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Abstract—Fourth-order (FO) and, a short while ago,2 th-order,
2, high-resolution methods exploiting the information con-

tained in the FO and the 2 th-order, 2, statistics of the
data, respectively, are now available for direction finding of
non-Gaussian signals. Among these methods, the 2 -MUSIC
methods, 2, are the most popular. These methods are asymp-
totically robust to a Gaussian background noise whose spatial
coherence is unknown and offer increasing resolution and ro-
bustness to modeling errors jointly with an increasing processing
capacity as increases. However, these methods have been mainly
developed for arrays with identical sensors only and cannot put
up with arrays of diversely polarized sensors in the presence of
diversely polarized sources. In this context, the purpose of this
paper is to introduce, for arbitrary values of , 1, three
extensions of the 2 -MUSIC method, able to put up with arrays
having diversely polarized sensors for diversely polarized sources.
This gives rise to the so-called polarization diversity 2 -MUSIC
(PD-2 -MUSIC) algorithms. For a given value of , these algo-
rithms are shown to increase the resolution, the robustness to
modeling errors, and the processing capacity of the 2 -MUSIC
method in the presence of diversely polarized sources. Besides,
some PD-2 -MUSIC algorithms are shown to offer increasing
performances with when resolution in both direction of arrival
and polarization is required.

Index Terms—Direction finding (DF), direction of arrival
(DOA), higher order, identifiability, polarization diversity, under-
determined mixtures, virtual array (VA), 2q-MUSIC.

I. INTRODUCTION

DURING the last two decades, fourth-order (FO) direction
finding (DF) methods [1], [8], [28], [31], exploiting the

information contained in the FO statistics of the observations,
have been developed for non-Gaussian signals. Among these
methods, the FO extension of the well-known MUSIC method
[30], called 4-MUSIC [28], is the most popular. These methods
are asymptotically robust to a Gaussian noise whose spatial co-
herence is unknown and generate a virtual increase of both the
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number of sensors and the effective aperture of the considered
array [4], [10]. This introduces the FO virtual array (VA) con-
cept presented in [10] and [4]. A consequence of this property
is that, despite of their higher variance [2], FO DF methods
allow for the processing of more sources than sensors and an
increase of both the resolution and, at least for several poorly
angularly separated sources, the robustness to modeling errors
of second-order (SO) methods [6]. To still increase the resolu-
tion power of DF methods, their robustness to modeling errors
and the number of sources to be processed from a given array
of sensors, while keeping their robustness to a Gaussian back-
ground noise whose spatial coherence is unknown, the MUSIC
method has been extended recently [6] to an arbitrary even order

, . This gives rise to the so-called -MUSIC method,
which exploits the information contained in the th-order sta-
tistics of the observations. This method is shown in [6] to have
resolution, robustness to modeling errors (for several poorly an-
gularly separated sources), and processing capacity increasing
with . These results are directly related to the higher order
extension, presented in [3], of the FO VA concept. This con-
cept allows to explain why, despite of their higher variance,

-MUSIC methods with may offer better performances
than 2-MUSIC or 4-MUSIC methods when some resolution is
required. This is, in particular, the case in the presence of several
sources, when the latter are poorly angularly separated or in the
presence of modeling errors inherent in operational contexts.

However, both 4-MUSIC [28] and -MUSIC, [6]
algorithms have been mainly developed for arrays with iden-
tical sensors, and cannot put up, in the presence of arbitrary
polarized sources, with arrays of diversely polarized sensors.
The exploitation of arrays with diversely polarized sensors is
very advantageous since for such arrays, multiple signals may
be resolved on the basis of polarization as well as direction of
arrival (DOA). This added information improves both DOA
accuracy and resolution in general [14], [36], [38] and also
increases robustness to modeling errors [15]. However, most
of methods which are currently available for DF from arrays
with diversely polarized sensors exploit only the information
contained in the SO statistics of the observations. Among
these SO methods, we find extensions to array with diversely
polarized, and possibly collocated, sensors of SO methods
such as MUSIC [11], [41], pencil-MUSIC [20], root-MUSIC
[13], [37], [42], ESPRIT [21]–[25], [39], [40], [44], subspace
fitting [32], MODE [26], and maximum likelihood [29], [43]
methods, respectively. Note that a comparative performance
analysis of MUSIC and pencil-MUSIC methods for such arrays
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is presented in [7]. Nevertheless, HO DF methods available
for arrays with diversely polarized sensors are very scarce,
among which we find an FO ESPRIT-like algorithm developed
for very specific array configurations [16]. In this context, in
order to increase the performance of the -MUSIC algorithm
in the presence of sources having different polarizations, the
purpose of this paper is to introduce, for arbitrary values of ,
three extensions of the -MUSIC method able to put up with
arrays having diversely polarized sensors. This gives rise to the
polarization diversity -MUSIC (PD- -MUSIC) algorithms.
For a given value of , these algorithms are shown in this paper
to increase the resolution, the robustness to modeling errors (at
least for poorly angularly separated sources), and the processing
capacity of the -MUSIC method in the presence of diversely
polarized sources. Besides, despite a higher variance of HO DF
methods, some PD- -MUSIC algorithms are shown in this
paper to offer increasing performances with when resolution
in DOA and polarization is required.

After an introduction of some notations, hypotheses, and
data statistics in Section II, three versions of the PD- -MUSIC
method are presented in Section III for particular arrangements
of the th-order data statistics in a th-order statistical matrix.
Identifiability issues for several kinds of array configurations
are addressed in Section IV. Considerations about resolution of
PD- -MUSIC methods are investigated in Section V. Some
simulations about the behavior of PD- -MUSIC algorithms
for both overdetermined and underdetermined mixtures of
sources are presented in Section VI, showing off, in particular,
the great interest of PD- -MUSIC methods for . Finally,
Section VII concludes this paper. Note that the content of this
paper has been patented in [5].

