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Abstract—From the beginning of the 1980s, many second-order
(SO) high-resolution direction-finding methods, such as the
MUSIC method (or 2-MUSIC), have been developed mainly to
process efficiently the multisource environments. Despite of their
great interests, these methods suffer from serious drawbacks such
as a weak robustness to both modeling errors and the presence
of a strong colored background noise whose spatial coherence
is unknown, poor performance in the presence of several poorly
angularly separated sources from a limited duration observation
and a maximum of 1 sources to be processed from an array
of sensors. Mainly to overcome these limitations and in par-
ticular to increase both the resolution and the number of sources
to be processed from an array of sensors, fourth-order (FO)
high-resolution direction-finding methods have been developed,
from the end of the 1980s, to process non-Gaussian sources, om-
nipresent in radio communications, among which the 4-MUSIC
method is the most popular. To increase even more the resolution,
the robustness to modeling errors, and the number of sources to
be processed from a given array of sensors, and thus to minimize
the number of sensors in operational contexts, we propose in this
paper an extension of the MUSIC method to an arbitrary even
order 2 ( 1), giving rise to the 2 -MUSIC methods. The
performance analysis of these new methods show off new impor-
tant results for direction-finding applications and in particular
the best performances, with respect to 2-MUSIC and 4-MUSIC,
of 2 -MUSIC methods with 2, despite their higher variance,
when some resolution is required.

Index Terms—2 -MUSIC, direction finding, higher order,
modeling errors, MUSIC, resolution, underdetermined mixtures,
virtual array.

I. INTRODUCTION

FROM the beginning of the 1980s, many second-order (SO)
high-resolution direction-finding methods [2]–[4], [24],

[31], [32], [37] have been developed mainly to overcome the
limitations of the so-called superresolution methods [5], [6] in
weak sources contexts. Among these high-resolution methods,
subspace-based methods such as the MUSIC (or 2-MUSIC)
method [2], [32] are the most popular. These high-resolution
methods are very powerful in multisource environments since
they are characterized, in the absence of modeling errors and
for a background noise whose spatial coherence is known, by
an asymptotic resolution that becomes infinite whatever the
source signal-to-noise ratio (SNR) [22], [23], [29], [34], [35].
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However, these high-resolution methods suffer from serious
drawbacks. Indeed, they are not able to process more than

noncoherent sources from an array of sensors and are
weakly robust both to modeling errors [20], [25], [36], always
present in operational contexts, and to the presence of a strong
background noise whose spatial coherence is unknown [27],
such as in the high-frequency (HF) band [14]. Finally, their
performance may be strongly affected when several poorly an-
gularly separated sources with a low SNR have to be separated
from a limited number of snapshots [23], [34], [35].

From the end of the 1980s, mainly to overcome the previous
limitations, fourth-order (FO) high-resolution direction-finding
methods [7], [11], [21], [30], [33] have been developed for non-
Gaussian sources, omnipresent in radio communications con-
texts, among which the extension of the MUSIC method to FO
[30], called 4-MUSIC, is the most popular. Indeed, FO methods
are asymptotically robust to the presence of a Gaussian noise
whose spatial coherence is unknown [30]. Moreover, despite of
their higher variance [8], they generate a virtual increase of both
the effective aperture and the number of sensors of the array, in-
troducing the FO virtual array (VA) concept presented in [15]
and [10] and allowing both an increasing resolution and the pro-
cessing of more sources than sensors [7], [10], [15], [33]. In par-
ticular, it has been shown in [10] that, from an array of sen-
sors, the 4-MUSIC method may process up to sources
when the sensors are identical and up to sources for dif-
ferent sensors.

In order to still increase both the resolution power of high-res-
olution direction-finding methods and the number of sources to
be processed from a given array of sensors, while keeping the
asymptotic robustness to a strong background Gaussian noise
whose spatial coherence is unknown, we propose in this paper
an extension of the MUSIC algorithm to an arbitrary even order

( ) giving rise to the so-called -MUSIC algorithms.
The performance analysis of -MUSIC algorithms with
shows off new important results for direction-finding appli-
cations, opening new perspectives in array processing. More
precisely, using the results of higher order (HO) VA concept
presented recently in [9], it is verified in the paper that the
way the th-order data statistics are arranged in the exploited

th-order statistical matrix, controls the maximal number
of sources that can be processed by the -MUSIC method,
showing off the existence of an optimal arrangement of these
statistics. Moreover, for a given array of sensors, we also verify
from the results of [9] that the maximal number of sources that
can be processed by the -MUSIC method is an increasing
function of . A consequence of this result is that for opera-
tional contexts characterized by a high source density, such as
for example airborne surveillance over urban areas, the use of

