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On the Virtual Array Concept for
Higher Order Array Processing
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Abstract—For about two decades, many fourth order (FO) array
processing methods have been developed for both direction finding
and blind identification of non-Gaussian signals. One of the main
interests in using FO cumulants only instead of second-order (SO)
ones in array processing applications relies on the increase of both
the effective aperture and the number of sensors of the consid-
ered array, which eventually introduces the FO Vitual Array con-
cept presented elsewhere and allows, in particular, a better reso-
lution and the processing of more sources than sensors. To still in-
crease the resolution and the number of sources to be processed
from a given array of sensors, new families of blind identification,
source separation, and direction finding methods, at an order =
2 ( 2) only, have been developed recently. In this context, the
purpose of this paper is to provide some important insights into the
mechanisms and, more particularly, to both the resolution and the
maximal processing capacity, of numerous 2 th order array pro-
cessing methods, whose previous methods are part of, by extending
the Virtual Array concept to an arbitrary even order for several ar-
rangements of the data statistics and for arrays with space, angular
and/or polarization diversity.

Index Terms—Blind source identification, higher order, HO di-
rection finding, identifiability, space, angular, and polarization di-
versities, 2 -MUSIC, virtual array.

I. INTRODUCTION

FOR about two decades, many fourth order (FO) array pro-
cessing methods have been developed for both direction

finding [4], [6], [9], [21], [23] and blind identification [1], [5],
[10], [12], [14], [17] of non-Gaussian signals. One of the main
interests in using FO cumulants only instead of second-order
(SO) ones in array processing applications relies on the increase
of both the effective aperture and the number of sensors of the
considered array, which eventually introduces the FO Virtual
Array (VA) concept presented in [7], [15], and [16], allowing, in
particular, both the processing of more sources than sensors and
an increase in the resolution power of array processing methods.

In order to still increase both the resolution power of
array processing methods and the number of sources to be
processed from a given array of sensors, new families of
blind identification, source separation, and direction finding
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methods, exploiting the data statistics at an arbitrary even order
only, have been developed recently in [3]

and [8], respectively. More precisely, [8] mainly extends the
well-known high resolution direction finding method called
MUSIC [24] to an arbitrary even order , giving rise to the
so-called -MUSIC methods, whose interests, for ,
are also shown in [8]. In particular, for operational contexts
characterized by a high source density, such as airborne surveil-
lance over urban areas, the use of Higher Order (HO) MUSIC
methods for direction finding allows us to reduce or even to
minimize the number of sensors of the array and, thus, the
number of reception chains, which finally drastically reduces
the overall cost. Besides, it is shown in [8] that, despite of their
higher variance and contrary to some generally accepted ideas,

-MUSIC methods with may offer better performances
than 2-MUSIC or 4-MUSIC methods when some resolution is
required, i.e., in the presence of several sources, when the latter
are poorly angularly separated or in the presence of modeling
errors inherent in operational contexts. In the same spirit, to
process both over and underdetermined mixtures of statistically
independent non-Gaussian sources, [3] mainly extends the
recently proposed FO blind source identification method called
Independent Component Analysis using Redundancies (ICAR)
[1] in the quadricovariance matrix to an arbitrary even-order

, giving rise to the so-called -Blind Identification of
Overcomplete MixturEs of sources (BIOME) methods, whose
interests for are shown in [3]. Note that the -BIOME
method gives rise, for , to the sixth order method called
Blind Identification of mixtures using Redundancies in the
daTa Hexacovariance matrix (BIRTH) presented recently in
[2]. In particular, it is shown in [2] and [3] that -BIOME
methods, for , outperform all the existing Blind Source
Identification (BSI) methods that are actually available, in
terms of processing power of underdetermined mixtures of
arbitrary statistically independent non-Gaussian sources.

Contrary to papers [3] and [8], the present paper does not
focus on particular HO array processing methods for particular
applications but rather aims at providing some important in-
sights into the mechanisms of numerous HO methods and, thus,
some explanations about their interests, through the extension of
the VA concept introduced in [7], [15], and [16] for the FO array
processing problems, to an arbitrary even-order
and for several arrangements of the th order data statistics for
arrays with space, angular, and/or polarization diversity. This
HO VA concept allows us, in particular, to show off both the
increasing resolution and the increasing processing capacity of

th order array processing methods as increases. It allows
us to solve not only the identifiability problem of HO methods
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presented in [3] and [8] in terms of maximal number of sources
that can be processed by these methods from an array of sen-
sors but, in addition, that of all the array processing methods
exploiting the algebraic structure of the th order data
statistics matrix only for particular arrangements of the latter.
As a consequence of this result, the HO VA concept shows off
the impact of the th order data statistics arrangement on the

th order array processing method performances and, thus, the
existence of an optimal arrangement of these statistics. This re-
sult is completely unknown by most of the researchers. Finally,
one may think that the HO VA concept will spawn much prac-
tical research in array processing and will also be considered
as a powerful tool for performance evaluation of HO array pro-
cessing methods.

After an introduction of some notations, hypotheses, and data
statistics in Section II, the VA concept is extended to even HO
statistics in Section III, where the questions of both the op-
timal arrangement of the latter and the resolution of the VA
is addressed. Some properties of the HO VA for arrays with
space, angular, and/or polarization diversity are then presented
in Section IV, where explicit upper bounds, that are reached for
most array geometries, on the maximal number of independent
non-Gaussian sources that can be processed by a th order
method exploiting particular arrangements of the th order data
statistics, are computed for . Note that the restriction to
values of lower than or equal to 8 is not very restrictive since
it corresponds to order of statistics that have the highest prob-
ability to be used for future applications. The results of Sec-
tions III and IV are then illustrated in Section V through the
presentation of HO VA examples for both the Uniform Linear
Array (ULA) and the Uniform Circular Arrays (UCA). Some
practical situations for which the HO VA concept leads to better
performance than SO or FO ones are pointed out and illustrated
in Section VI through a direction finding application. Finally,
Section VII concludes this paper.