II. HYPOTHESES, NOTATIONS, AND STATISTICS OF THE DATA

A. Hypotheses and Notations

We consider an array of narrowband (NB) potentially dif-
ferent sensors and we call the vector of complex ampli-
tudes of the signals at the output of these sensors. Each sensor
is assumed to receive the contribution of zero-mean stationary
NB sources, which may be statistically independent or not, cor-
rupted by a noise. We assume that the sources can be divided
into groups, with sources in the group , such that the
sources in each group are assumed to be statistically dependent,
but not perfectly coherent, while sources belonging to different
groups are assumed to be statistically independent. Of course,

is the sum of all the parameters , . Under these
assumptions, the observation vector can be written as follows:

(1)

where is the noise vector, assumed zero-mean, stationary,
and Gaussian, whereas , independent of , is the com-
plex envelope of the source . Couple defines the
azimuth and elevation angle of source (Fig. 1). Vector

is a vector characterizing the state of polarization of

Fig. 1. Incoming signal in 3-D.

source and whose components will be defined hereafter. Vector
, , is the steering vector of the source ,

which contains, in particular, the information about the DOA
and the polarization of the latter jointly with the characteristics
of the sensors and array. Matrix is the matrix con-
taining the steering vectors of the sources belonging to the th
group of sources, whereas is the corresponding

vector of complex envelopes and . Methods
developed in this paper may be implemented in the presence of
coupling between sensors. Nevertheless, in the absence of mu-
tual coupling between sensors, assuming a plane-wave propaga-
tion, component of vector , denoted , can
be written, in the general case of an array with space and polar-
ization diversity, as [9]

(2)

where is the wavelength, and are the coordinates
of sensor of the array, and is a complex number
corresponding to the response of sensor to a unit electric field
coming from the direction and having the state of polarization

[9]. Let us recall that an array of sensors has space diversity
if all the sensors do not have the same phase center. The array
has polarization diversity if all the sensors do not have the same
polarization.

Let and be two distinct polarizations for the source
(for example, vertical and horizontal) and
and be the corresponding steering vectors
for DOA . We assume that the vectors and can
be calculated analytically or measured by calibration whatever
the value of . Considering an arbitrary polarization for the
source , the complex electric field of the latter can be broken
down into the sum of two complex fields, each arriving from
the same direction, and having the polarizations and [9].
The steering vector of the source is then the weighted
sum of the steering vectors and given by

(3)

where is the matrix of vectors and ,
whereas and are complex numbers such that
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. Vector is the unit norm vector with compo-
nents and . This vector can be written, to within a phase
term, as where and are two
angles characterizing the polarization of source and such that

and . Note that for an array with
space diversity only, , , and are colinear,
which means that, to within a constant, does not de-
pend on the polarization of the source .

B. Statistics of the Data

1) Presentation: The th-order, , DF methods
considered in this paper exploit the information contained
in the th-order covariance matrix ,
whose entries are the th-order cumulants of the data

, ,
, where corresponds to the complex conjugation.

However, the previous entries can be arranged in the
matrix in different ways, indexed by an integer such that

, as it is explained in [6]. This gives rise, under
hypotheses of Section II-A, to the matrix given by [6]

(4)

where is the mean power of the noise per sensor, is the
spatial coherence matrix of the noise for the arrangement

indexed by , such that , means trace, and
is the Kronecker symbol. The matrix

contains the th-order cumulants of for the arrangement
indexed by and can be written as

(5)
where is the matrix of the th-order cumu-
lants of for the arrangement indexed by , corresponds
to the conjugate transposition, is the Kronecker product, and

is the matrix defined by
with a number of Kronecker product equal to . Note

that it is shown in [3] and verified in this paper that the param-
eter determines, in particular, the maximal processing power
of PD- -MUSIC algorithms.

2) Estimation: In situations of practical in-
terests, the th-order statistics of the data

are not
known a priori and have to be estimated from samples of
data, , , where is the sample
period, in a way that is completely described in [6] and which
is not recalled here.

III. PD-2q-MUSIC ALGORITHMS

In this section, we analyze the properties of matrix
and we deduce from the latter three versions, depending on the
a priori information about the polarization of the sources, of the
PD- -MUSIC algorithm for the arrangement indexed by .

A. Hypotheses

To develop the PD- -MUSIC algorithms for the arrange-
ment indexed by , we have the following hypotheses:

H1) , ;
H2) matrix has full rank , ;

H3) ;

H4) matrix
has full rank .

B. Properties of

Although components of are statistically dependent,
the matrix , which contains the th-order
cumulants of for the arrangement indexed by , may not
be full rank for some couples . This result was unknown
before the publication of [6]. Indeed, assuming, for example,
that , it is easy to verify that the maximal rank
of is 3 (and not 4) for and 6 (and not 9) for

. In this context, noting , the rank of ,
, we deduce from H1) and H2) that matrix

for has also rank . Hence, using H4)
and for , matrix has a rank equal to

(6)

and such that from H3). As matrix
is Hermitian, we deduce that has real-valued
nonzero eigenvalues and zero eigenvalues for

.