-MUSIC methods with for direction finding allows the
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reduction or even the minimization of the number of sensors of
the array and thus the number of reception chains, which finally
drastically reduces the overall cost. Another important result
of the paper is that both the resolution of -MUSIC method,
implemented from a finite number of snapshots, and its ro-
bustness to modeling errors increase with . This result jointly
with the HO VA concept [9] allow to explain why, despite of
their higher variance, -MUSIC methods with may
offer better performances than 2-MUSIC or 4-MUSIC methods
when some resolution is required, i.e., in the presence of several
sources, when the latter are poorly angularly separated or in the
presence of modeling errors inherent in operational contexts. A
consequence of this latter result is that, for given performances,

-MUSIC method for may allow to slacken some
constraints about antennas’ calibration or receivers’chains
equalization.

After an introduction of some notations, hypotheses and data
statistics in Section II, the -MUSIC method is presented in
Section III for particular arrangements of the th-order data
statistics in a th-order statistical matrix. Identifiability issue
together with the problem of the optimal arrangement of the
data statistics are addressed in Section IV. The performance
of the -MUSIC method in the presence of modeling errors
are computed analytically in Section V where the resolution of

-MUSIC algorithm is also discussed. Some simulations about
the behavior of -MUSIC algorithm for both overdetermined
and underdetermined mixtures of sources are presented in Sec-
tion VI, showing off in particular the great interest of -MUSIC
methods for . Finally Section VII concludes this paper.

II. HYPOTHESES, NOTATIONS, AND STATISTICS OF THE DATA

A. Hypotheses and Notations

We consider an array of narrowband (NB) identical sensors
and we call the vector of complex amplitudes of the signals
at the output of these sensors. Each sensor is assumed to receive
the contribution of zero-mean stationary NB sources, which
may be statistically independent or not, corrupted by a noise. We
assume that the sources can be divided into groups, with
sources in the group , such that the sources in each group are
assumed to be statistically dependent, but not perfectly coherent,
while sources belonging to different groups are assumed to be
statistically independent. In particular, corresponds to

statistically independent sources whereas corresponds
to the case where all the sources are dependent. Of course, the

parameters are such that

(1)

Fig. 1. Incoming signal in three dimensions.

Under these assumptions, the observation vector can approxi-
mately be written as follows:

(2)

where is the noise vector, assumed zero-mean and
Gaussian, , independent of , is the vector whose
components are the complex amplitudes of the sources,

and are the azimuth and the elevation angles of source
(Fig. 1), is the ( ) matrix of the source steering

vectors ( ), which contains in particular the
information about the direction of arrival of the sources, is
the ( ) submatrix of corresponding to the th group
of sources, is the corresponding ( ) subvector of

and . In particular, in the absence of
coupling between sensors, assuming a planewave propagation,
component of vector , denoted , can be
written, in the case of an array with space diversity only, as [12]
(3), shown at the bottom of the page, where is the wavelength,
and are the coordinates of sensor of the array.

B. Statistics of the Data

1) Presentation: The th ( )-order direction-finding
methods presented in this paper exploit the information con-
tained in the ( ) th-order circular covariance matrix,

, whose entries are the th-order circular cumulants
of the data,
( ) ( ), where corresponds to the
complex conjugation. Note that the previous statistics are
called circular since they are invariant by a phase rotation of
the components [1], [28]. However, the previous entries
can be arranged in the matrix in different ways, and it
is shown in [9] and verified in this paper that the way these
entries are arranged in the matrix determines in particular

(3)
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both the resolution and the maximal processing power of the
-MUSIC method.
In order to verify this important result in Sections IV and

VI, let us introduce an arbitrary integer such that ( )
and let us arrange the -uplet ( )
of indexes ( ) into two -uplets indexed
by and defined by ( ) and
( ) respectively. As the indexes
( ) vary from 1 to , the two latter -uplets take
values. Numbering, in a natural way, the values of each of
two latter -uplets by the integers and respectively, such
that , , we obtain

(4a)

(4b)

In particular, for , the integers and are given
by and respectively
whereas for we obtain and

. Using the permutation invariance property
of the cumulants, we deduce that

and assuming that the latter quantity is the element of the
matrix, thus noted , it is straightforward to show,

using (2), that the ( ) matrix can be written as

(5)

where is the mean power of the noise per sensor, is
the ( ) spatial coherence matrix of the noise for the ar-
rangement indexed by , such that , means
Trace, is the Kronecker symbol, and the ( ) matrix

corresponds to the th-order circular cumulants of
for the arrangement indexed by , which can be written as

(6)
where is the ( ) matrix of the th-order
circular cumulants of for the arrangement indexed by ,
corresponds to the conjugate transposition, is the Kronecker
product, and is the ( ) matrix defined by

with a number of Kronecker product
equal to .