II. HYPOTHESES, NOTATIONS, AND STATISTICS OF THE DATA

A. Hypotheses and Notations

We consider an array of narrowband (NB) sensors, and we
call the vector of complex amplitudes of the signals at the
output of these sensors. Each sensor is assumed to receive the
contribution of zero-mean stationary and stastistically inde-
pendent NB sources corrupted by a noise. Under these assump-
tions, the observation vector can approximately be written as
follows:

(1)

Fig. 1. Incoming signal in three dimensions.

where is the noise vector that is assumed zero-mean,
is the vector whose components are the complex ampli-
tudes of the sources, and are the azimuth and the elevation
angles of source (Fig. 1), and is the matrix of the
source steering vectors , which contains, in particular,
the information about the direction of arrival of the sources. In
particular, in the absence of coupling between sensors, compo-
nent of vector , which is denoted as , can be
written, in the general case of an array with space, angular, and
polarization diversity, as (2), shown at the bottom of the page,
[11] where is the wavelength, are the coordinates
of sensor of the array, and is a complex number
corresponding to the response of sensor to a unit electric field
coming from the direction and having the state of polar-
ization (characterized by two angles in the wave plane) [11].
Let us recall that an array of sensors has space diversity if the
sensors do not all have the same phase center. The array has an-
gular and/or polarization diversity if the sensors do not have all
the same radiating pattern and/or the same polarization, respec-
tively.

B. Statistics of the Data

1) Presentation: The th order array processing
methods currently available exploit the information contained
in the th order circular covariance matrix,

, whose entries are the th order circular cumulants
of the data, Cum

, where corresponds to the
complex conjugation. However, the latter entries can be ar-
ranged in the matrix in different ways, and it is shown in
the next section that the way these entries are arranged in the

matrix determines in particular the maximal processing
power of the th order methods exploiting the algebraic
structure of , such as the -MUSIC [8] or the -BIOME
[3] methods. This result is new and seems to be completely
unknown by most of the researchers.

In order to prove this important result in the next section,
let us introduce an arbitrary integer such that ,

(2)
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and let us arrange the -uplet
of indices into two -uplets indexed
by and defined by and

, respectively. As the indices
vary from 1 to , the two latter -uplets take

values. Numbering, in a natural way, the values of each
of two latter -uplets by the integers and , respectively,
such that , , we obtain

(3a)

(3b)

Using the permutation invariance property of the cumulants, we
deduce that Cum
Cum

and assuming that the latter
quantity is the element of the matrix, thus noted

, it is easy to verify, from the Kronecker product defini-
tion, the hypotheses of Section II-A and under a Gaussian noise
assumption that the matrix can be written
as

(4)

where
Cum ,

with , is the th order circular
autocumulant of , corresponds to the conjugate
transposition, is the mean power of the noise per sensor,
is the spatial coherence matrix of the noise such that
Tr , Tr[.] means Trace, is the Kronecker symbol,

is the Kronecker product, and is the vector

defined by with a number of
Kronecker product equal to .

In particular, for and , the
matrix corresponds to the well-known data covariance matrix
(since the observations are zero-mean) defined by

(5)

For and , the matrix corresponds
to the classical expression of the data quadricovariance matrix

used in [7] and [15] and in most of the papers dealing with FO
array processing problems and is defined by

(6)

whereas for and , the matrix
corresponds to an alternative expression of the data quadrico-
variance matrix that is not often used and is defined by

(7)

2) Estimation: In situations of practical interest, the th
order statistics of the data Cum

are not known a priori and have to be estimated

from samples of data , , where
is the sample period.

For zero-mean stationary observations, using the ergodicity
property, an empirical estimator of Cum

that is asymptotically unbiased and
consistent may be built from the well-known Leonov–Shiryaev
formula [22], giving the expression of a th order cumulant
of as a function of its th order moments ,
by replacing in the latter all the moments by their empirical
estimate. More precisely, the Leonov–Shiryaev formula is
given by

Cum

(8)

where describes all the partitions in sets
of , with the conven-
tion , and and an empirical estimate
of (8) is obtained by replacing in (8) in all the moments

by their empirical
estimate, which is given by

(9)

Explicit expressions of (8) for with are given
in Appendix A.

However, in radiocommunications contexts, most of the
sources are no longer stationary but become cyclostationary
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(digital modulations). For zero-mean cyclostationary obser-
vations, the statistical matrix defined by (4) becomes time
dependent, noted , and the theory developed in the
paper can be extended without any difficulties by considering
that is, in this case, the temporal mean, ,
over an infinite interval duration, of the instantaneous statistics,

. In these conditions, using a cyclo-ergodicity prop-
erty, the matrix has to be estimated from the sampled
data by a non empirical estimator such as that presented in [18]
for . Note finally that this extension can also be applied
to non zero-mean cyclostationary sources, such as some non
linearly digitally modulated sources [20], provided that a non
empirical statistic estimator, such as that presented in [20] for

and in [19] for , is used.

C. Related th order Array Processing Problems

A first family of th order array processing methods that
are concerned with the theory developed in the next sections
corresponds to the family of th order Blind Identification
methods, which aim at blindly identifying the steering vectors
of the sources from the exploitation of
the algebraic structure of an estimate of the matrix
for a particular choice of . Such methods are described in [2]
and [3]. A second family of methods concerned with the results
of the paper corresponds to the th order subspace-based
direction finding methods such as the -MUSIC method,
presented in [8], which aims at estimating the angles of arrival
of the sources from the exploitation of the
algebraic structure of an estimate of the matrix for a
particular choice of .