C. PD- -MUSIC Algorithms

1) Case of Sources With Known Polarization (KP-PD-
-MUSIC Algorithm): To built a MUSIC-like algorithm from
matrix , for , we first compute the eigendecom-
position of the latter, given by

(7)

where is the diagonal matrix
of the nonzero eigenvalues of , is the

unitary matrix of the associated eigenvec-
tors, is the
diagonal matrix of the zero eigenvalues of , and

is the unitary matrix of the
associated eigenvectors. As is Hermitian, all the
columns of are orthogonal to all the columns of

. Moreover, when
matrices , , are full rank whereas

, otherwise. We define the
vector by

(8)

Then, noting , the DOA and polarization param-
eters of the th source in the th group, it can be easily
verified that, in all cases, the vector always
belongs to . Consequently, all vectors

are orthogonal
to the columns of and are solutions of the following:

(9)
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where . Equation (9) corresponds
to the heart of the PD- -MUSIC algorithms for the arrange-
ment and can also be written, using (3) and (8), as

(10)

where and are the vector and
matrix defined by

(11)

(12)

respectively. For some values of , some components of
are equal and it may be useful to at least reduce the com-

plexity of the computation of the left-hand side of (10), but
also to improve the performance of the algorithms presented in
Section III-C2, to remove the redundant components of .
This can be done by removing the redundant components of
both and . It is straightforward to show that
can be written as

(13)

where is the real matrix such that

(14a)

(14b)

where is the identity matrix, and are the
vectors defined by and , is the

zero vector, and is the vector with
components defined by

(15)

where and are the components of the polarization vector
. From (11) and (13), we deduce that

(16)

where is a vector.

Note a dimension reduction of with respect to for most
values of . To ensure, in the absence of sources, i.e., when

, a constant value, independent of parameters
and , of the left-hand side of (10), it is necessary to normalize
the latter by the quantity . Using
(16) into (10), the problem of sources DOA estimation by the
PD- -MUSIC algorithm for the arrangement then consists
of finding the sets of parameters ,

, which are solutions of (17) or which minimize the
left-hand side of the latter, defined by

(17)

where the matrices
and are defined by

(18)

(19)

For sources with known polarization, the set of parameters for
a given source reduces to the set of its DOA and the complexity
of the PD- -MUSIC algorithm, called in this case known
polarization PD- -MUSIC (KP-PD- -MUSIC) algorithm,
corresponds to that of the -MUSIC algorithm. However, for
sources with unknown polarization, the set of parameters for a
given source has to take into account polarization parameters
in addition to DOA parameters and the complexity of the
searching procedure of the PD- -MUSIC algorithm dramati-
cally increases beyond what is generally practically reasonable.
For this reason, our choice in this paper is to limit the use of the
previous algorithm to the case where sources’ polarization is
known. Otherwise, we consider alternative algorithms which do
not require the searching procedure with respect to the polariza-
tion parameters and which are presented in Section III-C2. Note
that for unknown polarizations, despite the fact that it is not our
choice in this paper, solutions of (17) may also be found from a
searching procedure in both polarization and DOA parameters.
Removing the redundancy of by (16) then allows in this
case to decrease the complexity of the searching procedure.

In practical situations, matrices and have to
be estimated from the observations and assuming sources with
known polarization, the DOA of the sources may be found by
searching for the minima of the estimated left-hand side of (17).
The different steps of the KP-PD- -MUSIC algorithm for the
arrangement are summarized as follows.

1) Estimation of the matrix from snap-
shots , , using a suitable estimator of the

th-order cumulants of observations.
2) Eigenvalue decomposition of the matrix and ex-

traction of an estimate of the matrix. This
step may involve rank determination in cases where the
number of sources and/or their mutual statistical depen-
dence are not known a priori.

3) Computation, for each known vector , ,
of the estimated pseudospectrum

(20)

over a suitably chosen grid. Then, search for the local
minima (including interpolation at each local minimum),
where the matrix

is defined by

(21)

where .
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In some cases, the number of sources is known, such that
, but their statistical dependence is not known. In such

a case, and a conservative approach may be to
use only the eigenvectors associated with the smallest
eigenvalues to built , which implicitly assumes the
statistical dependence of all the sources and the full rank of

for the associated group. Finally, note that similarly
to -MUSIC algorithm, PD- -MUSIC algorithms cannot
handle perfectly coherent sources.

2) Case of Sources With Unknown Polarization (UP-PD-
-MUSIC Algorithms): For sources with unknown polariza-
tion, the complexity of the searching procedure, described in
Section III-C1, of the PD- -MUSIC algorithm with respect
to DOA and polarization parameters is dramatically high. A
simple way to remove the searching procedure with respect to
the polarization parameter consists, for any fixed DOA, of min-
imizing the left-hand side of (17) with respect to polarization
parameter, as it is proposed in [11] for . This gives rise to
the unknown polarization PD- -MUSIC (UP-PD- -MUSIC)
algorithm whose pseudospectrum, for the arrangement indexed
by , is given by

(22)
It is well known [11] that the right-hand side of (22) corresponds
to the minimum eigenvalue of the

matrix in the metric and
that the minimizing vector , noted , corresponds
to the associated eigenvector. In other words, and

satisfy the following:

(23)

Thus, a first version of the UP-PD- -MUSIC algorithm for
the arrangement indexed by , called UP-PD- -MUSIC -1,
consists of finding the sets of parameters ,

, for which the pseudospectrum

(24)

is zero. This algorithm corresponds to a th-order extension,
for the arrangement indexed by , of the algorithm proposed in
[11] for . Then, it is shown in the Appendix that it becomes
possible to estimate the polarization of each source from the
associated eigenvector which is solution of (23) for

. Note that one way in which the eigenvalue
can be computed is by determining the minimum root of the
following:

(25)

where means determinant of . Thus, for each value of
, searching in polarization space has been avoided by finding

the roots of an equation of order , which cor-
responds to a substantial reduction in computation, at least for
small values of . We deduce from (25) and [12] that for invert-
ible matrix , finding such that is zero

is equivalent to finding such that
. A second version of the

UP-PD- -MUSIC algorithm for the arrangement indexed by
, called UP-PD- -MUSIC -2, then consists of finding the

sets of parameters , , for which the
pseudospectrum

(26)

is zero, which allows a complexity decrease with respect to the
computation of (24).

