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ABSTRACT

Most of the current Second Order (SO) and Higher Order (HO)
blind source separation (BSS) methods aim at blindly separating
statistically independent sources, assumed zero-mean, stationary
and ergodic. However in practical situations, such as in
radiocommunications contexts, the sources are non stationary
and very often cyclostationary. In a previous paper [5] the
cumulant-based BSS problem for cyclostationary sources has
been analysed assuming zero-mean sources (linear
modulations). The purpose of this paper is to analyse the
behavior and to propose adaptations of the current SO BSS
methods for cyclostationary sources, assumed cyclo-ergodic,
which are not zero-mean but first order and SO cyclostationary,
such as some CPFSK sources (non linear modulations).

1. INTRODUCTION

For more than a decade, SO [1] and HO [2] [4] blind
methods have been developed to separate several
statistically independent sources, assumed zero-mean,
stationary and ergodic. However, in many applications
such as in radiocommunications contexts, the sources are
non stationary and very often cyclostationary (digital
modulations). It then becomes important to analyse the
behavior of the current SO and HO BSS methods in
cyclostationary contexts.

In a previous paper [5], the behavior of the current SO
and Fourth-order (FO) cumulant-based BSS methods has
been analysed for cyclostationary sources assumed zero-
mean sources. It has been shown in particular that the
current SO blind methods are not affected by the
cyclostationarity of the sources whereas the current FO
blind methods may be strongly affected by this property.

Nevertheless, some cyclostationary sources used in
practice are not zero-mean but are first order
cyclostationary, which is in particular the case for some
non linearly modulated digital sources such as some
Continuous Phase Frequency Shift Keying (CPFSK)
sources, belonging to the family of Continuous Phase
Modulations (CPM) sources [7].

For this reason, our goal in this paper is to analyse the
behavior and to propose adaptations of the current SO
BSS methods in the presence of statistically independent
sources which are both first order and SO cyclostationary.

2. PROBLEM FORMULATION

A noisy mixture of P narrow-band (NB) statistically
independent sources is assumed to be received by an array
of N sensors. The vector, x(t), of the complex envelopes of
the signals at the output of the sensors is thus given by

        x(t) = ∑
=

P

p 1

mpc(t) ap + b(t) =∆ A mc(t) + b(t) (1)

where mpc(t) = mp(t)e
j(2π ∆fp t + Φp) is the p-th component of

the vector mc(t), b(t) is the noise vector, assumed zero-
mean, stationary, spatially white and temporally white in
the reception band, mp(t), ∆fp, φp and ap correspond to the
complex envelope, the carrier residu, the phase and the
steering vector of the source p respectively, A is the (NxP)
matrix whose columns are the vectors ap.

The classical SO blind source separation problem
consists to find, from the SO statistics of the observations,
the (NxP) Linear and Time Invariant source separator W,
whose (Px1) output vector y(t) =∆ WH x(t) corresponds, to
within a diagonal matrix Λ and a permutation matrix Π, to
the best estimate, m̂c(t), of the vector mc(t).

3. SO BLIND SOURCE SEPARATION FOR ZERO
MEAN STATIONARY SOURCES

3.1. SO Statistics of the data

Under the assumption of stationary sources, the SO
statistics of the observations are characterized by the
correlation matrices Rx(τ), given by

Rx(τ) =∆ E[x(t) x(t−τ)H] = A Rmc(τ) AH + σ² δ(τ) I (2)

where δ(τ) is the Kronecker function, I denotes the (NxN)
identity matrix, σ² is the input noise power per sensor,
Rmc(τ) =∆ E[mc(t) mc(t−τ)H] is the correlation matrix of the
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vector mc(t), diagonal for zero-mean statistically
independent sources.

3.2. Philosophy of the SOBI method

Under the previous assumptions, assuming the sources
have different spectral contents, the current SOBI method
[1] aims at separating the sources from the SO blind
identification of the A matrix. This requires the
prewhitening of the data which orthonormalizes the
sources steering vectors so as to search for the latter
through a unitary (PxP) matrix U simpler to handle. If we
note z(t) the prewhitened observation vector, the matrix U
is chosen so as to jointly diagonalize several correlation
matrices, Rz(τ), of z(t), for several non zero values τκ, of τ
where Rz(τ) is given by

       Rz(τ) =∆ E[z(t) z(t−τ)H]  = A’ Rmc’(τ) A’H   (τ ≠ 0)    (3)

where A’ is the unitary matrix of the prewhitened source
steering vectors and Rmc’(τ) is the correlation matrix of
mc’(t), the normalized vector mc(t) such that each
component has a unit power. Under some conditions [1], it
is easy to verify that the unitary matrix A’ is, to within a
permutation and an unitary diagonal matrix, the only one
which jointly diagonalizes the set of K matrices Rz(τκ).

