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ABSTRACT

Most of the current Second Order (SO)[1] and Fourth Order
(FO)[3][6] Blind Sources Identification (BSI) methods aim at
blindly identifying the steering vectors of statistically
independent sources, provided the number of sources is not
greater than the number of sensors. However in practical
situations, the probability of receiving more sources than
sensors increases with the reception bandwidth. In this context
the purpose of this paper is to propose a new attractive FO BSI
method, able to identify the steering vector of more sources than
sensors, jointly with a new pertinent performance criterion for
the quality evaluation of the BSI process. The new method
implements a FO pre-whitening step and exploits the tri-
spectrum diversities of the sources.

1. INTRODUCTION

For more than a decade, SO [1] and FO [3][6] methods
have been developed to blindly identify the steering
vectors of several statistically independent sources,
provided the number of sources remains lower than or
equal to the number of sensors. However, in practical
situations, such as in the HF context, the reception of more
sources than sensors is possible and its probability
increases with the reception bandwidth. To process such
situations, several BSI methods have been developed this
last decade, among which we find the methods [2] [7-8]
[10]. The methods proposed in [2] and [7-8] only exploit
the information contained in the FO statistics of the data
whereas the one proposed in [10] exploits the information
contained in one of the characteristic function of the
observations.  However, all these methods suffer from
severe drawbacks in operational contexts. Indeed, the
method [2] is still very difficult to implement and does not
ensure the BSI of the sources steering vectors when the
sources have the same kurtosis. The methods [7-8] assume
non circular sources and fail in separating circular sources,
omnipresent in practice. Finally, the method [10] has been
developed only for real mixtures of real-valued sources
and is probably not robust to an over estimation of the
source number. To overcome these drawbacks we propose
in this paper a new FO method, corresponding to the FO

extension of the SOBI algorithm [1], able to blindly
identify the steering vectors of up to N2- N +1 sources with
N sensors, without the previously mentioned drawbacks
but assuming the sources have different tri-spectrum and
have non zero kurtosis with the same sign (the latter
assumption is generally verified in radiocommunications
contexts). This method implements a FO pre-whitening
step and fully exploits the assumed non whiteness property
of the sources. Finally a new performance criterion, able to
quantify the identification quality of the steering vector of
each source and allowing the quantitative comparison of
two methods for the blind identification (BI) of each
source is proposed.

2. PROBLEM FORMULATION
A noisy mixture of P Narrow-Band (NB) statistically

independent sources is assumed to be received by an array
of N sensors. The vector, x(t), of the complex envelopes of
the signals at the output of the sensors is thus given by

        x(t) =∑
=

P

p 1

 mp(t) ap + n(t)  = A m(t) + n(t)          (1)

where mp(t) is the p-th component of the vector m(t),
assumed zero-mean and stationary, n(t) is the noise vector,
assumed zero-mean, stationary, Gaussian, spatially and
temporally white in the reception band, ap corresponds to
the steering vector of the source p and A is the (NxP)
matrix whose columns are the vectors ap.

The problem adressed in this paper is the BI of the
steering vectors ap from the FO statistics of the data.

3. THE FOBIUM METHOD

The purpose of the FOBIUM method is to extend the
SOBI method [1] at the FO. It firstly implements a FO
pre-whitening step aiming at orthonormalizing the so-
called virtual steering vector [5] of the sources in some
data quadricovariance matrices and secondly it jointly
diagonalizes several well chosen pre-whitened
quadricovariance matrices in order to identify the steering
vectors of more sources than sensors. The number of
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sources able to be processed by this method is addressed
in section 4.

3.1 FO statistics of the data

Under the assumption of zero-mean stationary sources,
the FO statistics of the observations are characterized by
the (N2xN2) quadricovariance matrices Qx(τ1,τ2,τ3), whose
elements, Qx(τ1,τ2,τ3)[i, j, k, l], are defined by

Qx(τ1,τ2,τ3)[i, j, k, l] = Cum(xi(t), xj(t-τ1)*, xk(t-τ2)*, xl(t-τ3)) 
   (2)

where * means complex conjugate and xi(t) is the ith

component of the vector x(t). Using (1) into (2) and
assuming that Qx(τ1,τ2,τ3)[i, j, k, l] is the element [N(i −1)
+ j, N(k – 1) + l] of the matrix Qx(τ1,τ2,τ3), we obtain the
expression of the latter, given, under a Gaussian noise
assumption, by

      Qx(τ1,τ2,τ3)  =  (A ⊗ A*) Qm(τ1,τ2,τ3) (A ⊗ A*)H        (3)

where Qm(τ1,τ2,τ3) is the (P2xP2) quadricovariance matrix
of m(t), ⊗  

  

 is the Kronecker product and H means transpose
and complex conjugate.