In practical situations, matrix has to be estimated
from the observations and, assuming sources with unknown po-
larization, the DOA of the sources may be found by searching
for the minima of the right-hand side of (24) or (26). The dif-
ferent steps of the two versions of the UP-PD- -MUSIC algo-
rithm for the arrangement are summarized as follows.

1) Estimation of the matrix from snap-
shots , , using a suitable estimator of the

th-order cumulants of observations.
2) Eigenvalue decomposition of the matrix and ex-

traction of an estimate of the matrix. This
step may involve rank determination in cases where the
number of sources and/or their mutual statistical depen-
dence are not known a priori.

3) Computation of matrices , , and one of
the two estimated pseudospectra

over a suitably chosen grid. Then, search for the
local minima of or

(including interpolation
at each local minimum), where is the min-
imum eigenvalue of in the metric .

4) If needed, computation of both the associated estimated

vectors and the polarization vector of the
sources.

IV. IDENTIFIABILITY

Although algorithms presented in Section III may be used
in the presence of coupling between sensors, provided that the
matrix is known or can be estimated by calibration, the
identifiability analysis presented in this section assumes the ab-
sence of coupling between sensors. Moreover, as the maximal
number of sources that can be processed by a given version of
the PD- -MUSIC algorithm is obtained when all the sources
are statistically independent, we limit the identifiability anal-
ysis of the three algorithms introduced in Section III to the latter
case.

A. KP-PD- -MUSIC Algorithm

1) General Results: Following the developments of
Section III, we deduce that the KP-PD- -MUSIC algo-
rithm for the arrangement indexed by is able to estimate the
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DOA of statistically independent sources from an array of
sensors provided that hypotheses H1)–H4) are verified and the
DOA and the polarization of the sources are the only solutions
of (9). It has been shown in [3] that, in the absence of coupling
between sensors, the vector can be considered as a
true steering vector but for a HO VA of virtual sensors
(VSs) with coordinates
and complex amplitude patterns ,
for , given by

(27)

(28)

As some of these VSs may coincide, we note ,
, the number of different VSs of the associated VA. In these

conditions, components of all the vectors
are redundant components that bring no information. As a con-
sequence, the rank of cannot be greater than . We then
deduce that the matrix may have a rank equal to only
if . Conversely, for a th-order VA for the arrange-
ment without any ambiguities up to order , sources
coming from different directions with different polarizations
generate an matrix with a full rank as long as .
Let us recall that the th-order VA for the arrangement in-
dexed by has no ambiguities of order if any set of
vectors with distinct parameters

, , are linearly independent. Thus, provided the
th-order VA for the arrangement indexed by has no ambigu-

ities up to the order , the maximal number of statisti-
cally independent sources able to generate a matrix with
rank is . However, when , an arbitrary vector

associated with an arbitrary set of parameters
is necessarily a linear combination of the source steering vec-
tors , , since matrix cannot have
a rank greater than . Then, all the sets of parameters
are solutions of (9), which does not allow the sources’ DOA
estimation. Thus, a necessary condition for the DOAs and po-
larizations of the sources to be the only solutions of (9) is that

and this condition becomes sufficient for HO VA with
no ambiguities up to the order . From the previous re-
sults, assuming a th-order VA for the arrangement indexed
by with different VSs and with no ambiguities up to order

, we deduce that the KP-PD- -MUSIC algorithm for
the arrangement indexed by is able to process up to

(29)

sources. As, for a given array of sensors, is a function of
and [3]; the processing capacity of the KP-PD- -MUSIC

algorithm is also a function of and . This shows off, in partic-
ular, the existence of an optimal arrangement of the th-order
data statistics for a given value of , which is discussed in [3].

Note that the problem of th-order ambiguities of HO VA is
an important open problem which deserves to be analyzed in de-
tail but which is beyond the scope of this paper. For a VA associ-
ated with the parameters and without colocalized or vector
sensors, i.e., with scalar sensors only, all the different VSs
bring information. Then, despite the potential existence of HO
ambiguities of the VA for some sources’ configurations, there
always exist, in general, some sources configurations for which
matrix has a rank equal to and for which KP-PD-
-MUSIC algorithm for the arrangement indexed by is able to
process sources. However, for a VA associated with the
parameters such that some of the different sensors are
colocalized, some of the colocalized sensors may bring no in-
formation as it is shown and discussed, for , in [17]–[19],
[27], [33]–[35] for electric and electromagnetic vector sensors,
respectively. In this case, matrix may not have a maximal
rank equal to and the KP-PD- -MUSIC algorithm for the
arrangement indexed by may only be able to process
sources, at least in some situations, where is the maximal
possible rank of . To quantify expression of as a func-
tion of , some values of are presented in Sections IV-A2
and IV-A3 for different arrays’ and sensors’ configurations.