III. HIGHER ORDER VIRTUAL ARRAY CONCEPT

A. General Presentation

The VA concept has been introduced in [7], [15], and [16]
for the classical FO array processing problem exploiting (6)
only. In this section, we extend this concept to an arbitrary
even order , for an arbitrary arrangement

, of the data th order circular cumulants
Cum
in the matrix and for a general array with space, angular,
and polarization diversities. This HO VA concept is presented
in this section in the case of statistically independent
non-Gaussian sources.

Assuming no noise, we note that the matrices and
, which are defined by (4) and (5), respectively, have the

same algebraic structure, where the auto-cumulant and
the vector play, for ,
the rule played for by the power and the steering
vector , respectively. Thus, for the th order array
processing methods exploiting (4), the vector

can be considered as the
virtual steering vector of the source for the true array of
sensors with coordinates and amplitude pattern

, . The components of the vector
correspond to the quanti-

ties
, where

is the component of vector . Using
(2) in the latter components and numbering, in a natural way,
the values of the -uplet by
associating with the latter the integer defined by

(10)

we find that the component of the vector
, noted ,

takes the form (11), shown at the bottom of the page. Com-
paring (11) to (2), we deduce that the vector

can also be considered as the true steering
vector of the source for the VA of Virtual Sensors (VSs)
with coordinates and com-
plex amplitude patterns , for

, which are given by

(12)

(13)

(11)
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which introduces in a very simple, direct, and short way the
VA concept for the th order array processing problem for the
arrangement and whatever the kind of diversity. Note
that (13) shows that the complex amplitude response of a VS
for given direction of arrival and polarization corresponds to a
product of complex amplitude responses of true sensors and

conjugate ones for the considered direction of arrival
and polarization.

Thus, as a summary, we can consider that the th order
array processing problem of statistically independent NB
non-Gaussian sources from a given array of sensors with
coordinates and complex amplitude patterns

, is, for the arrangement ,
similar to an SO array processing problem for which these
statistically independent NB sources impinge, with the virtual
powers , on a VA of VS having
the coordinates and the com-
plex amplitude patterns , for

, which are defined by (12) and (13) respectively.
Thus, HO array processing may be used to replace sensors
and hardware and, thus, to decrease the overall cost of a given
system.

From this interpretation based on the HO VA concept, we
naturally deduce that the 3-dB beamwidth of this VA controls
the resolution power of th order array processing method for
a finite observation duration and the considered arrangement,
whereas the number of different sensors of this VA controls
the maximal number of sources that can be processed by such
methods for this arrangement. More precisely, as some of the

VS may coïncide, we note as the number of different
VSs of the VA associated with the th order array processing
problem for the arrangement . Then, the maximum
number of independent sources that can be processed by a th
order BSI method exploiting the algebraic structure of
is , whereas the th order direction finding methods ex-
ploiting the algebraic structure of , such as the family
of -MUSIC methods [8], are able to process up to
non-Gaussian sources.

Another important result shown by (12) and (13) is that, for
a given array of sensors, the associated th order
VA depends on the parameter and thus on the arrangement of
the th order circular cumulants of the data in the ma-
trix. This new result not only shows off the importance of the
chosen arrangement of the considered data th order cumu-
lants on the processing capacity of the methods exploiting the
algebraic structure of but also raises the problem of the
optimal arrangement of these cumulants for a given even order.
This question is addressed in the next section.

Finally, note that (4) holds only for sources that are NB
for the associated VA, i.e., for sources such that the vector

does not depend on the fre-
quency parameter within the reception bandwidth, i.e., for
source in the reception bandwidth such that

(14)

where is the propagation velocity, is the aperture of the
VA for the considered parameters and , is wave vector for
the source , and is the vector whose norm is
and whose direction is the line formed by the two most spaced
VSs and . As increases with , the accepted re-
ception bandwidth ensuring the NB assumption for the HO VA
decreases with . In particular, for HF or GSM links, the nar-
rowband assumption for the HO VA is generally verified up to

or 10, i.e., up to a statistical order equal to 16,
18, or 20 from a classically used array of sensors for these ap-
plications [13].

B. Optimal Arrangement

For a given value of and a given array of sensors,
we define in this paper the optimal arrangement , which
is denoted , as the one that maximizes the number
of different VS of the associated VA, since the processing
power of a th order method exploiting the algebraic structure
of is directly related to the number of different VS of
the associated VA.

To get more insight into , let us analyze
(12) and (13). These expressions show that the -up-
lets and

, where and
are arbitrary permutations of

and , respectively, give rise
to the same VS (same coordinates and same radiation pat-
tern) of the VA associated with , which are defined
by (12) and (13). The number of permutations of a given set
of indices depends on the number of indices with different
values in the set. For this reason, let us classify all the -uplets

in families
such that corresponds to the set of -uplets

with different elements . For example, we have (15) and
(16), shown at the bottom of the page. For the general case of
an arbitrary array of sensors, both the number of -uplets
of and the number of different VSs of the VA associated
with for an arbitrary arrangement are
proportional to . Indeed, among the different
elements of , once the value of one of them is chosen
among possibilities, there are still possibilities for
the second one and then possibilities for the third one,
and so on, and, finally, possibilities for the th one,
which finally corresponds to possible solutions
for the different elements. Then, for each of the latter solutions,

such that for and (15)

such that for and (16)
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the value of elements have to be chosen among the
considered different elements, finally giving rise to a number
of -uplets of proportional to . This quantity
is equal to zero for but becomes a polynomial function
of degree with respect to variable for . Thus, as
becomes large, provided that , the number of different
VS of the VA for a given arrangement , is mainly
dominated by the number of different VSs associated with
for this arrangement . The number of -uplets of is
exactly equal to , whereas the number of different
VSs associated with for the arrangement is, for
the general case of an arbitrary array of sensors with no
particular symmetries, equal to

(17)

In fact, when all the are different, the number of permuta-
tions and
of and are equal to and ,
respectively.