In particular, for and , the ( )
matrix corresponds to the well-known data covariance matrix
(since the observations are zero-mean) defined by

(7)

For and , the ( ) matrix corresponds
to the classical expression of the data quadricovariance matrix,
used in [7], [8], [15], and [30] and in most of the papers dealing
with FO array processing problems, and defined by

(8)

whereas for and , the ( ) matrix
corresponds to an alternative expression of the data quadrico-
variance matrix, not often used and defined by

(9)

2) Estimation: In situations of practical inter-
ests, the th-order statistics of the data

are not
known a priori and have to be estimated from samples of
data , , where is the sample
period.

For zero-mean stationary observations, using the
ergodicity property, an empirical estimator of

, asymptotically
unbiased and consistent, may be built from the well-known
Leonov–Shiryaev formula [26], giving the expression of a

th-order cumulant of as a function of its th-order
moments ( ) by replacing in the latter all the
moments by their empirical estimate. More precisely, the
Leonov–Shiryaev formula is given by

(10)

where describes all the partitions in sets
of , with the con-
vention and and an empirical estimate
of (10) is obtained by replacing in (10) all the moments



CHEVALIER et al.: HIGH-RESOLUTION DIRECTION FINDING FROM HIGHER ORDER STATISTICS 2989

( ) by their empirical
estimate given by

(11)

Explicit expressions of (10) for with are
given in [9].

However, in radio communications contexts, most of the
sources are no longer stationary but become cyclostationary
(digital modulations). For zero-mean cyclostationary obser-
vations, the statistical matrix defined by (5) become time
dependent, noted , and the theory developed in the
paper can be extended without any difficulties by considering
that is, in this case, the temporal mean
over an infinite interval duration, of the instantaneous statistics

. In these conditions, using a cyclo-ergodicity prop-
erty, the matrix has to be estimated from the sampled
data by a nonempirical estimator such as that presented in
[16] for , whose convergence is shown in [13]. Note
finally that this extension can also be applied to nonzero-mean
cyclostationary sources, such as some nonlinearly digitally
modulated sources [18], provided that a nonempirical statistics
estimators, such as that presented in [18] for and in [17]
for , is used.

III. -MUSIC ALGORITHM

In this section, we analyse the properties of the matrix
and we deduce from the latter the -MUSIC algo-

rithm for the arrangement indexed by .

A. Hypotheses

To develop the -MUSIC algorithm for the arrangement ,
we need some hypotheses that correspond to the following :

H1: , ;
H2: matrix has full rank , ;
H3: ;

H4: matrix
as full rank .

For example, for , hypothesis H2 reduces to
has full rank , assumption made in [30] to de-

velop the 4-MUSIC algorithm for correlated sources. In partic-
ular, for sources which are all statistically dependent ,

, matrix reduces to and hypotheses H1 to
H4 reduce to the following:

H1’: ;
H2’: matrix as full rank .

For statistically independent sources , ,
matrix reduces to the vector and hypotheses H1 to
H4 reduce to the following:

H1’’: ;

H2’’: matrix

as full rank .

B. Properties of

The ( ) matrix , which contains the
th-order circular cumulants of for the arrangement

indexed by , has full rank, , in general since the compo-
nents of are statistically dependent. Therefore, using
H1 and H2, the matrix for has also rank .
Hence, using H4 and for , matrix has a rank,

, equal to , and such that from
H3. In particular, for sources that are all statistically dependent,

whereas for statistically independent sources,
. As matrix is Hermitian, but not positive

definite, we deduce from the previous results that
has nonzero eigenvalues and zero
eigenvalues for .

C. -MUSIC Algorithm

To built a MUSIC-like algorithm from the matrix ,
for , we first compute the eigendecomposition of the latter,
given by

(12)

where is the ( ) diagonal ma-
trix of the nonzero eigenvalues of , is the
( ) unitary matrix of the eigenvectors of
associated with the nonzero eigenvalues of ,

is the ( ) diagonal
matrix of the zero eigenvalues of , and is the
( ) unitary matrix of the eigenvectors
of associated with the ( ) zero eigen-
values of . As is Hermitian, all the columns
of are orthogonal to all the columns of .
Moreover, as Span , we deduce
that all the columns of all the matrices ,

are orthogonal to all the columns of . Let
be the DOA of the th source in the th group. Then,

the vector appears as the
th column of .

