [N(i —1) + j, N(k — 1) + [] of the matrix O,(t1, T2,
13), we obtain the expression of the latter, given, under a Gaussian noise assumption, by

0u(t1, 12, 13) = [A® A™] Op(t1, 12, 13) [4 © A" H (4) .

where O,(t1, 12, 13) is the (P? x P?) quadricovariance matrix of m(f) and ® is the Kronecker

product.



Under the assumption of statistically independent sources, the matrix Q,,(t1, T2, T3) contains at

least P* — P zeros and expression (4) degenerates in a simpler one given by

P
Q1,2 1) = Y ot w) [4,0a)1[a,®a,"
p=1
= Ag Cp(t1, 12, 13) A" (5) -
A
where Ao is the (N2 X P) matrix defined by 4p = [ a®ay’, ....... , apQap' ], Cy(tq, T2, 13) 1S the (P X
A
P) diagonal matrix defined by Cy,(t1, T2, 13) = Diag[ci(Ty, T2, 13), --..., Cp(T1, T2, 13)] and ¢,(1y, T2,
13) is defined by
cp(t1, 12, 13) = Cum(my(t), mp(t —11) , mp(t — 12) , mp(t — 13)) '

The expression (5), which has an algebraic structure similar to that of data correlation matrices [5], is

the starting point of the FOBIUM method as it will be shown in the next section. To simplify the
A A A

notations, we note in the following O, = 0y(0, 0, 0), C;, = Cy(0, 0, 0), ¢, =¢,(0, 0, 0) and we

obtain from (5)

Or = ApCpdp™ (7).

C. Statistics estimation

In situations of practical interests, the SO and FO statistics of the data, given by (2) and (3)
respectively, are not known a priori and have to be estimated from L samples of data, x(/) i x(IT,),
1</ < L, where T, is the sample period. For zero-mean stationary observations, using the ergodicity
property, empirical estimators [26] may be used since they generate asymptotically unbiased and
consistent estimates of the data statistics. However, in radiocommunications contexts, most of the
sources are no longer stationary but become cyclostationary (digital modulations). For zero-mean
cyclostationary observations, the statistics defined by (2) and (3) become time dependent and the
theory developed in the paper can be extended without any difficulties by considering that R, and
0,(1, T2, T3) are, in this case, the temporal means, < R,(f) > and < Q\(11, T2, T3)(¢) >, over an infinite
interval duration, of the instantaneous statistics, R(¢) and O,(t1, 12, 13)(¢) defined by (2) and (4)
respectively. In these conditions, using a cyclo-ergodicity property, the matrix R, can still be
estimated from the sampled data by the SO empirical estimator [26] but the matrix Oy(t1, T2, 13) has

to be estimated by a non empirical estimator presented in [26], taking into account the SO cyclic



frequencies of the data. Note finally that this extension can also be applied to non zero mean
cyclostationary sources, such as some non linearly digitally modulated sources [41], provided that
non empirical statistics estimators, presented in [28] and [27] for SO and FO statistics respectively,
are used. Such SO estimators take into account the first order cyclic frequencies of the data whereas

such FO estimators take into account both the first and SO cyclic frequencies of the data.

D. Hypotheses

In the next sections, we further assume the following hypotheses :

- Hl:P< N?

- H2: Apis full rank

- H3:¢,#0 (1 <p<P)(ie. nosource is Gaussian)

- H4:V 1<p,q<P,cycy>0(ie. sources have FO autocumulant with the same sign)

- H5:V1<p,qg<P,3 (11,12, 13) # (0,0, 0) such that
cp(t1, 12, 1) /epl = gt 12, 13) /ey ) .

Note that hypothesis H4 is not restrictive in radiocommunication contexts since most of the digitally
modulated sources have negative FO autocumulant. For example, M-PSK constellations [41] have a
kurtosis equal to —2 for M = 2 and to —1 for M > 2. Continuous phase modulation (CPM) [41], among
which we find in particular the CPFSK, the MSK and the GMSK modulation (GSM standard) have a
kurtosis lower than or equal to —1. Moreover, note that the condition (8) requires in particular that the
sources have different normalized tri-spectrum, which prevents in particular from considering sources

with both the same modulation, the same baud rate and the same carrier residu.

III. THE FOBIUM METHOD

The purpose of the FOBIUM method is to extend the SOBI method [5] to the FO. It firstly
implements a FO pre-whitening step aiming at orthonormalizing the so-called virtual steering vector
[12] of the sources, corresponding to the columns of 4. Secondly it jointly diagonalizes several well
chosen pre-whitened quadricovariance matrices in order to identify the 4 matrix. Then, in a third
step, it identifies the mixing matrix 4 from the 4y matrix. The number of sources able to be processed

by this method is considered in section IV.



A. FO pre-whitening step

The first step of the FOBIUM method is to orthonormalize, in the Oy(t1, T2, T3) matrices (5),
the columns of Ay, which can be considered as virtual steering vectors of the sources for the
considered array of sensors [12]. For this purpose, let us consider the eigen decomposition of the

Hermitian matrix Oy, whose rank is P under the assumptions H1 to H3, given by
= H 9
Qx EX A)C EX ( ) .

where A, is the (P X P) real-valued diagonal matrix of the P non zero eigen-values of O, and E is the

(N?XP) matrix of the associated orthonormalized eigen-vectors.