As a summary, in the general case of an arbitrary array of
sensors with no particular symmetries, for a given value of

and for large values of , the optimal arrange-
ment is such that maximizes defined
by (17) and, thus, minimizes the quantity with respect
to . We deduce from this result that the arrange-
ments and give rise to the
same number of VS (in fact, the first arrangement is the con-
jugate of the other, whatever the values of and ). It is then
sufficient to limit the analysis to if is even and to

if is odd. We easily verify that

for if is even (18)

for if is odd (19)

which proves that if is even and
if is odd. In other words, is, in all cases, the integer that
minimizes . It generates steering vectors

for which the number of conjugate vectors is
the least different from the number of nonconjugate vectors. In
particular, for , it corresponds to (6). We verify in Sec-
tion IV for , 3, and 4 that this result, which is shown for
large values of , remains valid, whatever the value of .

C. Virtual Array Resolution

To get more insights into the gain in resolution obtained
with HO VA, let us compute the spatial correlation coefficient
of two sources, with directions and ,
respectively, for the VA associated with statistical order

and arrangement indexed by . This coefficient, which
is noted such that , is
defined by the normalized inner product of the steering
vectors and

and can be
written as

(20)

For an array with space diversity only, this coefficient is propor-
tional to the value, for the direction , of the complex ampli-
tude pattern of the conventional beamforming in the direction

from the considered VA. It is shown in Appendix B that this
coefficient (20) can be written as

(21)
which implys that

(22)

Expression (22) shows that despite the fact that
is a function of and , its modulus does not depend on but
only on and on the normalized amplitude pattern
of the considered array of sensors for the pointing direction

. Moreover, as , we deduce from (22)
that is a decreasing function of , which proves the
increasing resolution of the HO VA as increases. In particular,
if we note dB, the 3-dB beamwidth of the th order VA
associated with a given array of sensors, we find from (22)
that dB can be easily deduced from the normalized amplitude

pattern of the latter and is such that for

dB, i.e., such that , 0.794, and 0.84
for , 3 and 4, respectively. As increases, this generates

dB values corresponding to a decreasing fraction of the 3-dB
beamwidth dB of the considered array of sensors, and we
will verify in Section V that dB dB, dB, and

dB for , 3 and 4, respectively. Finally, (22) proves
that rank-1 ambiguities (or grating lobes [11]) of the true and VA
coincide, regardless of the values of and since the directions

giving rise to are exactly the ones that
give rise to . A consequence of this result is
that a necessary and sufficient condition to obtain VA without
any rank-1 ambiguities is that the considered array of sensors
have no rank-1 ambiguities.

IV. PROPERTIES OF HIGHER ORDER VIRTUAL ARRAYS

A. Case of an Array With Space, Angular, and Polarization
Diversity

For an array with space, angular, and polarization diversities,
the component of vector and the component of

are given by (2) and (11), re-
spectively, which shows that the th order VA asso-
ciated with such an array is also an array with space, angular,
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TABLE I
COORDINATES, COMPLEX RESPONSES AND MULTIPLICITY ORDER OF VS FOR

SEVERAL VALUES OF l, FOR q = 2 AND FOR ARRAYS WITH SPACE,
ANGULAR AND POLARIZATION DIVERSITIES

and polarization diversities, regardless of the arrangement of the
th order circular cumulants of the data in the matrix.
Ideally, it would have been interesting to obtain a general ex-

pression of the number of different VSs of the th order
VA for the arrangement and for arbitrary array geome-
tries. However, it does not seem possible to obtain such a re-
sult easily since the computation of the number of VSs that de-
generate in a same one is very specific of the choice of and
and of the array geometry. For this reason, we limit our subse-
quent analysis, for arbitrary array geometries, to some values of

, which extends the results of [7] up to the eighth
order for arbitrary arrangements of the data cumulants, despite
the tedious character of the computations. Moreover, this anal-
ysis is not so much restrictive since the considered th order
data statistics correspond in fact to the statistics
that have the most probability to be used for future applications.
Note that the general analysis for arbitrary values of and is
possible for ULA and is presented in Section V.

To simplify the analysis, for each sensor , , we
note as its complex response ,

as the triplet of its coordinates, , and we define

and
. Moreover, for a given value of , we define the order of

multiplicity of a given VS of the considered th order VA
by the number of -uplets , giving rise to this
VS. When the order of multiplicity of a given VS is greater
than 1, this VS can be considered to be weighted in amplitude
by a factor corresponding to the order of multiplicity, and the
associated VA then becomes an amplitude tappered array.

The coordinates, the complex responses, and the order of
multiplicity of the VS of HO VA, which are deduced from (12)
and (13), are presented in Tables I– III for , 3 and 4, respec-
tively, and for several values of the parameter . In these tables,
the integers take all the values between 1 and (
for ) but under the constraint that if for
a given line of the tables. A VS is completely characterized by
a line of a table for given values of the .

The results of Tables I–III show that for arrays with sensors
having different responses, the VA associated with the parame-
ters is amplitude tappered for , (3, 3), (3, 2),
(4, 4), (4, 3) and (4, 2), whereas it is not for . In
this latter case, the order of multiplicity of each VS is 1. Then,
the number of different VS of the associated VA may be max-
imum for and equal to . It is, in particular, the case

TABLE II
COORDINATES, COMPLEX RESPONSES AND MULTIPLICITY ORDER OF VS FOR

SEVERAL VALUES OF l, FOR q = 3 AND FOR ARRAYS WITH SPACE,
ANGULAR AND POLARIZATION DIVERSITIES

TABLE III
COORDINATES, COMPLEX RESPONSES AND MULTIPLICITY ORDER OF VS FOR

SEVERAL VALUES OF l, FOR q = 4 AND FOR ARRAYS WITH SPACE,
ANGULAR AND POLARIZATION DIVERSITIES

if the responses of all the VSs are different. However, for arbi-
trary values of and , the maximum number of VSs of the as-
sociated VA, noted , is generally strictly lower than
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TABLE IV
N [2q; l] AS A FUNCTION OF N FOR SEVERAL VALUES OF q AND l AND FOR

ARRAYS WITH SPACE, ANGULAR AND POLARIZATION DIVERSITIES

due to the amplitude tappering of the VA. Table IV shows
precisely, for arrays with different sensors, the expression of

, computed from the results from Tables I–III, as a
function of for and several values of . Note
that has already been obtained in [7]. Note also that

corresponds to in most cases of sensors having
different responses. We verify in Table IV that for a given value
of and the considered values of , whatever the
value of , small or large, is a decreasing function
of , which confirms the optimality of the arrangement
for the integer that minimizes , as discussed in Sec-
tion III-B. Note, in addition, for a given value of , and for
optimal arrangements, the increasing values of as
increases.

