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ABSTRACT

For about two decades, many Fourth-Order (FO) array processing methods have been developed for both
direction finding and blind identification of non Gaussian signals. One of the main interests in using FO
cumulants only instead of Second Order (SO) ones in array processing applications relies on the increase of
both the effective aperture and the number of sensors of the considered array, which eventually introduces the
FO Vitual Array concept presented in [15-16] and [7] and which allows in particular a better resolution and the
processing of more sources than sensors. To still increase the resolution and the number of sources to be
processed from a given array of sensors, new families of blind identification, source separation and direction
finding methods, at an order m = 2¢ (¢ = 2) only, have been developed recently in [3] and [8] respectively. In
this context, the purpose of this paper is to provide some important insights into the mechanisms, and more
particularly to both the resolution and the maximal processing capacity, of numerous 2¢-th order array
processing methods, whose methods [3] and [8] are part of, by extending the Virtual Array concept to an
arbitrary even order, for several arrangements of the data statistics and for arrays with space, angular and/or
polarization diversity.

Keywords : Higher order, Virtual array, Blind source identification, HO direction finding, 2q-MUSIC,

Identifiability, Space, angular and polarization diversities



I. INTRODUCTION

For about two decades, many FO array processing methods have been developed for both
direction finding [4] [6] [9] [21] [23] and blind identification [1] [5] [10] [12] [14] [17] of non
Gaussian signals. One of the main interests in using FO cumulants only instead of SO ones in array
processing applications relies on the increase of both the effective aperture and the number of sensors
of the considered array, which eventually introduces the FO Virtual Array (VA) concept presented in
[15-16] and [7], allowing in particular both the processing of more sources than sensors and an
increase in the resolution power of array processing methods.

In order to still increase both the resolution power of array processing methods and the number
of sources to be processed from a given array of sensors, new families of blind identification, source
separation and direction finding methods, exploiting the data statistics at an arbitrary even order m =
2q (¢ = 2) only, have been developed recently in [3] and [8] respectively. More precisely, the
reference [8] mainly extends the well-known high resolution direction finding method called MUSIC
[24] to an arbitrary even order 2¢, giving rise to the so-called 2¢g-MUSIC methods whose interests,
for g > 2, are also shown in [8]. In particular, for operational contexts characterized by a high sources
density, such as airborne surveillance over urban areas, the use of Higher Order (HO) MUSIC
methods for direction finding allows to reduce or even to minimize the number of sensors of the array
and thus the number of reception chains, which finally drastically reduces the overall cost. Besides, it
is shown in [8] that, despite of their higher variance and contrary to some generally accepted ideas,
2¢g-MUSIC methods with ¢ > 2 may offer better performances than 2-MUSIC or 4-MUSIC methods
when some resolution is required, i.e. in the presence of several sources, when the latter are poorly
angularly separated or in the presence of modelling errors inherent in operational contexts. In the
same spirit, to process both over and underdetermined mixtures of statistically independent non
Gaussian sources, the reference [3] mainly extends the recently proposed FO blind source
identification method called ICAR [1] (Independent Component Analysis using Redundancies in the
quadricovariance matrix) to an arbitrary even order 2¢g, giving rise to the so-called 2¢-BIOME
methods (Blind Identification of Overcomplete MixturEs of sources), whose interests for g > 2 are
shown in [3]. Note that the 2¢-BIOME method gives rise, for ¢ = 3, to the sixth order method called

BIRTH (Blind Identification of mixtures using Redundancies in the daTa Hexacovariance matrix)



presented recently in [2]. In particular, it is shown in [2] and [3] that 2¢-BIOME methods, for ¢ > 3,
outperform all the existing Blind Source Identification (BSI) methods actually available, in terms of
processing power of underdetermined mixtures of arbitrary statistically independent non Gaussian
sources.

Contrary to papers [8] and [3], the present paper does not focus on particular HO array
processing methods for particular applications but rather aims at providing some important insights
into the mechanisms of numerous HO methods and thus some explanations about their interests,
through the extension of the VA concept, introduced in [15-16] and [7] for the FO array processing
problems, to an arbitrary even order m = 2¢g (¢ > 2) and for several arrangements of the 2¢-th order
data statistics, for arrays with space, angular and/or polarisation diversity. This HO VA concept
allows in particular to show off both the increasing resolution and the increasing processing capacity
of 2¢g-th order array processing methods as ¢ increases. It allows to solve not only the identifiability
problem of HO methods presented in [8] and [3], in terms of maximal number of sources which can
be processed by these methods from an array of N sensors, but also that of all the array processing
methods exploiting the algebraic structure of the 2¢g-th (¢ > 2) order data statistics matrix only, for
particular arrangements of the latter. As a consequence of this result, the HO VA concept shows off
the impact of the 2¢-th order data statistics arrangement on the 2¢-th order array processing method
performances and thus the existence of an optimal arrangement of these statistics, result completely
unknown by most of the researchers. Finally, one may think that the HO VA concept will spawn
much practical research in array processing and will also be considered as a powerful tool for
performance evaluation of HO array processing methods.