Proposition 1 : Assuming P sources with non zero kurtosis having the same sign & (¢ = £1) (i.e.
H3 + H4), it is straigthforward to show that the diagonal elements of A, are not zero and have also
the same sign corresponding to €

We deduce from proposition 1 that €A, which contains the non zero eigenvalues of €0, has

H/2 )1/2

square root decompositions such that eA,. = (gAx)l/ 2 (eA,)? where (eAy)!? is a square root of A,

and (an)H/2 = [(an)l/z]H. Thus the existence of this square root decomposition requires

assumption H4. Considering the (P X N?) pre-whitening matrix T defined by
A
T = (eAy) 12 gH (10)

where (eA,)~1/2 is the inverse of (eA,)!/2, we obtain, from (7) and (9)

T(E0) T = Tdg(ECn) g T = 1, (11)

where I, is the (P x P) identity matrix and where €C,, = Diag[|cil,...., |cp|]. The expression (11)

shows that the (P X P) matrix 7' 4o (sCm)l/ Zisa unitary matrix U (Ul U= I,,) and we obtain

TAp = U (eCp)™'? (12)

which means that the columns of 4y have been orthonormalized to within a diagonal matrix.

B. FO blind identification of AQ

The second step of the FOBIUM method is to blindly identify the 4o matrix from some FO

statistics of the data. For this purpose, we deduce from (5) and (12) that



T 011,12, 13) T = U (£Cp) ™2 C(t1, 12, 13) (6C) 12 UM (13)

which shows that the unitary matrix U diagonalizes the matrices T O,(t1, T2, 13) 7 whatever the set
of delays (t1,12,13) and the associated eigen-values correspond to the diagonal terms of the diagonal
matrix (€Cp) "2 Co(t1, T2, 13) (€C,y) V2.

For a given set (71,12,73) and a given order of the sources, U is unique to within a unitary

)—1/2 )—1/2

diagonal matrix if and only if the diagonal elements of the matrix (eCy, Ciu(t1, 12, 13) (€Cyyy
are all different. If it is not the case, following the results of [5], we have to consider several sets
(nk,rzk,tgk), 1< k < K, such that for each couple of sources (p, ¢g), there exists at least a set
(t1*,%." t5"), such that the condition (8) is verified for this set, which corresponds to hypothesis H5.
Under this assumption, the unitary matrix U becomes, to within a permutation and a unitary diagonal
matrix, the only one which jointly diagonalizes the K matrices T Qx(tlk,rzk,t3k) 7. In other words,

the unitary matrix, Uy, solution to the previous problem of joint diagonalization can be written as

Ugpr = U ATI (14)

where A and IT are unitary diagonal and permutation matrices respectively.
. # . #
Noting 7' = E, (eA,)"? the pseudo-inverse of 7, such that 77 = L, , we deduce from (14)

that
A
#
T Usor = Ex (gAx)l/z Usol = Ex (gAx)l/z UATI (15)
and using (12) and (10) into (15) we obtain
T Ugpr = B eA)2 U ATL = E B 4y (2Cp) 2 ATH (16)

From (7) and (9), we deduce that Span(4p) = Span(Ey), which implies that the orthogonal projection
of A on the space spanned by the columns of £, Ey ExHAQ, corresponds to Ap. Using this result in

(16), we finally obtain

T Ugor = Ag (£Cp)V2 A TI (17)

which shows that the matrix 4y can be identified, to within a diagonal and a permutation matrix, from
.o
the matrix 7' Ug,,.

C. Blind identification of A4

The third step of the FOBIUM method is to identify the mixing matrix 4 from A4g. For this



purpose, we note from (17) and the definition of 4y that each column, b, (1 < p < P), of T #Usol
corresponds to a vector U, |cq|1/ 2 (aq®aq*), 1 < g < P, where ,, such that |u | = 1, is an element of
the diagonal matrix A. Thus mapping the components of each column, b,, of T #Usol into a (N x N)
matrix, B, such that B,[i, j1 = b,((i ~1)N + /), 1 <i, j < N, consists to built the matrices p, |cq|1/2
a, aqH, 1 < g < P. We then deduce that the steering vector, a, of the source g corresponds, to within
a scalar, to the eigenvector of B, associated with the eigenvalue having the strongest modulus. Thus
the eigendecomposition of all the B, matrices, 1 < p < P, allows the identification of 4 to within a

diagonal and a permutation matrix.
D. Implementation of the FOBIUM method

The different steps of the FOBIUM method are summarized hereafter when L snapshots of the

observations, x(/) (1< /<L), are available.

Step 1: Estimation, @x, of the O, matrix from the L snapshots x(/) using a suitable estimator

of the FO cumulants [26-27].

Step 2 : Eigen Value Decomposition (EVD) of the matrix @x.
. From this EVD, estimation, ﬁ’, of the number of sources P by a classical source
number detection test.
. Evaluation of the sign € of the eigenvalues.
. Restriction of this EVD to the P principal components : @x ~ IAEx /A\x @xH, where //ix
is the diagonal matrix of the P eigenvalues with the strongest modulus and lAfx is the

matrix of the associated eigenvectors.

Step 3 : Estimation, ?’, of the pre-whitening matrix 7 by T= (s/A\x)_” 2 ZAZXH.

Step 4 : Selection of K appropriate set of delays (’Clk,‘tzk,’tgk) # (0, 0, 0), 1< k < K. For
example, one may choose these sets such that rlk # 0 and ‘Ezk = ‘E3k = 0 or such that
’Clk = ’Czk = ’Cgk # 0, where le may be lower than or equal to 1/ ﬁx, where lA?x 1S an

estimate of the observation bandwidth, B,.