Under the assumption of statistically independent
sources, the matrix Qm(τ1,τ2,τ3) contains at least P4 – P
zeros and the expression (3) degenerates in a simpler one
given by       

Qx(τ1,τ2,τ3)  =∑
=

P

p 1

cp(τ1,τ2,τ3) (ap⊗  ap
*) (ap⊗  ap

*)H     (4a)   

      =  AQ  Cm(τ1,τ2,τ3)  AQ H     (4b)

where AQ is the (N2x P) matrix defined by AQ = [(a1⊗ a1
*),

…., (ap⊗ ap
*)], Cm(τ1,τ2,τ3) is the (P x P) diagonal matrix

defined by Cm(τ1,τ2,τ3) = diag[c1(τ1,τ2,τ3),…, cp(τ1,τ2,τ3)]
and cp(τ1,τ2,τ3) is defined by

cp(τ1,τ2,τ3) = Cum(mp(t), mp(t-τ1)*, mp(t-τ2)*, mp(t-τ3))  (5)

The expression (4b), which has an algebraic structure
similar to that of data correlation matrices [1], is at the
basis of the FOBIUM method as it is shown in the next
sections.

We note in the following Qx = Qx(0, 0, 0), cp = cp(0, 0,
0), Cm = Cm(0, 0, 0) and we obtain

Qx  =  AQ Cm AQ H                           (6)

We also assume in the following that P ≤ N2, the matrix
AQ is full rank, the cp, 1 ≤ p ≤ P, are non zero (non
Gaussian sources) and have the same sign and whatever
the couple (i, j) of sources, it exists at least three delays
(τ1,τ2,τ3) such that |τ1|+|τ2|+|τ3| ≠ 0 and

      ci(τ1,τ2,τ3) / |ci| ≠ cj(τ1,τ2,τ3) / |cj|    (7)
Note that the condition (7) requires in particular that the
sources have different tri-spectrum.

3.2 FO Pre-whitening step

The first step of the FOBIUM method is to
orthonormalize, in the Qx matrix (6), the columns of AQ,
which can be considered as virtual steering vectors of the
sources for the considered array of sensors [5]. For this
purpose, let us consider the eigen decomposition of the
Hermitian matrix Qx, whose rank is P under the previous
assumptions, given by

Qx  =  Ex Λx Ex
H                             (8)

where Λx is the (P x P) real-valued diagonal matrix of the
P non zero eigen-values of Qx and Ex is the (N2xP) matrix
of the associated orthonormalized eigen-vectors. For a full
rank AQ matrix, it is possible to verify that assuming P
sources with non zero kurtosis having the same sign ε (ε =
±1) is equivalent to assume that the diagonal elements of
Λx are not zero and have also the same sign corresponding
to ε. In this context, considering the (P x N2) whitening
matrix T defined by

T  =  (Λx)
−1/2 Ex

H                           (9)

where (Λx)
−1/2

 is the inverse of a square root of Λx, we
obtain, from (6) and (8)

ε T Qx TH   =  T AQ (ε Cm) AQ
H TH   =  IP       (10)

where IP is the (P x P) identity matrix and where εCm =
diag[|c1|,…, |cp|]. This last expression shows that the (PxP)
matrix TAQ (εCm)1/2 is an unitary matrix U and we obtain

 T AQ  =  U (ε Cm)−1/2                                      (11)

3.3 FO Blind identification step

We deduce from expressions (4b) and (11) that

  T Qx(τ1,τ2,τ3)TH  =U (εCm)−1/2Cm(τ1,τ2,τ3) (εCm)−1/2
 UH  (12)

which shows that the unitary matrix U diagonalizes the
matrices T Qx(τ1,τ2,τ3) TH whatever the set of delays
(τ1,τ2,τ3) and the associated eigen-values correspond to the
diagonal terms of the diagonal matrix (εCm)−1/2

 Cm(τ1,τ2,τ3)
(εCm)−1/2.