After an introduction of some notations, hypotheses and data statistics in section II, the VA
concept is extended to even HO statistics in Section III where the questions of both the optimal
arrangement of the latter and the resolution of VA is addressed. Some properties of the HO VA for
arrays with space, angular and/or polarisation diversity are then presented in section IV where explicit
upper-bounds, reached for most array geometries, on the maximal number of independent non
Gaussian sources that can be processed by a 2¢-th order method exploiting particular arrangements of
the 2¢-th order data statistics, are computed for 2¢g < 8. Note that the restriction to values of 2¢ lower
than or equal to 8 is not so much restrictive since it corresponds to order of statistics which have the

highest probability to be used for future applications. The results of sections IIl and IV are then



illustrated in section V through the presentation of HO VA examples for both Uniform Linear Array
(ULA) and Uniform Circular Arrays (UCA). Some practical situations for which the HO VA concept
leads to better performance than SO or FO ones are pointed out and illustrated in section VI through a

direction finding application. Finally section VII concludes this paper.

II. HYPOTHESES, NOTATIONS AND STATISTICS OF THE DATA
A. Hypotheses and Notations

We consider an array of N narrow-band (NB) sensors and we call x(¢) the vector of complex
amplitudes of the signals at the output of these sensors. Each sensor is assumed to receive the
contribution of P zero-mean stationary and stastistically independent NB sources corrupted by a

noise. Under these assumptions, the observation vector can approximately be written as follows

P

W) = Y mia@e) + v 2 Am@) + w0 (1)

i=1
where v(7) is the noise vector, assumed zero-mean, m(?) is the vector whose components m;(¢) are the
complex amplitudes of the sources, 0; and ¢; are the azimuth and the elevation angles of source i
(Figure 1), 4 is the (NxP) matrix of the source steering vectors a(0;, ;), which contains in particular
the information about the direction of arrival of the sources. In particular, in the absence of coupling
between sensors, component 7 of vector a(0;, ¢;), denoted a,(0;, @;), can be written, in the general

case of an array with space, angular and polarization diversity, as [11]

a0, 0;) = an(0; 04 pi) =
1B, @i, pi) exp{j2m[x, cos(8;) cos(@;) + v, sin(B;) cos(e;) + z, sin(;) 1/ 1} ()

where A is the wavelength, (x,, vy, z,) are the coordinates of sensor n of the array, f,(6;, 0;, p;) is a
complex number corresponding to the response of sensor # to a unit electric field coming from the
direction (0;, @;) and having the state of polarization p; (characterized by two angles in the wave
plane) [11]. Let us recall that an array of sensors has space diversity if the sensors have not all the
same phase center. The array has angular and/or polarization diversity if the sensors have not all the

same radiating pattern and/or the same polarization, respectively.



Figure 1

B. Statistics of the data

B1. Presentation

The 2g-th (¢ > 1) order array processing methods currently available exploit the information
contained in the (N?xN?) 2g—th order circular covariance matrix, C2¢,x» Whose entries are the 2g—th
order circular cumulants of the data, Cuml[x;,(?),..., x,-q(z), xiq+1(t)*, cees xizq(z)*] (1< zj <N)(1<5<
2¢g), where * corresponds to the complex conjugation. However, the latter entries can be arranged in
the Cpy x matrix in different ways and it is shown in the next section that the way these entries are
arranged in the Cp , matrix determines in particular the maximal processing power of the 2¢-th order
methods exploiting the algebraic structure of Cy, v, such as the 2¢g-MUSIC [8] or the 2g-BIOME [3]
methods. This result is new and seems to be completely unknown by most of the researchers.