Step 5: Estimation, x(rlk,tzk,r3k), of the K matrices Qx(nk,rzk,tgk) for the K delays sets

using a suitable estimator.



Step 6 : . Computation of the matrices T @x(nk,rzk,tgk) /I\’H, I<k<K.
. Estimation, lA]SOl, of the unitary matrix Ug,; from the joint diagonalization of the K

matrices 7 (T lk,tzk,r3k) ?“H(the joint diagonalization process is decribed in [5] [9]).

#
Step 7 : Computation of 7 (A]SO; = Ig“x (S/A\x)” 2 IAJSOI

. A A A#HA . N
Step 8 : . Mapping each column, b, (1< p < P), of T' U, into a (N x N) matrix B,

. EVD of the P matrices ﬁp (1€p< f’)

. An estimate, ?1, of the mixing matrix 4, to within a diagonal and a permutation
matrix, is obtained by considering that each of the P columns of 4 corresponds to the
eigenvector of a matrix 1/1\3,, (1 p < IA’) associated with the eigenvalue having the

strongest modulus.

IV. IDENTIFIABILITY CONDITIONS

Following the developments of the previous section, we deduce that the FOBIUM method is
able to identify the steering vectors of P sources from an array of N sensors provided hypotheses H1
to HS are verified. In other words, the FOBIUM method is able to identify P (P < N?) non Gaussian
sources having different tri-spectrum and kurtosis with the same sign provided that the 4y matrix has
full rank P, i.e. that the virtual steering vectors aq®aq* (1< g < P) for the considered array of N
sensors remain linearly independent. However, it has been shown in [24] and [12] that the vector
aq®aq* can also be considered as a frue steering vector but for a FO virtual array of N, (N, < N?)
different sensors, where N, is directly related to both the pattern of the true sensors and the geometry
of the true array of N sensors. This means in particular that N> — N, components of each vector
aq®aq* are redundant components that bring no information. As a consequence, N? — N, rows of the
Ao matrix bring no information and are linear combinations of the others, which means that the rank
of Ap cannot be greater than N,. In these conditions, the 4, matrix may have a rank equal to P only if
P < N.. Conversely, for a FO virtual array without any ambiguities up to order N, P sources coming
from P different directions generate an 4y matrix with a full rank P as long as P < N.. Thus the
FOBIUM method is able to process up to N, sources, where N, is the number of different sensors of

the FO virtual array associated with the considered array of N sensors. For example, for a uniform

-10 -



linear array of N identical sensors, Ne = 2N — 1 whereas for most of other arrays with space diversity
only, No. = N> — N + 1 [12]. Finally for an array with N sensors having all a different angular and

polarization pattern, N = N? [12].
V. NEW PERFORMANCE CRITERION

Most of the existing performance criterions used to evaluate the quality of a blind identification
method [14] [15] [45] are global criterions which evaluate a distance between the true mixing matrix
A and its blind estimate A. Although useful, a global performance criterion necessarily contains
implicitly a part of arbitrary considerations in the manner of combining the distances between the
vectors a, and Qq, for 1 < g < P, to generate a unique scalar criterion. Moreover, it is possible to find
that an estimate 21 of 4 is better than an estimate 22, with respect to the global criterion, while some
columns of ?12 estimate the associated true steering vectors in a better way than those of ?11, which
may generate some confusion in the interpretations.

To overcome these drawbacks, we propose in this section a new performance criterion for the
evaluation of a blind identification method. This new criterion is no longer global and allows both the
quantitative evaluation of the identification quality of each source by a given method and the
quantitative comparison of two methods for the blind identification of a given source. It corresponds,
for the blind identification problem, to a performance criterion similar, with respect to the spirit, to

the one proposed in [10] for the extraction problem. It is defined by the following P-uplet

A
D(4,4) = (a1, 02,....., ap) (18)

where o, 1 <p < P, such that 0 < o, < 1, is defined by

A
@, =  Min_[d(ay, )] (19)

I<i<P
where d(u, v) is the pseudo-distance between the vectors # and v, defined by

A ‘qu

2
R .
(wv) )" u)

(20)

Thus the identification quality of the source p is evaluated by the parameter oy, which
decreases toward zero as the identification quality of the source p increases. In particular, the source p

is perfectly identified when o, = 0. Although arbitrary, we consider in the following that a source p is

-11 -



blindly identified with a very high quality if o, < 0.01, with a high quality if o, < 0.03, with a good
quality if o, < 0.05 and with a poor quality otherwise. Besides, we will say that a method M1 is better
than a method M2 for the identification of the source p if o,(M1) < a,(M2), where o, (Mi)
corresponds to the parameter oy, generated by the method Mi. Moreover, we will say that a method
M1 is better than a method M2 if it is better for each source, i.e. if o, (M1) < o,(M2) for 1 <p < P.

Finally we verify that, whatever the (ﬁ’ X IAD) diagonal matrix A and permutation matrix ﬁ, we obtain
D(4, A) = D(4, 4 A1) 21

which means that two mixing matrix estimates which are equal to within a diagonal and a

permutation matrix generate the same performance for all the sources, which is satisfactory.