For a given set (τ1,τ2,τ3), U is unique to within a
permutation and an unitary diagonal matrix if and only if
the eigen-values of the matrix (εCm)−1/2

 Cm(τ1,τ2,τ3) (εCm)−1/2

are all different. If it is not the case, we have to consider
several sets (τ1

k,τ2
k,τ3

k), 1≤ k ≤ K, such that for each couple
of sources (i, j), it exists at least a set (τ1

k,τ2
k,τ3

k) such that
the condition (7) is verified. In these conditions, the
unitary matrix U becomes, to within a permutation and an
unitary diagonal matrix, the only one which jointly
diagonalizes the K matrices TxQx(τ1

k,τ2
k,τ3

k)xTH. In other
words, the unitary matrix, Usol, solution to the previous
problem of joint diagonalization can be written as

∆

∆

∆

∆
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Usol  = U Λ Π                               (13)

where Λ and Π are unitary diagonal and permutation
matrices respectively. Using (11) and (13), the matrix AQ
can be deduced from Usol and T, to within unitary diagonal
and permutation matrices, by      

T# Usol  =  Ex
  Λx

1/2
             Usol   = AQ  (ε Cm)1/2

 

  

 Λ Π      (14)

where T# corresponds to the pseudo-inverse of T. Each
column, bl (1≤ l ≤ P), of T# Usol corresponds to one of the
vectors µq |cq|1/2 (aq⊗ aq

*), 1≤ q ≤ P, where µq is a complex
scalar such that |µq|

 = 1. Thus, mapping the components of
each column bl of T# Usol into a (N x N) matrix Bl such that
Bl[i, j] = bl((i −1)N + j) (1 ≤ i, j ≤ N) consists to built the
matrices µq |cq|

1/2
 aq aq

H  (1≤ q ≤ P). In this context, the
source steering vector aq corresponds to the eigen-vector
of Bl associated to the strongest eigen-value.

3.4 Implementation of the FOBIUM method

The different steps of the FOBIUM method are
summarized hereafter when L snapshots of the
observations, x(l) (1≤ l ≤ L), are available.
Step1: Estimation, Qx, of the Qx matrix from the L
snapshots x(l) using the empirical estimator of the FO
cumulants [9]. Note that the FOBIUM method can also be
applied for zero-mean cyclo-stationary sources provided
that the previous empirical estimator is replaced by the
unbiased FO statistics estimator proposed in [9].    
Step2: Eigen Value Decomposition (EVD) of the matrix
Qx, estimation of the number of sources P and restriction
of this EVD to the P principal components : Qx≈Ex Λx Ex

H,
where Λx is the diagonal matrix of the P  eigen-values with
the strongest modulus and Ex is the matrix of the
associated eigen-vectors.
Step3: Computation of the pre-whitening matrix :
T  = (Λx)

−1/2
 Ex

H.
Step4: Selection of K sets of delays (τ1

k,τ2
k,τ3

k) where
|τ1

k|+|τ2
k|+|τ3

k|≠0.
Step5: Estimation, Qx(τ1

k,τ2
k,τ3

k), of Qx(τ1
k,τ2

k,τ3
k), for the

K delay sets, using the empirical estimator of the FO
statistics [9] (or, for zero-mean cyclo-stationary sources,
the unbiased estimators similar to that presented in [9]).
Step6: Computation of the matrices T Qx(τ1

k,τ2
k,τ3

k) TH

and estimation, Usol, of the unitary matrix Usol from the
joint diagonalization of the K matrices T Qx(τ1

k,τ2
k,τ3

k) TH.
Step7: Computation of T#Usol and mapping each column bl
into a (N x N) matrix Bl

Step8: Estimation, aq (1≤ q ≤ P), of the P source steering
vectors by EVD of the P matrices Bl

4. IDENTIFIABILITY

Following the development of the previous sections,
we deduce that the FOBIUM method is able to identify,
from an array of N sensors, the steering vectors of P (P ≤
N2) non Gaussian sources having different tri-spectrum
and kurtosis with the same sign provided that the AQ
matrix has full rank P, i.e that the virtual steering vectors
aq⊗ aq