In order to quantify the results of Table IV, Table V summa-
rizes the maximal number of different VS of the
associated VA for several values of , , and . As and in-
crease, note the increasing value of the loss in the processing
power associated with the use of a suboptimal arrangement in-
stead of the optimal one. For a given value of , note the in-
creasing value of as increases for optimal arrange-
ments of the cumulants, whereas note the possible decreasing
value of as increases when the arrangement moves
from optimality to suboptimality (for example,

for ).

B. Case of an Array With Angular and Polarization Diversity
Only

For an array with angular and polarization diversities only, all
the sensors of the array have the same phase center
but have different complex responses , .
Such an array is usually referred to as an array with colocalized
sensors having different responses in angle and polarization. For
such an array, (12) shows that for given values of and , the
VSs of the associated VA have all the same coordinates given
by , whereas their complex response is given by (13).
This shows that the th order VA associated with an
array with angular and polarization diversities only is also an

array with angular and polarization diversities only, whatever
the arrangement of the th order circular cumulants of the data
in the matrix.

The complex responses of the colocalized VS of the th
order VA for the arrangements are all presented in Ta-
bles I–III for . In particular, all the upper bounds

presented in Tables I–III for an array with space,
angular, and polarization diversities remain valid for an array
of colocalized sensors with angular and polarization diversities
only. This shows that for sensors having different complex re-
sponses, the geometry of the array does not generally play an
important role in the maximal power capacity of the th order
array processing methods exploiting the algebraic structure of

in terms of number of sources to be processed.

C. Case of an Array With Space Diversity Only

Let us consider in this section the particular case of an array
with space diversity only. In this case, all the sensors of the
array are identical, and the complex amplitude patterns of the
latter , may be chosen to be equal to
one. Under these assumptions, we deduce from (13) that for a
given value of , whatever the
-uplet and whatever the arrangement index .

This shows that the th order VA associated with an
array with space diversity only is also an array with space diver-
sity only, whatever the arrangement of the th order circular
cumulants of the data in the matrix.

For such an array, the th order VA are presented hereafter
for , which extends the results of [7] up to the eighth
order for arbitrary arrangements of the data cumulants. More
precisely, for arrays with space diversity only, the coordinates
and the order of multiplicity of the VSs of the HO VA, deduced
from Tables I–III, are presented in Tables VI–VIII for ,
3, and 4, respectively, and for several values of the parameter .
Again, in these tables, the integers take all the values between
1 and ( for ) but under the constraint
that if for a given line of the tables. A VS is
completely characterized by a line of a table for given values of
the .

The results of Tables VI–VIII show that for arrays with iden-
tical sensors, the VA associated with the parameters is al-
ways amplitude tappered, whatever the values of and , which
implys in particular that . Table IX
shows precisely, for arrays with identical sensors, the expres-
sion of computed from results of Tables VI–VIII as
a function of for and several values of . Note
that has already been obtained in [7]. Note also that

corresponds to in most cases of array geome-
tries with no particular symmetries. We verify in Table IX that
for a given value of and the considered values
of , whatever the value of , small or large, is a
decreasing function of , which confirms the optimality of the
arrangement for the integer that minimizes , as
discussed in Section III-B. Note, also, for a given value of and
for optimal arrangements, the increasing values of
as increases. A comparison of Tables IV and IX shows that
whatever the values of and , can only remain
constant or increase when an array with space diversity only is
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TABLE V
N [2q; l] FOR SEVERAL VALUES OF N , q, AND l AND FOR ARRAYS WITH SPACE, ANGULAR, AND POLARIZATION DIVERSITIES

TABLE VI
COORDINATES AND MULTIPLICITY ORDER OF VSS FOR SEVERAL VALUES OF l

FOR q = 2 AND FOR ARRAYS WITH SPACE DIVERSITY ONLY

TABLE VII
COORDINATES AND MULTIPLICITY ORDER OF VSS FOR SEVERAL VALUES OF l,

FOR q = 3 AND FOR ARRAYS WITH SPACE DIVERSITY ONLY

replaced by an array with space, angular, and polarization diver-
sities.

In order to quantify the results of Table IX, Table X summa-
rizes the maximal number of different VSs of the
associated VA for several values of , , and . Other results can
be found in Table XII for odd and higher values of . Again,
the value of the loss in the processing power associated with the
use of a suboptimal arrangement also increases as and in-
crease. For a given value of , we verify the increasing value

TABLE VIII
COORDINATES AND MULTIPLICITY ORDER OF VSS FOR SEVERAL VALUES OF l,

FOR q = 4, AND FOR ARRAYS WITH SPACE DIVERSITY ONLY

of as increases for optimal arrangements of the
cumulants.

V. VA EXAMPLES

In this section, the th order VA associated with particular
arrays of sensors is described in order to illustrate the results
obtained so far.
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TABLE IX
N [2q; l] AS A FUNCTION OF N FOR SEVERAL VALUES OF q AND l AND FOR

ARRAYS WITH SPACE DIVERSITY ONLY

A. Linear Array of Identical Sensors

For a linear array, it is always possible to choose a coordinate
system in which the sensor has the coordinates ( , 0, 0),

. As a consequence, the VSs of the th order VA
for the arrangement are, from (12), at coordinates

(23)
for and . This shows that the th order
VA is also a linear array whatever the arrangement .