Hence, all vectors
are orthogonal to the columns of

and are solutions of the following equation:

(13)
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which corresponds to the heart of the -MUSIC algorithm for
the arrangement . In practical situations, matrix has
to be estimated from the observations and the direction of ar-
rival (DOA) of the sources may be found by searching for the
minima of the left-hand side of (13). The different steps of the

-MUSIC algorithm for the arrangement are summarized
hereafter :

1. Estimation, , of the matrix from snap-
shots , , using a suitable estimator of the

th-order cumulants of observations
2. Eigenvalue decomposition of the matrix, , and ex-

traction of an estimate, , of the matrix.
This step may involve rank determination in cases where
the number of sources and/or their mutual statistical depen-
dence are not known a priori.

3. Computation of the estimated pseudo-spectrum

(14)

over a suitably chosen grid, and search for the local minima
(including interpolation at each local minimum).

In some cases, the number of sources is known, such that
, but their statistical dependence is not known. In such a

case, and a conservative approach is to use only
the eigenvectors associated with the smallest eigen-
values to built , which implicitly assumes the statistical
dependence of all the sources.

Similarly to 2-MUSIC algorithm, the -MUSIC algorithm
cannot handle perfectly coherent sources. Indeed, in such a case,
one or more of the matrices will have rank less than

and the corresponding sources will become indistinguish-
able to the algorithm.

IV. IDENTIFIABILITY

Following the developments of the previous section, we de-
duce that the -MUSIC algorithm for the arrangement indexed
by is able to estimate the DOA of noncoherent sources from
an array of sensors provided that hypotheses H1 to H4 are
verified and the DOA of the sources are the only solutions of
(13). As the maximal number of sources that can be processed
by the -MUSIC algorithm is obtained when all the sources are
statistically independent, we limit the analysis to the latter case.
In such a situation, hypotheses H1 to H4 reduce to H1’’ and H2’’
respectively. It has been shown in [9] that the vector

can be considered as a true steering
vector but for a HO virtual array of virtual sensors (VSs),
with coordinates, ,

for , given by

(15)

As some of these VSs may coincide, we note (
) the number of different VSs of the VA associated with

the th-order direction-finding problem for the arrangement
. This number, , is directly related to the geometry

of the true array of sensors. In these conditions,
components of all the vectors are redundant compo-
nents that bring no information. As a consequence,
rows of the matrix bring no information and are linear
combinations of the others, which means that the rank of
cannot be greater than . We then deduce that the matrix
may have a rank equal to only if . Conversely, for
a th-order virtual array without any ambiguities up to order

, sources coming from different directions generate
an matrix with a full rank as long as . Thus,
the maximal number of statistically independent sources able
to generate a matrix with rank is . However, when

, an arbitrary vector associated with an ar-
bitrary DOA is necessarily a linear combination of the
source steering vectors , , since matrix

cannot have a rank greater than and all the DOA
are then solutions of (13), which does not allow the sources’
DOA estimation. Thus, a necessary condition for the DOA of
the sources to be the only solutions of (13) is that
and this condition becomes sufficient for HO virtual arrays with
no ambiguities. From the previous results we deduce that the

-MUSIC algorithm is able to process up to sources,
where is the number of different sensors of the th-order
virtual array associated with the considered array of sensors
and the th-order statistics arrangement indexed by . As
is a function of and [9], we deduce that the processing ca-
pacity of the -MUSIC algorithm is also a function of and
, which shows off in particular the existence of an optimal ar-

rangement of the th-order data statistics for a given value of
. It is shown in [9] that for a given value of , the optimal

arrangement is associated with the integer which minimizes
the quantity , which finally generates steering vectors

for which the number of conjugate vectors is the
least different from the number of nonconjugate vectors. In par-
ticular, for , it corresponds to , i.e., to steering vectors
of the form .

For given values of , and , it has been shown in [9]
that is necessary upper-bounded by a quantity, noted

, such that for arrays with space
diversity only. Table I shows, for arrays with space diversity
only (i.e., with identical sensors), the expression of
as a function of for and several values of .
This upper bound corresponds to in most cases of array
geometries with no particular symmetries, such as the uniform
circular array (UCA) with a number of sensors corresponding
to a prime number [9], but cannot be reached by for arrays
with particular symmetries. It is in particular the case for the
uniform linear array (ULA) for which is shown in [9] to
be independent of and given by

(16)

which is an increasing function of and .
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TABLE I
N [2q; l] AS A FUNCTION OF N FOR SEVERAL VALUES OF q AND l

AND FOR ARRAYS WITH SPACE DIVERSITY ONLY

V. PERFORMANCE OF -MUSIC WITH MODELING ERRORS

In operational contexts, for given choices of array of sensors
and algorithm, the performance of the latter is mainly controlled
by modeling errors such as array calibration errors or phase and
amplitude residual mismatches between reception chains. For
this reason, it is important to compute the asymptotic perfor-
mances of -MUSIC algorithms in the presence of modeling
errors, showing off the influence of and on the robustness of
the latter.