* (1≤ q ≤ P) for the considered array of N sensors
remain linearly independent. Besides, it has been shown in
[5] that the vector aq⊗ aq

* can also be considered as a true
steering vector but for a virtual array of Ne different
sensors, where Ne is directly related to the geometry of the
true array of N sensors. This means in particular that N2 −
Ne components of each vector aq⊗ aq

* are redundant
components which bring no information. As a
consequence, N2 − Ne rows of the AQ matrix bring no
information and are linear combinations of the others,
which means that the rank of AQ cannot be greater than Ne
and is equal to Inf(Ne, P) when the A matrix is full rank. In
these conditions, the AQ matrix is full rank if and only if
Inf(Ne, P) = P, i.e if and only if P ≤ Ne. Thus the FOBIUM
method is able to process Ne sources, where Ne is the
number of sensors of the virtual array associated to the
chosen array of N sensors. For an Uniform linear array Ne
= 2N + 1 whereas for most of other arrays Ne = N2-N+1
[5].

5. PERFORMANCE CRITERION

Most of the existing performance criterions used to
evaluate the quality of the BI process [6-7] [10] are global
criterions which evaluate a distance between the true
mixing matrix A and its blind estimate A. Although
practice, a global performance criterion necessarily
contains a part of arbitrary considerations in the manner of
combining all the distances between the vectors aq and  aq.
Moreover, it is possible to find that an estimate A1 of A is
better than an estimate A2, with respect to the global
criterion, while some columns of A2 estimate the
associated true steering vectors in a better way than A1.

 For these reasons, we propose in this section a new
performance criterion for the evaluation of the BI process.
This new criterion is not global and allows both the
evaluation quality of the BI of each source and the
quantitative comparison of two methods for the BI of a
given source. It corresponds, for the BI problem, to the
one proposed in [4] for the extraction problem. It is
defined by the P-uplet

D(A, A)  =   (α1, α2, ….. , αP)              (15)

where
αp  = 

Pi≤≤1
min [d(ap, ai)]                       (16)
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and where d(u,v) is the pseudo-distance between the
vectors u and v, defined by

d(u, v)  =   1  −  ( )( )vvuu
vu

HH

2H

                (17)

6. SIMULATIONS

To illustrate the previous results, we assume that P=6
statistically independent non filtered QPSK sources are
received by a circular array of N=3 sensors of radius r
such that r/λ=0.55 (λ: wavelength). The 6 sources,
assumed synchronized, have the same input SNR (Signal
to Noise Ratio) of 20 dB with a symbol period T = 4Te,
where Te is the sample period.

The direction of arrival of the sources are such that
θ1=2.16°,  θ2=25.2°,  θ3=50°,  θ4=272.16°, θ5=315.36°,
θ6=336.96° and the associated carrier frequencies verify
∆f1 Te=0, ∆f2 Te=1/2, ∆f3 Te=1/3, ∆f4 Te=1/5, ∆f5 Te=1/7 and
∆f6 Te=1/11. We apply the JADE [3] , SOBI [1] and
FOBIUM  methods, and the performance αq for q=1…6 is
computed and averaged over 1000 realizations. For the
FOBIUM method we choose K=4 sets of delays
(τ1

k,τ2
k,τ3

k) where τ1
k=kTe and τ2

k=τ3
k=0.

Under the previous assumptions, the figure 1 shows the
variations of α2 (source 2 performance) at the output of the
JADE, SOBI and FOBIUM separators as a function of the
number of snapshots L. We verify the difficulty of the
JADE and SOBI methods to well identify the steering
vector of the source 2 in an underdetermined context and
the very good performance of the FOBIUM method in the
same context. Note the complete convergence of the
FOBIUM method as soon as L is in the area of 2000.
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Fig.1 -  α2 as a function of L, (a) (FOBIUM), (b) (JADE), (c)
(SOBI)

The Figure 2 shows, in the same context, the variations
of all the αp (1 ≤ p ≤ 6) at the output of the FOBIUM
method as a function of L. Note the decreasing  values
toward zero of all the previous coefficients as L increases.
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Fig.2 -  αp of FOBIUM as a function of L, (p) performance

criterion of the pth source
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