For a ULA, it is always possible to choose a coordinate
system such that , where is the interelement spacing,
and the VA is the linear array composed of the sensors whose
first coordinate is given by

(24)

for and . This shows that the th order
VA is also a ULA with the same interelement spacing, whatever
the arrangement . Moreover, for given values of , , and

, the minimum and maximum values of (24), which are noted
and , respectively, are given by

(25)

(26)

and the number of different VSs of the associated VA is
easily deduced from (25) and (26) and is given by

(27)

This is independent of and means that for given values of and
, the number of VSs is independent of the chosen arrangement

. In other words, in terms of processing power, for a
given value of and due to the symmetries of the array, all the
arrangements are equivalent for a ULA. Besides, we
deduce from (24) that

(28)

(29)

which is enough to understand that for given values of and ,
the th order VA associated with is just a translation
of of the VA associated with . Indeed,
when varies from 1 to , the quantity varies from

to and describes the sensors of the ULA. In the same
time, the quantity varys from to and describes
the initial ULA translated of . We then deduce from
(28) and (29) that the coordinates and are
built in the same manner as two initial ULAs such that the first
one is in translation with respect to the other, which proves that
for a ULA, the th order VA (i.e., both the number of different
VSs and the order of multiplicity of these VSs) is independent
of the arrangement .

Table XI summarizes, for a ULA, the number of different VSs
given by (27) of the associated VA for several values of

and . It is verified in [8] that the -MUSIC algorithm is able
to process up to statistically independent
non-Gaussian sources from an ULA of sensors.

Comparing (27), which is quantified in Table XI, to
, which is computed in Table IX and quantified

in Table X, for and the associated values of , we
deduce that

for (30)

since all the arrays with two sensors are ULA arrays, whereas
for . Finally, to complete these re-

sults, we compute below for the ULA the order of multiplicity
of the associated VS for , and we illustrate

some VA pattern related to a ULA. After tedious algebraic ma-
nipulations, indexing the VSs such that their first coordinate in-
creases with their index, we obtain the following results.

1) Fourth Order VA : For , the order of multi-
plicity of the VS is given by

(31)

This result has already been obtained in [7] for . These
results are illustrated in Fig. 2, which shows the FO VA of a
ULA of five sensors for which , together with the order
of multiplicity of the VSs, with the x and y axes normalized by
the wavelength .
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TABLE X
N [2q; l] FOR SEVERAL VALUES OF N , q AND l AND FOR ARRAYS WITH SPACE DIVERSITY ONLY

TABLE XI
N FOR SEVERAL VALUES OF q AND N FOR A ULA

2) Sixth Order VA : For , the order of multi-
plicity of the VS is given by

(32a)

(32b)

(32c)

(32d)

where if is odd and if
is even. These results are illustrated in Fig. 3, which shows the
sixth order VA of a ULA of five sensors for which ,
together with the order of multiplicity of the VS, with the x and
y axes normalized by the wavelength .

3) Eighth Order VA : For , the order of multi-
plicity of the VS is given by

(33a)

Fig. 2. Fourth order VA of a ULA of five sensors with the order of
multiplicities of the VS.

Fig. 3. Sixth order VA of a ULA of five sensors with the order of multiplicities
of the VS.



CHEVALIER et al.: VIRTUAL ARRAY CONCEPT FOR HIGHER ORDER ARRAY PROCESSING 1265

Fig. 4. Eighth order VA of a ULA of five sensors with the order of
multiplicities of the VS.

(33b)

(33c)

(33d)

These results are illustrated in Fig. 4, which shows the eighth
order VA of a ULA of five sensors for which , together
with the order of multiplicity of the VSs, with the x and y axes
normalized by the wavelength .

4) VA Patterns: To complete these results and to illustrate
the results of Section III-C related to the increasing resolution
of HO VA as increases, Fig. 5 shows the array pattern (the
normalized inner product of associated steering vectors) of an
HO VA associated with a ULA of five sensors equispaced half
a wavelenght apart for , 2, 3, and 4 and for a pointing
direction equal to 0 . Note the decreasing 3 dB beamwidth and
sidelobe level of the array pattern as increases in proportions
given in Section III-C.

B. Circular Array of Identical Sensors

For a UCA of sensors, it is always possible to choose a
coordinate system in which the sensor has the coordinates

, where is the radius of

the array, and where . We now analyze the
associated th order VA for and for all the possible
arrangements .

Fig. 5. VA pattern for q = 1, 2, 3, and 4, ULA with five sensors, d = �=2,
pointing direction: 0 .

1) Fourth order VA :
a) : For and , the coordinates of the as-

sociated VSs are ,
, , where

(34a)

(34b)

It is then easy to show that these VSs lie on
different circles if is odd, or different circles if
is even. Moreover, for odd values of , different VSs lie
uniformly spaced on each circle of the VA. We deduce that the
VA of a UCA of odd identical sensors has

(35)

different VSs, which corresponds with the associated upper-
bound given in Table IX. The order of multiplicity of these sen-
sors is given in Table VI. The previous results are illustrated in
Table XII and Fig. 6. The latter shows the VA of a UCA of five
sensors for which , together with the order of multi-
plicity of the VSs for and . Table XII reports both
the number of different sensors of the VA associated with a
UCA of sensors and the upper-bound computed
in Table IX for several values of and and for odd values of

.
b) : For and , the coordinates of the as-

sociated VSs are ,
, , where

(36a)

(36b)

It is then easy to show that the VSs that are not at coordinates
(0, 0, 0) lie on different circles if is odd or
different circles if is even. Moreover, for odd values of ,
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TABLE XII
N [2q; l] AND N ASSOCIATED WITH A UCA FOR SEVERAL VALUES OF N ,

q, AND l AND FOR ARRAYS WITH SPACE DIVERSITY ONLY

Fig. 6. Fourth order VA of a UCA of five sensors with the order of
multiplicities of the VS for (q; l) = (2;2).

different VSs lie uniformly spaced on each circle of the VA. We
deduce from this result that the VA of a UCA of odd identical
sensors has

(37)

different VSs, which corresponds to the associated upper bound
given in Table IX. This result has already been obtained in [7].
The order of multiplicity of these sensors is given in Table VI.
The previous results are illustrated in Fig. 7 and Table XII. In
Fig. 7, the VA of a UCA of five sensors, for which ,
is shown together with the order of multiplicity of the VSs for

and .