2) Case of an Array With Different Sensors: For given values
of , , and and for arrays of sensors with both space
and polarization diversities, it has been shown in [3] that is
necessary upperbounded by a quantity, noted , such
that . Table I shows, for a general array with
space and polarization diversities having sensors arbitrary lo-
cated with different responses, the expression of as
a function of for and several values of . This
upperbound corresponds to in most cases of sensors’ re-
sponses and array geometry. Moreover, [3, Tables 1 and 3] show
that for , or and for arrays with no
particular symmetry, the associated VA has no vector sensors.
In these cases, expression (29) generally holds. On the contrary,
[3, Tables 1 and 3] show that for ,
or , the associated VA has at least one vector sensor with
at least different components. In these cases, may be
strictly lower than and expression (29) may not hold, espe-
cially for high values of .

3) Case of an Array With Two Subarrays of Sensors Having
Orthogonal Polarizations: A particular case of practical interest
corresponds to the case of an array of sensors com-
posed of two subarrays of sensors having orthogonal polar-
izations. Two kinds of such arrays are considered in this section
and correspond to arrays for which the sensors of the two sub-
arrays are either colocated or not. Examples of noncolocated
and colocated subarrays of sensors are presented in
Fig. 2 for . Fig. 2(a) shows a circular array of
six equispaced scalar sensors composed of two overlapped or-
thogonally polarized circular subarrays of three scalar sensors
such that two adjacent sensors of the array have different po-
larizations. Fig. 2(b) shows a circular array of three equispaced
and identical vectorial sensors such that each vectorial sensor
is composed of two orthogonally polarized sensors having the



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEVALIER et al.: HO DF FROM ARRAYS WITH DIVERSELY POLARIZED ANTENNAS 7

Fig. 2. Circular array of six equispaced sensors composed of two overlapped orthogonally polarized subarrays of three sensors: (a) noncollocated subarrays and
(b) collocated subarrays.

TABLE I
N [2q; l] AS A FUNCTION OF N FOR SEVERAL VALUES OF q AND l AND

FOR ARRAYS WITH SPACE AND POLARIZATION DIVERSITY

same phase center. Tables II and III show, for noncolocated and
colocated subarrays, respectively, and from (27) and (28), the
expression of as a function of for and
several values of . Note that this upperbound corresponds to

in most cases of array geometry with no particular sym-
metry, which is, in particular, the case for uniform circular array
(UCA) of vectorial sensors with two components, when
is a prime number, as depicted in Fig. 2(b) for . How-
ever, while fourth-order VA associated with noncolocated sub-
arrays contains no vector sensor for , it contains
several scalar sensors and one vector sensor with two compo-
nents for . Besides, the fourth-order VA associ-
ated with colocated subarrays contains only vector sensors with
two or three components for and with two or
four components for . As a consequence, for non-
colocated subarrays, (29) holds for and prob-
ably for but may not hold for and colo-
cated subarrays, but this potential result has to be verified. Fi-

TABLE II
N [2q; l] AS A FUNCTION OF N = 2M FOR q = 2 AND SEVERAL

VALUES OF l AND FOR ARRAYS WITH TWO ORTHOGONALLY

POLARIZED NONCOLOCATED SUBARRAYS

TABLE III
N [2q; l] AS A FUNCTION OF N = 2M FOR q = 2 AND SEVERAL VALUES

OF l AND FOR ARRAYS WITH TWO ORTHOGONALLY

POLARIZED COLLOCATED SUBARRAYS

nally, Table IV shows the expression of as a function of
for and several values of , for an array com-

posed of two colocalized and orthogonally polarized uniformly
spaced linear array (ULA) of identical sensors. Note that, in
this case, fourth-order VA contains vector
sensors with three and four components for and

, respectively.

B. UP-PD- -MUSIC Algorithms

The developments of Section IV-A are still valid for
UP-PD- -MUSIC algorithms. In particular, the maximal
number of statistically independent sources that may be pro-
cessed by UP-PD- -MUSIC algorithms for the arrangement
indexed by cannot exceeds if the associated VA has
no ambiguities up to the order . Moreover, we deduce
from the HO VA theory [3] that components of



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON SIGNAL PROCESSING

TABLE IV
N AS A FUNCTION OF N = 2M FOR q = 2 AND SEVERAL VALUES OF l

AND FOR AN ARRAY WITH TWO ORTHOGONALLY POLARIZED AND

COLOCATED UNIFORMLY SPACED LINEAR SUBARRAYS

, defined by (8), bring no information. This means
that can be written as

(30)

where is a full rank and constant matrix and
is the nonredundant steering vector of

a source coming from DOA with polarization for the VA
associated with parameters . Expression (30) shows that
an arbitrary steering vector necessarily belongs to
the space spanned by the columns of , noted .
Noting , a full-rank matrix whose
columns span the space orthogonal to , we deduce
that all the vectors of , where is an arbi-
trary vector, are orthogonal to for
arbitrary values of . A direct consequence of this result is
that whatever the number of statistically independent sources
such that , and whatever their DOA and polariza-
tion , this means that
columns of are not discriminant. In other words, we
deduce from (30) and the previous results that only
columns of are discriminant, while expression (9)
takes the form

(31)

where is the orthogonal projector
on . Replacing (9) by (31) in the
developments of Section III, we deduce that, for given values of

, and are also solution of (23) where
has been replaced by defined by

(32)

As the quantity , defined by (23) with
instead of , has to be nulled only for the DOA of the
sources and not for other DOAs, the

matrix has to be full rank when does
not correspond to a source’s DOA. Using (32), this means that
rank of cannot be lower than .
This means that the number of columns of has to
be greater than or equal to . Moreover, in
the presence of statistically independent sources such that

, the number of columns of is equal to
for associated VA with no ambiguities up to the order

. As a consequence, the maximal number of sources
that may be processed by UP-PD- -MUSIC algorithms

for the arrangement indexed by has to, for such VAs, verify
. Conversely, for a th-order

VA without any ambiguities up to the order , sources
coming from different directions with different polarizations
and such that are such that their DOA
are the only solutions of . From the previous
results, assuming a th-order VA for the arrangement indexed
by with different VSs and with no ambiguities up to the
order , we deduce that UP-PD- -MUSIC algorithms
for the arrangement are able to process up to

(33)

sources. This is strictly lower than (29) and this gives
for and arrays with scalar sensors, result already

obtained in [11]. Note that for VA with HO ambiguities,
has to be replaced by in (33).