VI. APPLICATION OF THE FOBIUM METHOD : DIRECTION FINDING WITH THE
MAXCOR METHOD

Before presenting some computer simulations in section VII, we propose in this section, an
application of the FOBIUM method, usable when the array manifold is known or estimated by
calibration. This application consists to find the direction of arrival (DOA) of the detected sources
directly from the blindly identified mixing matrix, allowing better DOA estimations than the existing
ones in many contexts. Besides, for a given array of sensors, this application allows to interpret the o,
coefficient, introduced in the previous section to evaluate the identification quality of the source p, in

terms of angular precision.

A. Existing direction finding methods

When the array manifold is known or estimated by calibration, each component, a,, (1 <n <
N), of the steering vector a4, may be written as a function, a,(6,, ¢,), of the direction of arrival (6,,
¢p) of the source p, where 6, and ¢, are the azimuth and the elevation angles of source p
respectively (Figure 1). The function a,(0, ¢) is the n™ component of the steering vector a(6, ¢) for
the direction (0, @). In particular, in the absence of modelling errors such as mutual coupling, the
component a,(6,, ¢p) can be written, under the far field assumption and in the general case of an

array with space, angular and polarization patterns diversity, as [12]

an(©p, 0p) = fu(Op, ©p) expij2n[x, c0s(6,) cos(pp) + v, sin(B)) cos(¢,) + z, sin(@,) I/ A (22)

-12 -



where A is the wavelength, (x,, y,, z,) are the coordinates of sensor n of the array, f,(6,, 9,) is a
complex number corresponding to the response of sensor # to a unit electric field coming from the
direction (8,, ¢,). Using the knowledge of the array manifold a(0, @), it is possible to estimate the
direction of arrival of the sources from some statistics of the data such as the SO or the FO statistics
given by (2) and (7) respectively.

Among the existing SO direction finding methods, the so-called High Resolution (HR)
methods, developed from the beginning of the eighties, are the most powerful in multi-sources
contexts since they are characterized by an asymptotic resolution which becomes infinite whatever
the source Signal to Noise Ratio (SNR). Among these HR methods, the subspace-based methods
such as the MUSIC method [42] are the most popular. Recall that, after a source number estimation P
, the MUSIC method consists to find the P couples (8;, ¢;) minimizing the pseudo-spectrum defined
by

A q0,0)" 11 a(6,9)
6 iea(© _ a(0,¢ MUSIC2 > P
psic2(0: ) a(6,9)" a(0,9) 2

A
where a(0, @) is the steering vector for the direction (0, ¢) and ﬁMUS]CQ =(Iy - 2x 2xH) where Iy

is the (N X N) identity matrix and ﬁx is the (N x IAD) matrix of the P orthonormalized eigenvectors of
the estimated data correlation matrix, ﬁx, associated with the P strongest eigenvalues.

One of the main drawbacks of the SO subspace-based methods such as the MUSIC method is
that they are not able to process more than N — 1 sources from an array of N sensors. Mainly to
overcome this limitation, but also to still increase the resolution with respect to that of SO methods
for a finite duration observation, higher order HR direction finding methods [7] [13] [40] have been
developed these two last decades, among which the extension of the MUSIC method to the FO [40],
called MUSIC4, is the most popular. Recall that, after a source number estimation IA’, the MUSIC4

method consists to find the P couples (0;, ¢;) minimizing the pseudo-spectrum defined by

6Music4(ea 0) i [a(9,¢)®2] ﬁMUSIC4 [a(9,¢)®2] (24)

H
la(6.9)°*]'[a(6.9)**]
A
where a(0, 9)®> = a(0, 0)®a(®, 9)* and Nysics = (2 — Ey B, with I 2 the (V? x N?) identity

matrix and 1@} the (N2 x f’) matrix of the P orthonormalized eigen vectors of the estimated data

quadricovariance matrix, (J,, associated with the P strongest eigenvalues. Moreover it has been
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shown in [12] that the MUSIC4 method is able to process up to N, — 1 sources where N, corresponds
to the number of different sensors of the FO virtual array associated with the considered array of

SE€Nsors.

Figure 1
C. Application of the FOBIUM method : the MAXCOR method

Despite of the interests of both the SO and FO HR subspace-based direction finding methods
described in section A, the latter keep a source of performance limitation in multi-sources contexts
for a finite duration of observation, since they may be qualified as multidimensionnal methods insofar
as they implement a procedure of searching multiple minima of a pseudo-spectrum function. This
multidimensionality character of these methods generates interaction between the sources in the
pseudo-spectrum, which is a source of performance limitation, for a finite duration observation, in the
presence of modelling errors or for poorly angularly separated sources for example.

To overcome the previous limitation, it is necessary to transform the multidimensional search
of minima into P monodimensional searches of optima, which can be easily done from the source
steering vectors estimates and which is precisely the philosophy of the new proposed method. More
precisely, from the estimated mixture matrix ?1, the new proposed method, called MAXCOR (search
for a MAXimum of spatial CORrelation), consists to solve, for each estimated source p (1 <p < f’), a
mono-dimensional problem aiming at finding the direction of arrival (6, ¢) which maximizes the

square modulus of a certain spatial correlation coefficient, defined by

A a(0.0)" iy, a(0.9)
6, o e, _ Maxcor,p 25
Corp%: @) a(0,0)" a(0, ) .

where

A ~ H
A a a
_ %p %y
nl Maxcor,p — A H a (26)
a, a,

which is equivalent to minimize the pseudo-spectrum defined by

A a(0,0)" 1., 4(6,0)
é'Maxcor,p(ea 9 =1 - A/II{ -~ (27)
a(0,9)"a(6,9)

It is obvious that the performance of the MAXCOR method are directly related to those of the
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blind identification method which generates the estimated matrix 4. Performance of the MAXCOR
method from a 4 generated by the FOBIUM method are presented in the next section and compared
with those of MUSIC2 and MUSIC4 both with and without modelling errors. Note that following the
FOBIUM method, the MAXCOR method is able to process up to N, statistically independent non

Gaussian sources, while MUSIC4 can only process N, — 1 sources [12].