Fig. 7. Fourth order VA of a UCA of five sensors with the order of
multiplicities of the VS for (q; l) = (2;1).

Fig. 8. Sixth order VA of a UCA of five sensors with the order of multiplicities
of the VS for (q; l) = (3; 2).

2) th Order VA : For , the analytical com-
putation of the VA is more difficult. However, the simulations
show that for given values of and , the number of different
VSs of the VA corresponds to the upper bound
when is a prime number. In this case, it is verified in [8]
that the -MUSIC method is able to process up to

statistically independent non-Gaussian sources
from a UCA of sensors. Otherwise, remains smaller than

. This result is illustrated in Table XII and Figs. 8 and
9. Figs. 8 and 9 show the VA of a UCA of five sensors for which
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Fig. 9. Eighth order VA of a UCA of five sensors with the order of
multiplicities of the VS for (q; l) = (4; 2).

together with the order of multiplicity of the VSs for
and , respectively.

VI. ILLUSTRATION OF THE HO VA INTEREST THROUGH A TH

ORDER DIRECTION FINDING APPLICATION

The strong potential of the HO VA concept is illustrated in
this section through a th order direction finding application.

A. -MUSIC Method

Among the existing SO direction finding methods, the
so-called High Resolution (HR) methods, developed from
the beginning of the 1980s, are currently the most powerful
in multisource contexts since they are characterized, in the
absence of modeling errors, by an asymptotic resolution that
becomes infinite, whatever the source signal-to-noise ratio
(SNR). Among these HR methods, subspace-based methods
such as the MUSIC (or 2-MUSIC) method [24] are the most
popular. However, a first drawback of SO subspace-based
methods such as the MUSIC method is that they are not able to
process more than sources from an array of sensors.
A second drawback of these methods is that their performance
may be strongly affected in the presence of modeling errors
or when several poorly angularly separated sources have to be
separated from a limited number of snapshots.

Mainly to overcome these limitations, FO direction finding
methods [4], [6], [9], [21], [23] have been developed these two

last decades, among which the extension of the MUSIC method
to FO [23], called 4-MUSIC, is the most popular. FO direction
finding methods allow in particular both an increase in the res-
olution power and the processing of more sources than sensors.
In particular, it has been shown in [7] and Section IV of this
paper that from an array of sensors, the 4-MUSIC method
may process up to sources when the sensors are iden-
tical and up to sources for different sensors.

In order to still increase both the resolution power of HR di-
rection finding methods and the number of sources to be pro-
cessed from a given array of sensors, the MUSIC method has
been extended recently in [8] to an arbitrary even-order

, giving rise to the so-called -MUSIC methods. For a given
arrangement of the th order data statistics and after
a source number estimation , the -MUSIC method [8] con-
sists of finding the couples minimizing the estimated
pseudo-spectrum defined by (38), shown at the bottom of the
page, where , where is the

identity matrix, and is the matrix of the
orthonormalized eigenvectors of the estimated statistical ma-

trix associated with the strongest eigenvalues. Using
the HO VA concept developed in the previous sections and to
within the background noise and the source’s SNR, the esti-
mated pseudo-spectrum can also be consid-
ered as the estimated pseudo-spectrum of the 2-MUSIC method
implemented from the th order VA associated with the con-
sidered array of sensors for the arrangement .

B. -MUSIC Performances

The performance of -MUSIC methods for
and for arbitrary arrangements are analyzed in detail
in [8] for both overdetermined and underdetermined

mixtures of sources, both with and without modeling
errors. In this context, the purpose of this section is not to present
this performance analysis again but rather to illustrate the poten-
tial of the HO VA concept through the performance evaluation
of -MUSIC methods on a simple example. To do so, we in-
troduce a performance criterion in Section VI-B1 and describe
the example in Section VI-B2. We assume that the sources have
a zero elevation angle .

1) Performance Criterion: For each of the considered
sources and for a given direction finding method, two criterions
are used in the following to quantify the quality of the associ-
ated direction-of-arrival estimation. For a given source, the first
criterion is a probability of aberrant results generated by a given
method for this source, and the second one is an averaged root
mean square error (RMSE), computed from the nonaberrant
results, which are generated by a given method for this source.

More precisely, for given values of and , a given number
of snapshots and a particular realization of the observation
vectors , the estimation of the direction of

(38)
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Fig. 10. RMS error of the source 1 and p(� � �) as a function ofL. (a) 2-MUSIC. (b) 4-MUSIC. (c) 6-MUSIC. P = 2,N = 3, ULA, SNR= 5 dB, � = 90 ,
� = 82; 7 . No modeling errors.

Fig. 11. RMS error of the source 1 and p(� � �) as a function of L. (a) 2-MUSIC. (b) 4-MUSIC. (c) 6-MUSIC. P = 2, N = 3, ULA, SNR = 5 dB,
� = 90 , � = 82;7 . With modeling errors.

arrival of the source from -MUSIC is defined
by

(39)

where the quantities correspond to the
minima of the pseudo-spectrum defined by (38)
for . To each estimate , we associate the
corresponding value of the pseudo-spectrum, which is defined
by . In this context, the estimate is
considered to be aberrant if , where is a threshold to be
defined. In the following, .