In order to prove this important result in the next section, let us introduce an arbitrary integer /

such that (0 </ < ¢) and let us arrange the 2g—uplet, (i,.., ), of indices zj (1 <j<2g)into

i Ly g
two g-uplets indexed by / and defined by (P15 Iysevens Iy iqﬂ,...., izq_l) and (iZq—H—l""’ i2q’ I poeenos iq)
respectively. As the indices zj (1 <j <2q) varys from 1 to N, the two latter g-uplets take N? values.
Numbering, in a natural way, the N? values of each of two latter g-uplets by the integers /; and

J; respectively, such that 1 <7;,J; <N, we obtain

/ q-1
A (. _ Z G-1-j
I Z NI G-y + N (=1 + 1 (3a)
j=1 j=1
/ q-1
5 8 Z NIy = 1) + Z NT G~ 1)+ 1 (3b)
l 2g-1+j I+
— —

Using the permutation invariance property of the cumulants, we deduce that Cuml[x; (2),..., x; q(t),
* * * * * *

xiq+1(t) 5 ey xizq(t) ] = Cum[xil(t)n' (] xi[(t)a xqurl(t) 5 ey xizq_](t) s xizq_]Jr](t) EAE) xizq(t) H xi]Jrl(t)a'-a

X; q(t)] and assuming that the latter quantity is the element [/; , Jj] of the C»,y matrix, thus noted

Cogx(D), it is easy to verify, from the Kronecker product definition, the hypotheses of section A and

under a Gaussian noise assumption, that the (N9xN9) C 2¢,x(]) matrix can be written as



P

Cagal) = D caqm; [a(8;, )% ® a(0r.0)" 7~ D] [a0; ) © a(6;. 0n"®@~ 11f
i=1

+ mVég-1) “

where ¢z m; a Cumm;, (1),..., mj (@), miqﬂ(t)*, ey My, q(z)*], with i; = i (1 <j < 2¢g), is the 2¢-th
order circular autocumulant of m;(f), T corresponds to the conjugate transposition, m» is the mean
power of the noise per sensor, V' is the (N x N) spatial coherence matrix of the noise such that Tr[V] =
N, Tr[.] means Trace, 8(.) is the Kronecker symbol, ® is the Kronecker product and a®! is the (lel)
vector defined by a®! 8 4®a®... ®awith anumber of Kronecker product ® equal to /— 1.

In particular, for ¢ = 1 and / = 1, the (N x N) Cpy (/) matrix corresponds to the well-known

data covariance matrix (since the observations are zero-mean) defined by

P
Re & Cou1) = B (01T = D cama®:0) a0 00T + ma ¥ 5)
i=1
For g =2 and / = 1, the (NZXNZ) C2¢,x(/) matrix corresponds to the classical expression of the data
quadricovariance matrix, used in [15] and [7] and in most of the papers dealing with FO array

processing problems, and defined by

P
0: 8 Cunl) = Y ey [a0r, 9)Ba(0r, 9)'] [a(0;, 0)@a(0r, 0)"]F (6)
i=1
whereas for ¢ = 2 and [ = 2, the (Nszz) C2¢,x(/) matrix corresponds to an alternative expression of

the data quadricovariance matrix, not often used and defined by

P

0,8 Cyx(2) = Z cqm; [a(0;, 0)®a(0;, 0] [a(6;, 9)®a(0;, 9] (7
i=1

B2. Estimation

In situations of practical interests, the 2¢-th order statistics of the data, Cum[x; (2),..., x; q(t),
A
Xig +1(t)*= ey Xiy q(t)*], are not known a priori and have to be estimated from L samples of data, x(/) =

x(IT,), 1< [ < L, where T, is the sample period.



For zero-mean stationary observations, using the ergodicity property, an empirical estimator of
Cumlx; (9),..., x; q(t), Xig H(t)*, . q(t)*], asymptotically unbiased and consistent, may be built from
the well-known Leonov-Shiryaev formula [22], giving the expression of a n-th order cumulant of x(¢)
as a function of its p-th order moments (1< p < n), by replacing in the latter all the moments by their

empirical estimate. More precisely, the Leonov-Shiryaev formula is given by

n
Cumlixy, (0%, xi(0%2,.., x;,(0F"] = Z P - D E TP ELT Tx07] - ELT Tx,0%1 8)
p=1 jeSl jes2 jeSp
where (S1, S2,...., Sp) describes all the partitions in p sets of (1, 2,..., n), gj = £ 1 (1< < n) with the

I'= x and x~! = x" and an empirical estimate of (8) is obtained by replacing in (8) all the

convention x
moments E[xil(t)glxiz(t)gz. ) .x,-p(t)SP] (1< p < n) by their empirical estimate given by

L

Elxiy (0P Ly (02, 3, (0P)(L) 2 % D O 02 (0 ©
=1
Explicit expressions of (8) for n = 2¢ with 1 < g < 3 are given in Appendix A.