VII. COMPUTER SIMULATIONS

Performance of the FOBIUM method are illustrated in section A whereas those of the
MAXCOR method are presented in section B. Note that the sources considered for the simulations
are zero-mean cyclostationary sources corresponding to QPSK sources, which is not a problem for the
FOBIUM method, according to section II.C, provided the sources do not share the same trispectrum.
Nevertheless, for complexity reasons, the empirical estimator of the FO data statistics is still use
despite of the cyclostationarity of the sources. This is not a problem since it is shown in [26] that for
SO circular sources such as QPSK sources, although biased, the empirical estimator behaves
approximatly like an unbiased estimator. Finally the elevation angle of the sources is assumed to be

ZEero.
A. FOBIUM method performance

The performance of the FOBIUM method are presented in this section both for overdetermined

and underdetermined mixtures of sources.
Al. Overdetermined mixtures of sources

To illustrate the performance of the FOBIUM method for overdetermined mixtures of sources,
we assume that 2 statistically independent QPSK sources with a raise cosine pulse shape are received
by a Uniform Linear Array (ULA) of N = 3 omnidirectional sensors spaced half a wavelength apart.
The 2 QPSK sources have the same symbol duration 7'= 47,, where 7, is the sample period, the same
roll-off u = 0.3, the same input SNR, have a carrier residu such that Af; x T, = 0, AL x T, = 0.5, and a
direction of arrival equal to 6, and 6, respectively. The performance for the source ¢, o, is computed
and averaged over 300 realizations.

Under these assumptions, the figures 2 to 5, show, for several configurations of SNR and
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spatial correlation between the sources, the variations of o1 (op behaves in a same way) at the output
of both JADE [9], SOBI [5] and FOBIUM methods, as a function of the number of snapshots L. For
figures 2 and 3, the sources are well angularly separated (6, = 90°, 6, = 131.76°) and such that their
SNR is equal to 10 and 0 dB respectively. For figures 4 and 5, the sources are poorly angularly
separated (0, = 90°, 8, = 82.7°) and such that their SNR is equal to 10 and 0 dB respectively. For the
SOBI method K = 8 delays, t (1 < k < 8), are considered such that =k ., Whereas for the
FOBIUM method K = 8 delays set, (t lk,tzk,r3k), are taken into account such that ’Clk =" and rzk = r3k
=0.

Figures 2 and 3 show that for well angularly separated non Gaussian sources having different
spectrum and trispectrum, JADE, SOBI and FOBIUM methods succeed in blindly identifying the
sources steering vectors with a very high quality (o; < 0.01, 1< < 2) from a relatively weak number
of snapshots and even for weak sources (L ~ 100 for SNR = 10 dB and L ~ 600 for SNR = 0 dB).
Nevertheless, in such situations, we note the best behavior of the SOBI method with respect to FO
methods and the best behavior of JADE with respect to FOBIUM, whatever the source SNR and the
number of snapshots, due to a higher variance of the FO statistics estimators.

Figure 4 confirms the very good behavior of the three methods from a very weak number of
snapshots (L ~ 100) even when the sources are poorly angularly separated provided the SNR is not
too low (SNR = 10 dB for figure 4). However, figures 4 and 5 show that for poorly angularly
separated sources, there exists a number of snapshots, L, increasing with the source SNR (L, = 265
for SNR = 10 dB and Ly ~ 150 for SNR = 0 dB), over which the FOBIUM method becomes much
more efficient than the JADE and SOBI methods. In such situations, the resolution gain obtained with
FOBIUM is higher than the loss due to a higher variance in the statistics estimates. In particular, for
sources with a SNR equal to 0 dB, figure 5 shows a very high source identification quality (o; < 0.01,
1< i £ 2) with the FOBIUM method for L > 2600 while the JADE and SOBI methods generate
coefficients o; only around 0.05 for L = 4000.

Figure 2
Figure 3
Figure 4

Figure 5
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A2. Underdetermined mixtures of sources

To illustrate the performance of the FOBIUM method for underdetermined mixtures of
sources, we assume first that 5 statistically independent QPSK sources with a raise cosine pulse shape
are received by an array of N = 3 omnidirectional sensors. The 5 QPSK sources have the same symbol
duration T = 4T,, the same roll-off p = 0.3, the same input SNR of 20 dB, a carrier residu such that
AMXT.= 0, ALXT, = 172, Af3xT, = 1/3, AfaxT, = 1/5, AfsxT, = 1/7 and a direction of arrival given by
0,=90°, 0,=120.22°, 6;=150.65°, 6,= —52.05°, 65= —76.32°respectively. The performance for the
source ¢, Oy, 1s still computed and averaged over 300 realizations. For the FOBIUM method K = 8
delays set, (t lk,tzk,r3k), are taken into account such that 1 lk =k T,and rzk = r3k =0 (1 <£k<8). Under
these assumptions, the figures 6 and 7 show the variations of all the coefficients o, (1 < ¢ <5), at the
output of the FOBIUM method, as a function of the number of snapshots L. For figure 6, a ULA of 3
sensors spaced half a wavelength apart is considered whereas for figure 7, the array of sensors
corresponds to an Uniformly Circular Array (UCA) such that /A = 0.5 (r is the radius and A is the
wavelength). Note that the two considered array of sensors have the same aperture on the x-axis if the
sensors of the ULA lie on this axis.