V. VIRTUAL ARRAY RESOLUTION

To get more insights into the gain in resolution obtained
with HO VA with polarization diversity, let us compute the
normalized inner product of the steering vectors
and for two arbitrary couples and .
This quantity is denoted by and is such that

. Using the results of [3], we obtain

(34)

which shows an increasing resolution as increases. To show
also the interest of exploiting polarization diversity, we consider
an array of sensors composed of two colocalized and
orthogonally polarized subarrays of sensors. We define the

vector , where and are the two
components of and where and are the complex responses
of the two orthogonally polarized components of a vector sensor
to a unitary source coming from DOA with adapted polariza-
tions, respectively. Under these assumptions, it is straightfor-
ward to show that (34) becomes

(35)
where , such that , is the nor-
malized inner product of the steering vectors of the two sources
for the array, with space diversity only, composed of om-
nidirectional sensors located at the positions of the vector sen-
sors of the initial array. In addition, , such that

, is the normalized inner product of the
vectors and , where corresponds to with
replacing . For elementary sensors such that ,

as soon as the two sources have dif-
ferent polarization. For elementary sensors such that ,

as soon as the two sources have ei-
ther different polarization or different DOA. This shows an in-
creasing resolution obtained with an array with polarization di-
versity, at least for sources with different polarization.
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VI. COMPUTER SIMULATIONS

The results of the previous sections are illustrated in this
section through computer simulations. To do so, we first in-
troduce a performance criterion in Section VI-A and describe
the simulations in Sections VI-B and VI-C for overdetermined
and underdetermined mixtures of sources, respectively. The
sources are assumed to have a zero elevation angle and to
be zero-mean stationary sources corresponding to quaternary
phase-shift keying (QPSK) sources sampled at the symbol rate.

A. Performance Criterion

For each of the considered sources and for a given DF
method, two criteria are used in the following to quantify the
quality of the associated DOA estimation. For a given source,
the first criterion is a probability of aberrant results generated by
a given method for this source. The second one is an averaged
root mean square error (RMSE), computed from the nonaberrant
results, generated by a given method for this source. These two
criteria were precisely defined in [6] and are not recalled in this
paper.

B. Overdetermined Mixtures of Sources

To show the interest of taking into account both the polariza-
tion of the sources and HO statistics for DF, we consider a UCA
of crossed dipoles with a radius such that .
One dipole is parallel to the -axis whereas the other is parallel
to the -axis. Three of these crossed dipoles are combined to
generate a right sense circular polarization in the -axis while
the three other dipoles are combined to generate a left sense cir-
cular polarization in the -axis. The array is then composed of
two orthogonally polarized overlapped (noncolocated) circular
subarrays of sensors so that adjacent sensors always
have different polarizations as depicted in Fig. 2(a). Under these
assumptions, the sensors of the first and second subarray have
a complex response to a unit electric field coming from DOA
with polarization equal to and

, respectively. In these expres-
sions, and , which correspond to the complex
responses of the two dipoles, are given by [4], [9]

(36)

(37)

In other words, the complex response of sensor ,
, to a unit electric field coming from DOA with

polarization is given by

(38)
We then deduce from (2), (3), and (38) that, in this case, the
coefficients of matrix are defined by

(39a)

(39b)

where and where is defined by

(40)
Note that this corresponds to choosing the vectors

and such that and
. Note that the chosen array of sensors presents

ambiguities for , where is an integer, and thus
prevents from estimating DOA of sources coming from . In-
deed, , and are not full rank,
and is always solution of (10), (23), and .
In this context, two QPSK sources with the same symbol du-
ration, the same raise cosine pulse shaped filter with a rolloff

, and the same input signal-to-noise ratio (SNR), which
would be received by an omnidirectional sensor, equal to 5 dB,
are assumed to be received by the array. The sources are first
assumed to be weakly separated in both space and polarization
and such that and

, respectively. Under these assumptions, Figs. 3
and 4 show the variations, as a function of the number of snap-
shots , of the RMSE for the source 2, RMSE , and the asso-
ciated probability of nonabberant results for DF methods with
and without modeling errors, respectively. The DF methods cor-
respond to 2-MUSIC, KP-PD-2-MUSIC, UP-PD-2-MUSIC-1,
UP-PD-2-MUSIC-2, 4-MUSIC, KP-PD-4-MUSIC, UP-PD-4-
MUSIC-1, UP-PD-4-MUSIC-2, 6-MUSIC, KP-PD-6-MUSIC,
UP-PD-6-MUSIC-1, and UP-PD-6-MUSIC-2 algorithms for ar-
rangement of the considered statistics indexed by . The
performances are computed from 300 realizations and similar
results are obtained for the source 1. In the presence of mod-
eling errors, the steering vector of the source at the output
of the sensors becomes , where the vectors ,