A. Modelization and Problem Formulation

In the presence of modeling errors, the observation vector
defined by (2) becomes

(17)

where is the ( ) matrix of the corrupted source steering
vectors , ( ), such that

(18)

where is the modeling error vector of the source .
From (18), we deduce that

(19)

where is the ( ) matrix of the error vectors ,
( ). Note that the model (18) is well suited for
any kinds of distortion (mutual coupling between sensors, mis-
matches between reception chains, position errors of sensors,
etc.) [19]. To simplify the notations, we note in the following

, , and .
Besides, we assume that a very large number of sampled ob-
servation vectors have been collected resulting in a per-

fect measurement of the matrix , given by (5) but where
is now given by

(20)
where is the ( ) submatrix of corresponding to the

th group of sources. Assuming that the number of sources
and their correlation properties are known, the problem consid-
ered in this section is to find the DOA ( ), mini-
mizing the left-hand side of (13), or the following criterion:

(21)

where ,
and where is the (

) unitary matrix of the eigenvectors of asso-
ciated with the zero eigenvalues of .
In the absence of modeling errors , the minima of
(21) are zeros corresponding to the DOA of the sources,
( ). However, in the presence of modeling errors

, the criterion (21) is no longer zero for the DOA
of the sources but presents local minima for directions
( ), different from ( ). The variable

defines the estimation error on the DOA of the
source . To simplify the mathematical developments, we limit
the analysis to a monodimensional DOA estimation problem
for which , and , ( ), are scalar quantities.
Using a first-order Taylor expansion of the first partial deriva-
tive of with respect to around
and the fact that , we obtain an approximated
expression of , given by

(22)

where corresponds to the second derivative of
with respect to at . Using (21), and
can be written as

(23)

(24)

where indicates the real part and and in-
dicate the first and second derivative of with respect to
at , respectively. Considering that is a random matrix,
the quantities ( ) become random variables and
the purpose of this section is to compute the root mean-square
error (RMSE) of , defined by , as a
function of , and the statistics of .

B. Solution for

The computation of the RMSE of the previous DOA estimates
, ( ), has already been considered in [20], [25],
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[36] but for , i.e., for the 2-MUSIC algorithm, and from
an expansion of at the first-order in
around . Unfortunately, this first-order expansion gen-
erates, for each source, an RMSE that is unbounded in limit of
resolution, which does not agree well with simulation results. To
overcome this limitation, a second-order expansion of
around has been considered recently in [19], generating
RMSE in complete agreement with simulations even for high
spatial correlation between the sources. More precisely, it has
been shown in [19] that and are given by

(25)

(26)

where means Trace, is the ( ) vector defined
by , ,

is the ( ) matrix defined by
, and are the (

) matrices defined by

(27)

(28)

where, for the ( ) vectors and , is the (
) matrix defined by

(29)

where , and are the ( ) vec-
tors defined by and respectively
with , is the
( ) zero vector, , , and are ( )
matrices defined by

(30)

(31)

(32)

(33)

respectively, where and
is the ( ) permutation matrix such that

. These results are used in Section V-C to compute
for .

C. Solution for

The RMSE of the source DOA estimates have been computed
in Section V-B from expressions (22) to (24), with ,
and a second-order Taylor expansion of

around , where is the ( ) identity matrix and
. Assuming statistically

Fig. 2. RMSE of the source 1 as a function of j � j, q = 1, 2, 3, N = 5,
UCA, r=� = 0:5, P = 2, i.i.d. Gaussian and circular errors, � = 0:0149.
Theoretical results.

independent sources and considering arbitrary values of and ,
the projector on the noise subspace, , takes the form

where and

. Considering a first-order expansion of
around , we obtain

(34)

where is defined by H2’’and where it is easy to
show that is the ( ) matrix defined by

where is defined by

(35)

with the convention . In these conditions, the RMS
error of the source DOA estimates can be computed for arbitrary
values of and from expressions (22) to (24) and a second-
order Taylor expansion of

around , where , by replacing
by , by , by and by in expres-

sions (25) to (33).

D. Illustration

To illustrate the previous results, we assume that two statis-
tically independent sources are received by a UCA of
5 omnidirectional sensors with a radius equal to half the wave-
lenght. The DOA of the source 1 is 100 . The mod-
eling error vectors ( ) are assumed to be zero-
mean statistically independent circular Gaussian vectors such
that where , which corre-
spond for example to a phase error with a standard deviation
of 7 without any amplitude error. Under these assumptions,
Fig. 2 shows, for 1, 2, 3 and for (optimal arrange-
ment), the variations of the RMSE of the source 1 (it is similar
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Fig. 3. RMSE of the source 1 as a function of j � j, q = 1, 2, l = 1,
2, N = 5, UCA, r=� = 0:5, P = 2, i.i.d. Gaussian and circular errors,
� = 0:0149. Theoretical results.