Figures 6 and 7 show that for both the ULA and UCA arrays, as long as P < N, (N, =5 for the
ULA and N, = 7 for the UCA), the FOBIUM method succeeds in blindly identifying the sources
steering vectors with a high quality (o; < 0.03, 1< i < 5) in underdetermined contexts as soon as the
number of snapshots is enougth (L > 6460 for the ULA and L > 4930 for the UCA). Nevertheless, the
comparison of figures 2 and 6 shows that, for a given array of sensors, the number of snapshots L
required to obtain a high blind identification quality of all the source steering vectors increases with
the number of sources (L < 100 for P =2 and L = 6460 for P = 5 for a ULA of 3 sensors). On the
other hand, the comparison of figures 6 and 7 shows that for a given number P and scenario of
sources, the required number of snapshots K ensuring a high quality of source steering vectors
identification increases as the quantity N, — P decreases. Note that the quantity N, — P (0 for the ULA
and 2 for the UCA) corresponds to the number of degrees of freedom in excess for the FO virtual
array associated with the considered array of sensors.

Figure 6

Figure 7

-17-



We now decide to add one QPSK source with a raise cosine pulse shape to the 5 previous ones.
The source 6 has the symbol duration T = 37,, the same roll-off pn = 0.3, the same input SNR of 20
dB, a carrier residu such that Afg x 7, = 0.5 and a direction of arrival given by 8¢ = 66.24°. For the
FOBIUM method K = 8 delays set, (‘E]k,Tzk,‘E3k), are still taken into account such that ‘E]k = kT, and ‘Ezk
= r3k = 0. Under these new assumptions, the figures 8 and 9 show again the variations of all the
coefficients oy, (1 < g < 6), at the output of the FOBIUM method, as a function of the number of
snapshots L. For figure 8, a ULA of 3 sensors is considered whereas for figure 9, the UCA of 3
sensors is considered.

The comparison of figures 7 and 9 confirms, for a given array of sensors and as long as P < N,
the increasing value of L required to obtain a good blind identification of all the source steering
vectors (o; < 0.05, 1< i < 6) as the number of sources increases (L > 2400 for P = 5 and L > 8400 for
P =6, for a UCA of 3 sensors). However, the comparison of figures 6 and 8, for the ULA with 3
sensors, shows off the limitations of the FOBIUM method and the poor identification quality of some

sources (3 i such that o; > 0.09), even for large values of L (L = 10000) as soon as P > N..
Figure 8
Figure 9

B. MAXCOR method performance

The performance of the MAXCOR method, which extracts the direction of arrival of the
sources from the source steering vectors blindly identified by the FOBIUM method, are presented in

this section both in the absence and in the presence of modelling errors.

B1. Performance criterion

For each of the P considered sources and for each of the three considered direction finding
methods, two criterions are used in the following to quantify the quality of the associated direction of
arrival estimation. For a given source, the first criterion is a probability of aberrant results generated
by a given method for this source and the second one is an averaged Root Mean Square Error
(RMSE), computed from the non aberrant results, generated by a given method for this source.

More precisely, for a given method, a given number of snapshots, L, and a particular realization
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of the L observation vectors x(/) (1 <[ < L), the estimation, ép, of the direction of arrival of the source
p (1 £p < P)is defined by

A A N
0, = Agrg (Min [ -6, ) (28)

1

where, for MUSIC2 and MUSIC4 methods, the quantities £; (1 <i < f’) correspond to the P minima of
the pseudo-spectrum 6Mus,~cg(e) and 6Mus,~c4(e) respectively, defined by (23) and (24), and where, for
MAXCOR method, &; corresponds to the minimum of 6‘Maxcor, (0), (1<i< f’). To each estimate @p (1
< p < P), we associate the corresponding value of the pseudo-spectrum, defined by n, = é’MuSicg(@p)
for MUSIC2, n, = 6’Music4(@p) for MUSIC4 and n;, = é‘Maxwr,,p(@p) for MAXCOR, where ip is the
integer i which minimizes | Ci—6p | In this context, the estimate ép is considered to be aberrant if n,,
> n, where 1 is a treshold to be defined. In the following n = 0.1.

Let us now consider M realizations of the L observation vectors x(/) (1 </ < L). For a given
method, the probability of abberant results for a given source p, p(n, > n), is defined by the ratio
between the number of realizations for which ép is aberrant and the number of realizations M. From
the non aberrant realizations for the source p, we then define the averaged RMS error for the source

p> RMSE,,, by the quantity

(29)

A A
RMSE, = \/M—Z‘em—ep

p m=1

where M), is the number of non aberrant realizations for the source p and @pm is the estimate of 0,, for

the non aberrant realization m.
B2. Absence of modelling errors

To illustrate the performance of the MAXCOR method in the absence of modelling errors, we
consider the scenarios of figures 2 and 4 respectively for which two QPSK sources, well and poorly
angularly separated respectively, and such that SNR = 10 dB, are received by an ULA of 3 sensors.