Let us now consider realizations of the observation vec-
tors . For a given method, the probability of
abberant results for a given source is defined by the
ratio between the number of realizations for which is aber-
rant, and the number of realizations. From the nonaberrant
realizations for the source , we then define the averaged RMS
error for the source RMSE by the quantity

RMSE (40)

where is the number of nonaberrant realizations for the
source , and is the estimate of for the nonaberrant re-
alization .

2) Performance Illustration: To illustrate the performance
of -MUSIC methods, we assume that two statistically inde-
pendent quadrature phase shift keying (QPSK) sources with a
raise cosine pulse shape are received by a ULA of om-
nidirectional sensors spaced half a wavelenght apart. The two
QPSK sources have the same symbol duration , where

is the sample period, the same roll-off , the same
input SNR is equal to 5 dB, and the direction of arrival is equal
to and , respectively. Note that the normal-
ized autocumulant of the QPSK symbols is equal to 1 at the
FO and 4 at the sixth order.

Under these assumptions, Figs. 10 and 11 show the varia-
tions, as a function of the number of snapshots , of the RMS
error for the source 1 RMSE and the associated probability
of nonabberant results (we obtain similar results
for the source 2) estimated from realizations at the
output of both 2-MUSIC, 4-MUSIC, and 6-MUSIC methods for
optimal arrangements of the considered statistics, without and
with modeling errors, respectively. In the latter case, the steering
vector of the source becomes an unknown function

of , where is a modeling error vector that
is assumed to be zero-mean, Gaussian, and circular with inde-
pendent components such that . Note
that for omnidirectional sensors and small errors, is the sum
of the phase and amplitude error variances per reception chain.
For the simulations, is chosen to be equal to 0.0174, which
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corresponds, for example, to a phase error with a standard devi-
ation of 1 with no amplitude error.

Both in terms of probability of nonaberrant results and es-
timation precision, Figs. 10 and 11 show, for poorly angularly
separated sources, the best behavior of the 6-MUSIC method
with respect to 2-MUSIC and 4-MUSIC as soon as becomes
greater than 400 snapshots without modeling errors and 500
snapshots with modeling errors. For such values of , the reso-
lution gain and the better robustness to modeling errors obtained
with 6-MUSIC with respect to 2-MUSIC and 4-MUSIC, due to
the narrower 3 dB-beamwidth and the greater number of VSs
of the associated sixth order VA, respectively, is higher than the
loss due to a higher variance in the statistics estimates. A similar
analysis can be done for 4-MUSIC with respect to 2-MUSIC as
soon as becomes greater than 2000 without modeling errors
and 1700 snapshots with modeling errors.

Thus, the previous results show that despite their higher
variance and contrary to some generally accepted ideas,

-MUSIC methods with may offer better performances
than 2-MUSIC or 4-MUSIC methods when some resolution is
required, i.e., in the presence of several sources, when the latter
are poorly angularly separated or in the presence of modeling
errors inherent in operational contexts, which definitely shows
off the great interest of HO VA.

VII. CONCLUSION

In this paper, the VA concept, which was initially introduced
in [7], [15], and [16] for the FO array processing problem and
for a particular arrangement of the FO data statistics has been ex-
tended to an arbitrary even-order for several
arrangements of the th order data statistics and for general ar-
rays with space, angular, and polarization diversities. This HO
VA concept allows us to provide some important insights into the
mechanisms of numerous HO methods and, thus, some explana-
tions about their interests and performance. It allows us, in par-
ticular, not only to show off both the increasing resolution and the
increasing processing capacity of the th order array processing
methodsas increasesbutalso tosolve the identifiabilityproblem
ofall theHOmethodsexploitingthealgebraicstructureofthe th

order data statistics matrix only for particular arrange-
ments of the latter. The maximal number of sources that can be
processed by such methods reached for most of sensors responses
and array geometries has been computed for and
for several arrangements of the data statistics in the matrix.
For a given number of sensors, the array geometry together with
the number of sensors with different complex responses in the
array have been shown to be crucial parameters in the processing
capacity of these HO methods. Another important result of the
paper, which is completely unknown by most of the researchers,
is that the way the th order data statistics are arranged gener-
ally controls the geometry and the number of VSs of the VA and,
thus, the number of sources that can be processed by a th order
method exploiting thealgebraic structure of . This gives rise
to the problem of the optimal arrangement of the data statistics,
which has also been solved in the paper. In the particular case
of a ULA of identical sensors, it has been shown that all the
considered arrangements of the data statistics are equivalent and

give rise to VA with VSs, whereas when
is a prime number, the UCA of identical sensors seems to

generate VA with VSs, whatever the values
of and . On the other hand, the HO VA concept allows us to
explain why, despite their higher variance, HO array processing
methods may offer better performances than SO or FO ones when
someresolutionisrequired, i.e., in thepresenceofseveralsources,
whenthe latterarepoorlyangularlyseparatedor in thepresenceof
modelingerrors inherentinoperationalcontexts.Finally,onemay
think that the HO VA concept will spawn much practical research
in array processing and will also be considered to be a powerful
tool for performance evaluation of HO array processing methods.

APPENDIX A

We present in this Appendix explicit expressions of the
Leonov–Shiryaev formula (8) for , 2 and 3, assuming
zero-mean complex random vector .

Cum

(A.1)

Cum

(A.2)

Cum
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(A.3)

APPENDIX B

We show in this Appendix that the spatial correlation coef-
ficient defined by (20) can be written as (21). To this aim, the
property (B.1), given for arbitrary complex vectors ,
, , and , by

(B.1)

can easily be verified. Applying recurrently the property (B.1),
we obtain

(B.2)
Then, applying (B.2) to (20), we obtain (21).
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