, are assumed to be zero-mean statistically indepen-
dent circular Gaussian vectors such that .
For the simulations, , which corresponds, for ex-
ample, to a phase error with a standard deviation of 0.76 plus
an amplitude error with a standard deviation of 0.1 dB. For
2-MUSIC, 4-MUSIC, and 6-MUSIC algorithms, the six sensors
of the UCA are assumed to be identical with complex responses

, .
Figs. 3 and 4 show, for sources which are weakly separated
both in DOA and polarization, with and without modeling er-
rors and for a given value of , the best behavior
of DP- -MUSIC methods with respect to -MUSIC ones as
soon as polarizations of the sources are different. This shows
the better resolution and robustness to modeling errors, what-
ever the value of , of methods exploiting both polarization and
space diversity with respect to methods exploiting space diver-
sity only. Moreover, we note, for a given value of , similar per-
formances of UP-PD- -MUSIC-1 and UP-PD- -MUSIC-2
algorithms, which seem to differ only from a complexity point
of view. Besides, we note increasing performances with of
UP-PD- -MUSIC methods, for situations where resolution is
required. This is due to an increasing resolution in both DOA
and polarization of the associated th-order VA and this shows
the interest of exploiting both polarization diversity and HO
statistics for DF of poorly separated sources. Note also, for a
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Fig. 3. (a) RMSE and (b) probability nonaberrant results of source 2 as a function of L: 1) 2-MUSIC, 2) KP-PD-2-MUSIC, 3) UP-PD-2-MUSIC-1, 4) UP-PD-2-
MUSIC-2, 5) 4-MUSIC, 6) KP-PD-4-MUSIC, 7) UP-PD-4-MUSIC-1, 8) UP-PD-4-MUSIC-2, 9) 6-MUSIC, 10) KP-PD-6-MUSIC, 11) UP-PD-6-MUSIC-1, and
12) UP-PD-6-MUSIC-2,. P = 2, N = 6, UCA, SNR = 5 dB, (� ;  ; � ) = (50 ; 45 ; 0 ), and (� ;  ; � ) = (60 ; 45 ; 10 ), without modeling errors.

Fig. 4. (a) RMSE and (b) probability nonaberrant results of source 2 as a function of L: 1) 2-MUSIC, 2) KP-PD-2-MUSIC, 3) UP-PD-2-MUSIC-1, 4) UP-PD-2-
MUSIC-2, 5) 4-MUSIC, 6) KP-PD-4-MUSIC, 7) UP-PD-4-MUSIC-1, 8) UP-PD-4-MUSIC-2, 9) 6-MUSIC, 10) KP-PD-6-MUSIC, 11) UP-PD-6-MUSIC-1, and
12) UP-PD-6-MUSIC-2. P = 2, N = 6, UCA, SNR = 5 dB, (� ;  ; � ) = (50 ; 45 ; 0 ), and (� ;  ; � ) = (60 ; 45 ; 10 ), with modeling errors.

given value of , the better performance of KP-PD- -MUSIC
method with respect to UP-PD- -MUSIC methods, due to the
exploitation of the true a priori knowledge of the sources po-
larization. Note finally, for two sources with known polariza-
tions, increasing performances of KP-PD- -MUSIC methods
as increases in the presence of modeling errors as soon as
the number of snapshots gets beyond 1300. This result seems
to be directly related to the degree of coupling of the two esti-
mated pseudospectra (one for each polarization), computed by
a given KP-PD- -MUSIC method, which increases with mod-
eling errors and when the polarization separation of the sources
decreases. More precisely, when this coupling is high (weak
polarization separation with modeling errors), the two sources
interact in each of the two computed pseudospectra and resolu-
tion is required to separate them; hence, the increasing perfor-
mance with of KP-PD- -MUSIC methods. However, when
this coupling is weak (strong polarization separation or absence

of modeling errors), sources no longer interact in a given pseu-
dospectrum. Then, only one source has to be found for a given
pseudospectrum and no resolution is required, hence decreasing
performance due to a higher variance in the statistics estimation
as increases.

We now consider the scenario of Figs. 3 and 4 but we now
assume that the two sources are still poorly angularly separated
but are well separated in polarization, such that

and , respec-
tively. Under these assumptions, Figs. 5 and 6 show sim-
ilar variations as for Figs. 3 and 4, respectively. We still
note that whatever the value of , there is a better perfor-
mances of PD- -MUSIC methods with respect to -MUSIC
ones, due to the exploitation of polarization diversity in
addition to space diversity. We still note very close perfor-
mances of UP-PD- -MUSIC-1 and UP-PD- -MUSIC-2
algorithms. Moreover, we note the decreasing perfor-
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Fig. 5. (a) RMSE and (b) probability nonaberrant results of source 2 as a function of L: 1) 2-MUSIC, 2) KP-PD-2-MUSIC, 3) UP-PD-2-MUSIC-1, 4) UP-PD-2-
MUSIC-2, 5) 4-MUSIC, 6) KP-PD-4-MUSIC, 7) UP-PD-4-MUSIC-1, 8) UP-PD-4-MUSIC-2, 9) 6-MUSIC, 10) KP-PD-6-MUSIC, 11) UP-PD-6-MUSIC-1, and
12) UP-PD-6-MUSIC-2. P = 2, N = 6, UCA, SNR = 5 dB, (� ;  ; � ) = (50 ; 45 ; 0 ), and (� ;  ; � ) = (60 ; 45 ; 180 ), without modeling errors.