for the source 2) as a function of the modulus of the spatial cor-
relation coefficient between the two sources , defined by

(36)

Fig. 2 shows, for each value of , an increasing RMSE with
as long as the two sources are resolved by the -MUSIC

algorithm and a decreasing RMSE with as soon as the
two sources become unresolvable by the algorithm. Besides, for
a given value of , Fig. 2 shows a decreasing value of the
RMSE as increases, showing off the better robustness of the

-MUSIC algorithm to modeling errors as increases, espe-
cially for poor angular separation between the sources, in the
limit of resolvability of the latter. Moreover, the maximal value
of ensuring resolvability of the two sources increases
with , showing off the increasing resolution of -MUSIC al-
gorithm as increases. All these results may be physically in-
terpreted through the HO virtual array concept introduced in
[9]. Indeed, the increasing resolution of the -MUSIC algo-
rithm as increases is directly related to the decreasing value
with of the modulus of the spatial correlation coefficient of
two sources for the associated virtual array, , defined
by the normalized inner product of and , since

as shown in [9]. In a same way, the in-
creasing robustness to modeling errors of the -MUSIC algo-
rithm as increases is also directly related to the increasing res-
olution, with , of the associated virtual array. All these results
definitely show off the great interest of -MUSIC methods for

, even for overdetermined mixtures of sources ,
despite their increasing variance and complexity with .

The influence of the arrangement of the statistics on the ro-
bustness to modeling errors of -MUSIC algorithm is illus-
trated in Fig. 3, which shows the same things as Fig. 2 for the
same scenario but for 1, 2 and for 1, 2. We note that
performance of 4-MUSIC for and are very close to
each other since the resolution of the associated virtual arrays is
independent of ( independent of ). Nevertheless,
we note surprisingly lightly better performance for the subop-
timal arrangement ( ), probably due to the lower number of
virtual sensors of the associated virtual array.

Let us recall that the illustrations presented in this section are
computed for exact statistics of the data. Estimated statistics are
considered in the next section.

VI. COMPUTER SIMULATIONS

The results of the previous sections are illustrated in this
section through computer simulations. To do so, we first in-
troduce a performance criterion in Section VI-A and describe
the simulations in Sections VI-B and VI-C for overdetermined
and underdetermined mixtures of sources respectively. The
sources are assumed to have a zero elevation angle and to
be zero-mean stationary sources corresponding to quaternary
phase-shift keying (QPSK) sources sampled at the symbol rate.

A. Performance Criterion

For each of the considered sources and for a given direc-
tion-finding method, two criteria are used in the following to
quantify the quality of the associated DOA estimation. For a
given source, the first criterion is a probability of aberrant results
generated by a given method for this source and the second one
is an averaged RMSE, computed from the nonaberrant results,
generated by a given method for this source.

More precisely, for given values of and , a given number of
snapshots, , and a particular realization of the observation
vectors ( ), the estimation, , of the DOA of
the source ( ) from -MUSIC is defined by

(37)

where the quantities ( ) correspond to the
minima of the pseudo-spectrum defined by (14)
for and is an estimate of the source number . To
each estimate ( ), we associate the corresponding
value of the pseudo-spectrum, defined by .
In this context, the estimate is considered to be aberrant if

, where is a threshold to be defined. In the following
.

Let us now consider realizations of the observation vec-
tors ( ). For a given method, the probability
of abberant results for a given source , , is defined
by the ratio between the number of realizations for which is
aberrant and the number of realizations . From the nonaber-
rant realizations for the source , we then define the averaged
RMSE for the source , RMSE , by the quantity

RMSP (38)

where is the number of nonaberrant realizations for the
source and is the estimate of for the nonaberrant real-
ization .

B. Overdetermined Mixtures of Sources

To quantify the influence of both the number of indepen-
dent snapshots and the parameter on the performance of



2994 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 8, AUGUST 2006

Fig. 4. RMSE of the source 1 and p(� � �) as a function ofL: (a) 2-MUSIC,
(b) 4-MUSIC, (c) 6-MUSIC, P = 2, N = 3, ULA, SNR = 5 dB, � = 90 ,
� = 82.7 , no modeling errors.

Fig. 5. RMSE of the source 1 and p(� � �) as a function ofL: (a) 2-MUSIC,
(b) 4-MUSIC, (c) 6-MUSIC, P = 2, N = 3, ULA, SNR = 5 dB, � = 90 ,
� = 82.7 , with modeling errors.