3.3. Implementation of the SOBI method

In practical situations, the SO statistics of the data have to
be estimated, by temporal averaging operations, using the
SO ergodicity property of the data. Under these
assumptions, noting Te the sample period and x(l) the l-th
sample of the observation vector x(t), the empirical
estimator R̂x(qTe)(L) of the matrix Rx(τ) for τ = qTe, from
L independent data snapshots, is defined by

                R̂x(qTe)(L)  =∆ ∑
=

L

l
L

1

1
x(l) x(l − q)H        (4)

It is well known that for stationary and ergodic
observations, this empirical estimator generates, as L
becomes infinite, an unbiased and consistent estimate of
the true statistic Rx(qTe).

4. SO BSS FOR FIRST AND SECOND ORDER
CYCLOSTATIONARY SOURCES

4.1. First and SO Statistics of the data

We now assume that the sources are both first and second
order cyclostationary, which means that their first and
second order statistics are (quasi)-periodic functions of the
time.

4.1.1. First order statistics

The first order statistic of x(t), given by (1), is defined by

             ex(t) =
∆ E[x(t)] = A E[mc(t)] =∆ A emc(t) (5)

and the first order cyclostationarity property of the sources
implies that ex(t) has a Fourier serial expansion given by

ex(t) = ∑ ∑∑
= ∈∈

=
P

p
p

t
pc

t
x

pp

pp eee
1

2jj2 ae           (6)

where ex
γ = < ex(t) e

-j2πγ t >c is called the cyclic mean of x(t)
for the cyclic frequency γ, <.>c is the continuous-time
temporal mean operation, Γp defines the set of cyclic
frequencies γp of epc(t) = E[mpc(t)], Γ = U1≤p≤P{Γp} is the
set of the cyclic frequencies γ of ex(t) and emc(t). Note that
we can link the cyclic mean epc

γp of mpc(t) and the cyclic
mean ep

γp of mp(t) by epc
γp  = e p

γp-∆fpejφp.

4.1.2. Second order statistics

The first correlation matrix of x(t) becomes now Time
Dependent (TD) and is given by

Rx(t,τ) =∆ E[x(t) x(t−τ)H] = A Rmc(t,τ) AH+σ² δ(τ) I    (7)

Introducing the zero-mean vector ∆mc(t) = mc(t) − emc(t),
the correlation matrix of mc(t), Rmc(t,τ), can be written as
Rmc(t,τ) = R∆mc(t,τ) + Emc(t,τ) where the matrices R∆mc(t,τ)
and Emc(t,τ) are defined by R∆mc(t,τ) =∆ E[∆mc(t)∆mc(t-τ)H]
and Emc(t,τ) = emc(t) emc(t−τ)H respectively. Moreover, the
SO cyclostationary property of the sources implies that the
matrices Rmc(t,τ) and R∆mc(t,τ) and thus, the matrices
Rx(t,τ) have Fourier serial expansions introducing the SO
cyclic frequencies of mc(t) and x(t). In particular, the
cyclic correlation matrix of x(t) for the zero cyclic
frequency corresponds to the temporal mean, Rx(τ), of
Rx(t,τ), which has the same form as (2) and is given by

Rx(τ) =∆ <Rx(t,τ)>c =  A Rmc(τ) AH + σ² δ(τ) I         (8)

where Rmc(τ) =∆ <Rmc(t,τ)>c = R∆mc(τ) + Emc(τ).

4.2. Behavior analysis of the SO statistics empirical
estimator

For cyclostationary sources, SO BSS methods such as the
SOBI method has to exploit the information contained in
several matrices Rx(τ) empirically estimated from (4). For
band-limited, cyclo-ergodic and sufficiently oversampled
observations, the empirical estimator, R̂x(qTe)(L), of
Rx(qTe) is asymptotically unbiased and consistent.