Fig. 6. (a) RMSE and (b) probability nonaberrant results of source 2 as a function of L: 1) 2-MUSIC, 2) KP-PD-2-MUSIC, 3) UP-PD-2-MUSIC-1, 4) UP-PD-2-
MUSIC-2, 5) 4-MUSIC, 6) KP-PD-4-MUSIC, 7) UP-PD-4-MUSIC-1, 8) UP-PD-4-MUSIC-2, 9) 6-MUSIC, 10) KP-PD-6-MUSIC, 11) UP-PD-6-MUSIC-1, and
12) UP-PD-6-MUSIC-2. P = 2, N = 6, UCA, SNR = 5 dB, (� ;  ; � ) = (50 ; 45 ; 0 ), and (� ;  ; � ) = (60 ; 45 ; 180 ), with modeling errors.

mance of UP-PD- -MUSIC-1, UP-PD- -MUSIC-2, and
KP-PD- -MUSIC algorithms as increases. This is due to a
higher variance in the statistics estimation since no resolution is
required for DF due to a high separation of sources in polariza-
tion. Finally, note that, for , KP-PD- -MUSIC algorithm
may be surprisingly worse than UP-PD- -MUSIC algorithm.

C. Underdetermined Mixtures of Sources

To illustrate the capability of PD-4-MUSIC and PD-6-
MUSIC algorithms to process underdetermined mixtures
of sources, we limit the number of sensors of the pre-
vious circular array to sensors. These sensors are
such that and

for PD- -MUSIC methods
and
for -MUSIC methods and we assume that . Under
these assumptions, we deduce from [3, Tables 1 and

2], (29), and (33) that and
for PD- -MUSIC methods

and from [3, Tables 6 and 7] that
and for -MUSIC methods.
We then assume that four statistically independent QPSK
sources with a raise cosine pulse shaped filter are re-
ceived by the array. The four QPSK sources have the
same symbol duration, the same rolloff , the
same input SNR equal to 15 dB, and DOA and polariza-
tion parameters equal to ,

, ,
and , respectively. Under
these assumptions, Fig. 7 shows the variations, as a func-
tion of the number of snapshots , of the highest RMSE
and the lowest probability of nonabberant results, among all
the sources, at the output of several DF methods without
modeling errors. These methods correspond to 4-MUSIC,
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Fig. 7. (a) Maximal RMSE and (b) minimal probability of nonaberrant results of sources as a function of L: 1) 4-MUSIC, 2) KP-PD-4-MUSIC, 3) UP-PD-4-
MUSIC-1, 4) UP-PD-4-MUSIC-2, 5) 6-MUSIC, 6) KP-PD-6-MUSIC, 7) UP-PD-6-MUSIC, and 8) UP-PD-6-MUSIC-2. P = 4, N = 3, UCA, SNR = 15 dB,
(� ;  ; � ) = (15 ; 45 ;�75 ), (� ;  ; � ) = (45 ; 45 ; 0 ), (� ;  ; � ) = (95 ; 22:5 ; 75 ), and (� ;  ; � ) = (122:5 ; 45 ; 150 ), without mod-
eling errors.

KP-PD-4-MUSIC, UP-PD-4-MUSIC-1, UP-PD-4-MUSIC-2,
6-MUSIC, KP-PD-6-MUSIC, UP-PD-6-MUSIC-1, and
UP-PD-6-MUSIC-2 algorithms, respectively, and the per-
formance are computed from 300 realizations. Note the
capability of PD- -MUSIC methods to process underdeter-
mined mixtures of sources provided that given by
(29) or (33). Note the poor performance of -MUSIC methods
for the considered scenario due to the low input power of the
weakest source at the output of the sensors. Better performance
would be obtained for higher values of .

VII. CONCLUSION

In this paper, the -MUSIC algorithm, , has been
extended to put up with arrays having polarization diversity
and receiving diversely polarized sources, which gives rise to
PD- -MUSIC algorithms. Three PD- -MUSIC algorithms
have been presented, depending on the a priori knowledge
about the polarization of the sources. The first version, called
KP-PD- -MUSIC, is well suited for sources with known
polarization, while the two others, called UP-PD- -MUSIC-1
and UP-PD- -MUSIC-2, are able to estimate the sources’
DOA without any knowledge about their polarization and
allow to estimate the polarization of the sources if necessary.
For a given value of , these algorithms are shown in this
paper to increase the resolution, the robustness to modeling
errors (at least for several poorly angularly separated sources),
and the processing capacity (at least for VA without any HO
ambiguities) of the -MUSIC method in the presence of
diversely polarized sources and from an array with polarization
diversity. Moreover, despite a higher variance in the statistics
estimation, performance of UP-PD- -MUSIC algorithms have
been shown to generally increase with when some resolution
is required. This occurs, in particular, for sources which are
poorly separated in both DOA and polarization. This result
shows off for these scenarios the interest to jointly exploit
polarization diversity and HO statistics for DF. Identifiability
results have been presented for each of the three PD- -MUSIC

methods, for VA without HO ambiguities. Nevertheless, for VA
with vectorial sensors, a deeper analysis of the identifiability of
PD- -MUSIC algorithms is required.

APPENDIX

We show here that it is possible to obtain an estimate
of the polarization vector of the source from the estimate

of the vector . To do so, we implement
the different following steps.

1) Compute, from (16), an estimate of
the vector by

.
2) Decompose the vector into subvec-

tors , , such that

.

3) Map the components of each subvector
into a matrix such that

, where and
are the elements and of

and , respectively
4) Build the matrices , , defined by

the following:
a) if ;
b) if ;
c) if .

5) Jointly diagonalize the matrices , .
6) is the associated eigenvector corresponding to the max-

imal eigenvalue.
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