-MUSIC algorithms, we assume that two statistically inde-
pendent QPSK sources with a raise cosine pulse shape filter are
received by a ULA of 3 omnidirectional sensors spaced
half a wavelength apart. The two QPSK sources have the same
symbol duration, the same roll-off , the same input
SNR equal to 5 dB, and a DOA equal to 90 and
82.7 , respectively. Note that the normalized autocumulant of
the QPSK symbols is equal to at the FO and at the
sixth order. Under these assumptions, Figs. 4 and 5 show the
variations, as a function of the number of snapshots , of the
RMSE for the source 1, RMSE , and the associated probability
of nonabberant results, , (we obtain similar results
for the source 2), estimated from 300 realizations, at the
output of both 2-MUSIC, 4-MUSIC, and 6-MUSIC methods
for optimal arrangements of the considered statistics, without
and with modeling errors, respectively. In the latter case, the
modeling error vectors ( ), are assumed to be
zero-mean statistically independent circular Gaussian vectors
such that where , which cor-
responds, for example, to a phase error with a standard deviation
of 1 with no amplitude error. Both in terms of probability of
nonaberrant results and estimation precision, Figs. 4 and 5 show,
for poorly angularly separated sources, the best behavior of the
6-MUSIC method with respect to 2-MUSIC and 4-MUSIC as
soon as becomes greater than 400 snapshots without mod-
eling errors and 500 snapshots with modeling errors. For such
values of , the resolution gain and the better robustness to mod-
eling errors obtained with 6-MUSIC with respect to 2-MUSIC
and 4-MUSIC, due to the narrower 3-dB beamwidth of the as-
sociated sixth-order VA respectively, is higher than the loss due
to a higher variance in the statistics estimates. A similar analysis

Fig. 6. RMSE of the source 1 and p(� � �) as a function ofL: (a) 2-MUSIC,
(b) 4-MUSIC (l = 1), (c) 4-MUSIC (l = 2), P = 2, N = 3, UCA, SNR =
10 dB, � = 90 , � = 110 , no modeling errors.

Fig. 7. RMSE of the source 1 and p(� � �) as a function ofL: (a) 2-MUSIC,
(b) 4-MUSIC (l = 1), (c) 4-MUSIC (l = 2), P = 2, N = 3, UCA, SNR =
10 dB, � = 90 , � = 110 , with modeling errors.

can be done for 4-MUSIC with respect to 2-MUSIC as soon as
becomes greater than 2000 without modeling errors and 1700

snapshots with modeling errors. These results confirm that, de-
spite of their higher variance and contrary to some generally
accepted ideas, HO MUSIC methods may offer better perfor-
mances than 2-MUSIC or 4-MUSIC methods when some reso-
lution is required, i.e., in the presence of several sources, when
the latter are weak, poorly angularly separated or in the presence
of modeling errors inherent in operational contexts.

To quantify the influence of the arrangement of the HO sta-
tistics on the performance of -MUSIC algorithms, we con-
sider now that the two statistically independent QPSK sources
are received by a UCA of 3 omnidirectional sensors with
a radius such that . The two QPSK sources have the
same symbol duration, the same roll-off , the same input
SNR equal to 10 dB and a direction of arrival equal to 90
and 110 , respectively. Under these assumptions, Figs. 6
and 7 show the variations, as a function of the number of snap-
shots , of the RMSE for the source 1, RMSE , and the asso-
ciated probability of nonabberant results, , estimated
from 300 realizations, at the output of both 2-MUSIC al-
gorithm and 4-MUSIC algorithm with 1 and 2, without and
with modeling errors similar to those of Fig. 5 respectively. We
note, in both cases, the better behavior of 4-MUSIC with re-
spect to 2-MUSIC whatever the chosen arrangement of the FO
statistics jointly with the better behavior of 4-MUSIC ( )
with respect to 4-MUSIC ( ) despite the optimality of the
arrangement indexed by . Although this result might seem
to be in contradiction with results of Section IV and [9], it is not
since the optimality of the arrangement indexed by for the
FO direction-finding problem is related to the number of virtual
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Fig. 8. Pseudo-spectrum of 4-MUSIC as a function of �: (a) 4-MUSIC (l = 1)
(b) 4-MUSIC (l = 2), P = 6, N = 3, UCA, SNR = 15 dB, L = 10000,
� = 35 , � = 80 , � = 110 , � = 140 , � = 230 , � = 304 , no
modeling errors.

sensors of the associated VA and thus to the number of sources
that can be processed by 4-MUSIC, which is maximal for .
However, as the modulus of the spatial correlation coefficient
of two sources for the associated virtual array is in-
dependent of the arrangement of the statistics [9], i.e., of the
index , the resolution of 4-MUSIC algorithm is independent of

whereas the number of virtual sensors of the associated VA is
lower for , which generates less variance in the statistics
estimation and which explains the result.