Under the assumptions of figure 2 (sources with a large angular separation), the figure 10
shows the variations, as a function of the number of snapshots L, of the RMS error for the source 1,
RMSE, and the associated probability of non abberant results, p(n; < 1), (we obtain similar results
for the source 2), estimated from M = 300 realizations, at the output of both MAXCOR, MUSIC2 and

MUSIC4 methods. The figure 11 shows the same variations as those of figure 10 but under the
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assumptions of figure 4 (sources with a weak angular separation).

Figure 10 (b) shows that the probability of aberrant realizations for the source 1 is zero for all
the methods as soon as L becomes greater than 120. In this context, figure 10 (a) shows that for well
angularly separated non Gaussian sources having different spectrum and trispectrum and a SNR equal
to 10 dB, the three methods succeed in estimating the direction of arrival of the two sources with a
high precision (RMSE; < 0.5°, 1< i < 2) from a relatively weak number of snapshots (L = 90 for
MUSIC2 and L ~ 180 for MUSIC4 and MAXCOR). Nevertheless, in such situations, we note the best
behavior of MUSIC2 method with respect to HO methods MUSIC4 and MAXCOR, which give the
same results, due to a higher variance of the FO statistics estimators.

Figure 11 (b) shows that the probability of aberrant realizations for the source 1 is equal to 0
for MAXCOR whatever the value of L but remains greater than 20% for L < 480 for MUSIC2 and
MUSIC4. Both in terms of probability of non aberrant results and estimation precision, figures 11 (a)
and 11 (b) show, for poorly angularly separated sources, the best behavior of the MAXCOR method
which becomes much more efficient than MUSIC4 and MUSIC2 methods. Indeed, MAXCOR
succeeds in estimating the direction of arrival of the two sources with a high precision (RMSE; <
0.5°, 1< i < 2) from a relatively weak number of snapshots (L ~ 230) while MUSIC4 and MUSIC2
require L = 1500 and L ~ 3200 snapshots respectively to obtain the same precision. In such situations,
the resolution gain obtained with MAXCOR and MUSIC4 with respect to MUSIC2 is higher than the
loss due to a higher variance in the statistics estimates. Besides, the monodimensionality character of
the MAXCOR method with respect to MUSIC4 jointly with the very high resolution power of the
FOBIUM method explain the best behavior of MAXCOR with respect to MUSIC4.

Figure 10

Figure 11

B3. Presence of modelling errors

We now consider the simulations of section B2 but with modelling errors due for instance to a
non perfect equalization of the reception chains. In the presence of such errors, the steering vector a,,
of the source p is not the known function, a(6,, ¢,), of the direction of arrival (8,, ¢,) but becomes

an unknown function, d@(0,, 0,) = a(0,, 0,) + e(0,, 0p), of (6,, ¢,), where e(6,, ) is a modelling
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error vector. In such conditions, the previous HR methods loss their infinite asymptotic resolution
and the question is to search for a method which presents some robustness to the modelling errors.
To solve this problem, we assume that the vector e(6,, ¢,) is a zero-mean, Gaussian, circular vector
with independent components such that Efe, epH] = 6.2 I. Note that for omnidirectional sensors and
small errors, o, is the sum of the phase and amplitude error variances per reception chain. For the
simulations, o, is chosen to be equal to 0.0174, which corresponds for example to a phase error with
a standard deviation of 1° without any amplitude error.

In this context, under the assumptions of figure 10 (sources with a large angular separation)
but with modelling errors, the figure 12 shows the variations, as a function of the number of
snapshots L, of the RMS error for the source 1, RMSE{, and the associated probability of non
abberant results, p(n; < 1), (we obtain similar results for the source 2), estimated from M = 300
realizations, at the output of both MAXCOR, MUSIC2 and MUSIC4 methods. The figure 13 shows
the same variations as those of figure 12 but under the assumptions of figure 11 (sources with a weak
angular separation) with modelling errors.

Figure 12 (b) shows that the probability of aberrant realizations for the source 1 is zero for all
the methods as soon as L becomes greater than 135. In this context, comparison of figures 10 and 12
shows a degradation of the performance of each method in the presence of modelling errors.
However, for well angularly separated sources, MUSIC2 is more affected by the presence of
modelling errors than FO methods as soon as the number of snapshots is sufficient. Indeed, while
MUSIC2 remains better than FO methods for a relatively weak number of snapshots (L < 500), due to
a higher variance of HO methods, MUSIC4 and MAXCOR, equivalent to each other, become better
than MUSIC?2 as soon as the number of snapshots is sufficient (L > 500). In this latter case, the higher
number of sensors of the FO virtual array (N, = 5) with respect to that of the true array (N = 3)
reduces the effect of modelling errors on the performances of FO methods.

Figure 13 (b) shows that the probability of aberrant realizations for the source 1 is equal to 0
for MAXCOR whatever the value of L but remains greater than 20% for L < 1180 for MUSIC2 and
MUSICA4. Both in terms of probability of non aberrant results and estimation precision, comparison of
figures 11 and 13 shows again a degradation of the performance of all the methods in the presence of
modelling errors. However, for poorly angularly separated sources, whatever the value of the number

of snapshots, MUSIC?2 is much more affected by the modelling errors than FO methods, as soon as L
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> 700, due to a greater aperture and number of sensors of the FO virtual array with respect to the true
array. Note again, in the presence of modelling errors, the best performance of MAXCOR with

respect to MUSIC4 for poorly angularly separated sources.