However, while for zero-mean independent sources,
the matrix Rmc(τ) is diagonal, it is not necessary the case
for first order cyclostationary independent sources for
which only the matrix R∆mc(τ) is diagonal while Emc(τ) =
<emc(t)emc(t−τ)H>c may be not diagonal. As a consequence,
while the current SO BSS methods are not affected by the
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cyclostationarity of zero-mean sources, they may be
affected for first order cyclostationary ones for which, an
apparent SO correlation of the sources may appear in the
Rx(τ) matrix.

4.3. Structure analysis of the Emc(τ) matrix

According to (6), the [i,j] element, Emc(τ)[i,j] =
<eic(t)ejc(t−τ)*>c, of the Emc(τ) matrix is given by

 Emc(τ)[i,j] =
{ }
∑

ΓΓ∈

τ

jiij

ijijij eee jcic
I

2j*
(9)

where the γij’s are the common first order cyclic
frequencies of the processes mic(t) and mjc(t). This
expression shows that Emc(τ)[i,j]  is generally not zero, i.e.
that the two sources i and j become apparently SO
correlated in the matrice Rx(τ), if eic(t) and ejc(t) share at
least one cyclic frequency.

4.4. Example of CPFSK sources

4.4.1. CPFSK : a particular case of CPM sources

The good spectral efficiency and the constant amplitude of
the complex envelope of the CPM [7] are well
appreciated, especially in radiocommunications contexts.
The CPFSK source is a particular case of the mono-indice
full response CPM source which  can be written as

 mp(t)=
( )

( )pp

aTnTtaf

p nTtRecte

n

k

p
kpp

p
ndp

−








∑+−
−

−∞=

1
j2

21 (10)

where Tp, hp, an
p, Rectp(t), fdp =∆ hp/2Tp, π p

1/2 are the symbol
duration, the modulation indice, the transmitted Mp-ary
symbols assumed i.i.d. and taking their values in the
alphabet  ± 1, ± 3,…, ± (Mp−1), the rectangular pulse of
amplitude 1 and of duration Tp, the peak frequency
deviation and the amplitude of the source p respectively.
Note that Mp is generally a power of two.

4.4.2. Structure analysis of the Emc(τ) matrix

It is shown in [6] that for a Mp-CPFSK source p having an
integer modulation indice, the cyclic mean appearing in
(9) take the form

( ) pj
eMe pppc

p ±=  (11)

where the set of the first order cyclic frequencies of the
Mp-CPFSK source p is defined by Γp={γp=∆fp ±
(2qp+1)fdp, 0≤qp≤(Mp−2)/2}. From this result, it is possible
to show [6] that for a Mi-CPFSK source i and a Mj-
CPFSK source j, a necessary and sufficient condition to
obtain Emc(τ)[i,j] ≠ 0 is that the conditions a) and b) are
verified :
a) The modulation indices hi and hj are integer

b) ∃ (qi,qj) with 0≤ qi ≤ (Mi−2)/2 and 0≤ qj ≤ (Mj−2)/2
such that ∆fi± (2qi+1)fdi = ∆fj±(2qj+1)fdj

4.5. Behavior of the SOBI method

While, for apparently SO uncorrelated sources, which is in
particular the case for zero-mean sources, the whitened
mixed matrix A’ is an unitary matrix, it is no longer the
case for apparently SO correlated sources, for which the
vectors ap’ are neither normalized nor orthogonal.

Proof1 : To show the previous result let us firstly assume
that the matrix A’ is orthogonal. Under this assumption,
as the matrix Rs’(0) =∆ A’Rmc’(0)A’H corresponds to the
identity matrix, the matrix A’HRs’(0)A’=A’HA’ is diagonal
and equal to A’HA’Rmc’(0)A’HA’, implying that the matrix
Rmc’(0) is diagonal, which is not the case for apparently
SO correlated sources.
Proof2 : Let us now assume that the columns of A’ are
normalized. In this case, as A’HRs’(0)A’=A’HA’=
A’HA’Rmc’(0)A’HA’, we obtain that Rmc’(0)A’HA’=I, which
is not possible, as shown in [6], under the previous
assumptions  if the matrix Rmc’(0) is not diagonal.

A consequence of this result is that, contrary to the zero-
mean sources case, the matrix A’ does not jointly
diagonalizes the set of K matrices Rz(τk) defined by (8),
with the indice z instead of x. In other words, the blindly
identified source steering vectors are only a linear
combination of the source steering vectors, which shows
that the SOBI method as well as the SO BSS methods are
affected by the presence of apparently SO correlated
sources.