C. Underdetermined Mixtures of Sources

To illustrate the influence of the arrangement of the HO sta-
tistics on the number of sources that can be processed by the

-MUSIC algorithm, we assume that six statistically indepen-
dent QPSK sources with a raise cosine pulse shape filter are
received by a UCA of 3 omnidirectional sensors with a
radius such that 0.3 . The six QPSK sources have the
same symbol duration, the same roll-off , the same input
SNR equal to 15 dB and a direction of arrival equal to 35 ,

80 , 110 , 140 , 230 , 304 ,
respectively. Under these assumptions, Fig. 8 shows the varia-
tions of the pseudo-spectrum of 4-MUSIC, for 1 and 2, as
a function of for without modeling errors. Note
the good behavior of 4-MUSIC for , which succeeds in
estimating the DOA of the six sources, and the poor behavior of
4-MUSIC for , which fails in estimating the latter, since
the number of virtual sensors of the associated VA is equal to

for and to for . To complete these
results, Fig. 9 shows the variations, as a function of the number
of snapshots , of the highest RMSE and the lowest probability
of nonabberant results, among all the sources, estimated from

300 realizations, at the output of the 4-MUSIC algorithm
for and without modeling errors. Note the increasing
minimum probability of nonaberrant results and the decreasing
maximal RMSE as increases, showing off the capability of
4-MUSIC to efficiently estimate the DOA of all the sources for

.
Finally, to illustrate the capability for the 6-MUSIC algo-

rithm to process three sources from 2 sensors, we as-
sume that three statistically independent QPSK sources with a
raise cosine pulse shape filter are received by a ULA of
2 omnidirectional sensors equispaced half a wavelength apart.

Fig. 9. Maximal RMSE and minimum probability of nonaberrant results as a
function of L, 4-MUSIC (l = 1), P = 6, N = 3, UCA, SNR = 15 dB,
� = 35 , � = 80 , � = 110 , � = 140 , � = 230 , � = 304 , no
modeling errors.

Fig. 10. Maximal RMSE and minimum probability of nonaberrant results as a
function of L, 6-MUSIC, P = 3, N = 2, ULA, SNR = 10 dB, � = 60 ,
� = 90 , � = 120 , no modeling errors.

The three QPSK sources have the same symbol duration, the
same roll-off , the same input SNR equal to 10 dB,
and a DOA equal to 60 , 90 and 120 respec-
tively. Under these assumptions, Fig. 10 shows the variations, as
a function of the number of snapshots , of the highest RMSE
and the lowest probability of nonabberant results, among all the
sources, estimated from 300 realizations, at the output
of the 6-MUSIC algorithm without modeling errors. Note the
increasing minimum probability of nonaberrant results and the
decreasing maximal RMSE as increases, showing off the ca-
pability of 6-MUSIC to efficiently estimate the DOA of the three
sources since in this case is strictly lower than the number of
virtual sensors, , of the associated virtual array.

VII. CONCLUSION

In this paper, an extension of the MUSIC algorithm to an ar-
bitrary even-order ( ) and for several arrangements, in-
dexed by an integer , of the th-order data statistics has been
introduced, giving rise to the so-called -MUSIC algorithms.
The performance analysis of -MUSIC algorithms with ,
shows off new important results for direction-finding applica-
tions, opening new perspectives in array processing. Indeed,
from the HO VA concept presented recently in [9], it has been
verified in the paper that the way the th-order data statistics
are arranged in the exploited th-order statistical matrix, con-
trols the maximal number of sources that can be processed by
the -MUSIC method, showing off the existence of an optimal
arrangement of these statistics, which has been described in the
paper. Besides, for a given array of identical sensors, it has been
shown from [9] that the maximal number of sources that can be
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processed by the -MUSIC algorithm for the arrangement in-
dexed by is an increasing function of and corresponds to

, where is the number of different virtual sensors
of the virtual array associated with the couple . This max-
imal number has been computed in the paper for
for a general array with no particular symmetries and whatever
the value of for a ULA. Another important result of the paper
is that, while keeping, for , its asymptotic robustness to
a strong background Gaussian noise whose spatial coherence
is unknown, both the resolution of -MUSIC method, imple-
mented from a finite number of snapshots, and its asymptotic ro-
bustness to modeling errors increase with . This result jointly
with the HO VA concept [9] allow to explain why, despite of
their higher variance, -MUSIC methods with may
offer better performances than 2-MUSIC or 4-MUSIC methods
when some resolution is required, i.e., in the presence of sev-
eral sources, when the latter are poorly angularly separated or
in the presence of modeling errors inherent in operational con-
texts. A consequence of this latter result is that, for given per-
formances, -MUSIC method for may allow to slacken
some constraints about antennas’ calibration or receivers’chains
equalization.
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