Figure 12

Figure 13

VIII. NUMERICAL COMPLEXITY COMPUTATION

This section aims at giving some insights into the relative numerical complexity of SOBI,
JADE and FOBIUM methods for given values of N, P, L and the number of sweeps, /, required by
the joint diagonalization process [5] [9]. The numerical complexity of the methods is presented in
terms of number of flotting complex operations (Flocops) required to identify the mixture matrix 4
from L snapshots of the data. Note that a flocop corresponds to the sum of a complex multiplication
and a complex addition.

The number of flocops required by JADE, SOBI and FOBIUM methods for given values of N,

P, L and [ are given by :

Comp[JADE] = Min[ LN?/2 + 4N3/3 + PNL, 2LN*] + Min[ 4P%/3, 8 P3(P*+3)]
+ 3LP3(1 + P/2)/4 + IPX(75+21P+4P%)/2 + LP? (30)

Comp[SOBI] = MLN?/2 +4N3/3 + (M - 1)N3/2 +
IP(P—1)[ 4P(M — 1) + 17(M — 1) + 4P + 75]/2 (31)

Comp[FOBIUM] = 3MLN®(1 + N%/2)/4 + 4N®/3 + (M — 1)N®/2 +
IP(P—1)[ 4P(M — 1) + 17(M — 1) + 4P + 75]/2 (32)

where M is the number of correlation and quadricovariance matrices jointly diagonalized by the
SOBI and FOBIUM methods respectively.

For a given number of sources P, the minimum complexity of the previous methods is obtained
by minimizing the values of /, N, M and L ensuring the good identification of the mixture matrix A4. It
is said in [14] that the minimum value of 7 is Iy, = 1 + Int(P'/2) where Int means integer part. The

minimum value of M depends on the spectral difference between the sources and is chosen to be
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equal to My, = 2 in the following. The minimum value of N is equal to Ny, = P for JADE and
SOBI whereas for FOBIUM, assuming an array with space diversity only, it corresponds to the
minimum value, Nyip, such that Npin € P < NyinZ — Nin + 1. Finally, the minimum value of L
depends on several parameters such as P, N, the FO autocumulant and the SNR of the sources.... For
this reason L is chosen to be the same for all the methods in the following.

Under these assumptions, figure 14 shows the variations of the minimum numerical
complexity of JADE, SOBI and FOBIUM as a function of the number of sources P for L = 1000.
Note the higher complexity of FOBIUM with respect to JADE and SOBI which requires about 1

Mflocops to process 4 sources from 1000 snapshots.

Figure 14

IX. CONCLUSION

A new BI method, exploiting the FO data statistics only and called FOBIUM, has been
presented in this paper to process both overdetermined and underdetermined instantaneous mixtures
of statistically independent sources. This method has not the drawbacks of the existing methods
capable of processing underdetermined mixtures of sources and is able to put up with any kind of
sources, analogical or digital, circular or not, i.i.d or not, with potential different symbol duration... It
only requires non Gaussian sources having kurtosis with the same sign (practically always verified in
radiocommunications contexts) and sources having different trispectrum, which is the only limitation
of the method. The FOBIUM method is capable of processing up to N-N+1 sources, from an array
of N sensors with space diversity only, and up to stources, from an array of N different sensors. A
consequence of this result is that it allows to drastically reduce or to minimize the number of sensors
for a given number of sources, which finally may generate a receiver much less expensive than a
receiver developed to process overdetermined mixtures only. The FOBIUM method has been shown
to require a relatively weak number of snapshots to generate good output performances for currently
used radiocommunications sources such as QPSK sources. Besides, exploiting the FO data statistics
only, the FOBIUM method is robust to the presence of a Gaussian noise whose spatial coherence is
unknown. Finally, an application of the FOBIUM method has been presented through the introduction
of a new FO direction finding method, built from the blindly identified mixing matrix and called

MAXCOR. The comparison of this method to both SO and FO HR subspace-based direction finding
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methods shows the better resolution and the better robustness to modelling errors of the MAXCOR
method with respect to MUSIC2 and MUSIC4 and its ability to process underdetermined mixtures of

up to N statistically independent non Gaussian sources.
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Figure 1 - An incoming signal in three dimensions
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Figure 3 — a; as a function of L, (a) JADE, (b) SOBI, (c) FOBIUM,
P=2 N=3 ULA, 6,=90° 6 =131.76° SNR =0dB
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Figure 4 — a; as a function of L, (a) JADE, (b) SOBI, (c) FOBIUM,
P=2 N=3, ULA, 6, =90° 6,=82,7° SNR=10dB
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Figure 7 — a), (1 <p <5) as a function of L at the output of FOBIUM, (p) : c,
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Figure 11 — RMS error of the source 1 and p(n; <n) as a function of L, (a) MAXCOR, (b) MUSIC?2,
(c) MUSIC4, P =2, N =3, ULA, SNR = 10 dB, 6,=90°, 6,=82,7°, no modelling errors
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Figure 12 — RMS error of the source 1 and p(n; < n) as a function of L, (a) MAXCOR, (b) MUSIC?2,
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Figure 13 — RMS of the source 1 and p(n; < n) as a function of L, (a) MAXCOR, (b) MUSIC?2, (c)
MUSIC4, P =2, N=3, ULA, SNR = 10 dB, 6,=90°, 6,=82,7°, with modelling errors
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