4.6. Adaptation : an exhaustive estimator

Since the correlation matrices Rmc(τ) may be non diagonal
in the presence of first order cyclostationary sources, we
have to exploit the information contained in the covariance
matrices R∆mc(τ) which are always diagonal for statistically
independent sources, zero-mean or not. In other words, we
have to implement the SO BSS methods from the
covariance matrix R∆x(τ) defined by

             R∆x(τ) =∆ < R∆x(t,τ)>c  =  Rx(τ) – Ex(τ) (12)

where Rx(τ) is defined by (8) and Ex(τ) given by

Ex(τ) =∆  <ex(t) ex(t−τ)H>c = ∑
∈

τj2H
exx ee (13)

where Γ is the set of the first order cyclic frequencies of
x(t). So, for first order and SO cyclostationary and band-
limited vectors x(t) having a SO cyclo-ergodicity property
and for sufficiently oversampled data, after a preliminary
step of first order cyclic frequencies estimation, we define
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an asymptotic unbiased and consistent estimator
R̂∆x(qTe)(L) of the covariance matrix R∆mc(τ) for τ =qTe by

( )( )LqTR ex
ˆ =∆ ( )( ) ( ) ( ) ( )∑

=
−

K

k

kqTk
x

k
xex

eeLqTR
1

j2H
ˆˆˆ ee (14)

where R̂x(qTe)(L) is defined by (4) and

              ˆ xe =∆ ( )∑
=

−
L

l

lTeel
L 1

j21
x   (15)

Note that the K first order cyclic frequencies γ(k) of x(t)
may be estimated by searching for the ones which make
the criterion V(γ), defined by (16), greater than a
threshold,

       V(γ) = ( ) ( )
1

1 1

2

1

2

1

j2
−

= == =

−






∑∑∑ ∑
N

n

L

l
n

N

n

L

l

lT
n lxLelx e (16)

5. SIMULATIONS

To illustrate the previous results, we assume that two
statistically independent NB and orthogonal (AHA = N I)
2-CPFSK sources are received by an array of N=5 sensors.
These two sources have the same input SNR (Signal Noise
Ratio) of 10 dB and are synchronized. Their symbol
durations and their modulation indices are such that
h1/T1=h2/T2=(4Te)

–1 for h1=2 and h2=4. Moreover, we
apply the SOBI method for only one Rz(τ1) correlation
matrix where τ1=4Te. Finally, the SINRMk (Maximal
Signal to Interference plus Noise Ratio of the source k,
defined in [3], at the output of the SOBI separator for
k=1,2 are averaged over 200 realizations.

Under the previous assumptions, the figure 1 shows the
variations of the SINRM1 of the first source at the output
of the SOBI separator, implemented from both the SO
statistics estimators (4) and (14-15), as a function of the
number of snapshots L. Taking the carrier frequencies of
the two sources such that ∆f1=∆f2=h1/2T1, the two sources
share the same first order cyclic frequencies γ(1)=0 and
γ(2)=h1/T1 and are apparently SO correlated. As planned,
the figure 1 shows the poor separation of the sources when
the SOBI method uses the empirical SO estimator (4) : the
SINR1 converges toward 2.467dB. On the contrary, the
exhaustive SO estimator (14-15) using the cyclic
frequencies γ(1) and γ(2) allows the separation of the two
2-CPFSK sources.

6. CONCLUSION

In this paper, we showed that the current SO BSS
methods, such as the SOBI method, may be affected by the
presence of statistically independent NB sources which are
first order cyclostationary. It is in particular the case for
CPFSK sources having an integer modulation indice and
sharing some first order cyclic frequencies. This problem

is directly related to the fact that the current SO BSS
method aim at exploiting the information contained in the
temporal mean of some correlation matrices instead of
some covariance matrices.

To solve this problem, we must exploit the information
contained in the temporal mean of some covariance
matrices of the observations and we introduced an
unbiased and consistent estimator of these matrices for
first and SO cyclostationary observations, assuming the
first order cyclic frequencies have been estimated
previously.  The extensions of these results to HO BSS
methods will be the subject of an other paper.
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Fig.1 -  SINRM1 as a function of L, ∆f1=∆f2=h1/2T1
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