However, in radiocommunications contexts, most of the sources are no longer stationary but
become cyclostationary (digital modulations). For zero-mean cyclostationary observations, the
statistical matrix defined by (4) becomes time dependent, noted Cyq (/)(?), and the theory developed
in the paper can be extended without any difficulties by considering that Cy4 (/) is, in this case, the
temporal mean, < Cpy (/)(f) >, over an infinite interval duration, of the instantaneous statistics,
Cogx(D(t). In these conditions, using a cyclo-ergodicity property, the matrix Cy, (/) has to be
estimated from the sampled data by a non empirical estimator such as that presented in [18] for g = 2.
Note finally that this extension can also be applied to non zero-mean cyclostationary sources, such as
some non linearly digitally modulated sources [20], provided that a non empirical statistic estimator,

such as that presented in [20] for ¢ = 1 and in [19] for ¢ = 2, is used.

C. Related 2¢-th order array processing problems

A first family of 2¢-th order array processing methods which are concerned by the theory
developed in the next sections corresponds to the family of 2¢-th order Blind Identification methods,

which aim at blindly identifying the steering vectors of the sources, a(0;, ¢;) (1 < i < P), from the



exploitation of the algebraic structure of an estimate of the C», (/) matrix for a particular choice of /.
Such methods are described in [2-3]. A second family of methods concerned by the results of the
paper corresponds to the 2¢g-th order subspace-based direction finding methods such as the 2¢-
MUSIC method, presented in [8], which aims at estimating the angles of arrival of the sources, (0;,
¢;) (1 <i<P), from the exploitation of the algebraic structure of an estimate of the C5y (/) matrix for

a particular choice of /.
III. HIGHER ORDER VIRTUAL ARRAY CONCEPT

A. General presentation

The VA concept has been introduced in [15-16] and [7] for the classical FO array processing
problem exploiting expression (6) only. In this section, we extend this concept to an arbitrary even
order m = 2¢ (q = 2), for an arbitrary arrangement, Cz4 (/) (0 </ < g), of the data 2qg-th order circular
cumulants, Cum[x;,(?),..., xl-q(t), xl-qﬂ(t)*, ey xizq(t)*] (1< zj < N), in the Cpy, matrix and for a
general array with space, angular and polarization diversities. This HO VA concept is presented in
this section in the case of P statistically independent non Gaussian sources.

Assuming no noise, we note that the matrices Cz4 (/) and R,, defined by (4) and (5)
respectively, have the same algebraic structure, where the auto-cumulant ¢y ,,; and the vector [a(6;,
(p,-)®l ® a(b;, (pi)*®(q -0 play, for Cyyx(/), the rule played for R, by the power c;,,; and the
steering vector a(0;, ¢;) respectively. Thus, for the 2¢-th order array processing methods exploiting
expression (4), the (Nx1) vector [a(6;, (p,-)®l ® a(b;, (p,-)*®(q = D] can be considered as the virtual
steering vector of the source i for the true array of N sensors with coordinates (x,, v,, z,;) and
amplitude pattern f,,(0, @, p), 1 <n < N. The N? components of the vector [a(0;, (p,-)®l ® a(b;, (pi)*®(q -
D] correspond to the quantities ag,(0;. ©;) (01, @)).... k(0 01) sy, (Or )" sy, (O (p,-)*...akq(el-,
9) (1< kj <N, 1<j<q), where akj(ei, ;) is the component kj of vector a(0;, ;). Using (2) in the
latter components and numbering, in a natural way, the N? values of the g-uplet (k,, k,,...., k,,

k

Iipoeee K q) by associating to the latter the integer K defined by

q
x 2 Z NI =1y + 1 (10)
=1



we find that the component K of the vector [a(8;, ;)% ® a(6;, ¢;) ¥~ D], noted [a(6;, 9,)®' ® a(6;,

(Pi)*®(q - D ]k, takes the form

B

[ /
(a0, 90 ® a0, 00" Dl = (TT [T fu® 06 0 firea®s 05 0))
=1 u=1

u=

/ q—! / q-!
exp {i2n[( D xiy— D xig) cos(0) cos(@i) + () yiy— D Vi) sin(®;) cos()
Jj=1 u=1 j=1 u=1
/ q -1
O Y ) sinte) | /2§ (1)
j=1 u=1

Comparing (11) to (2), we deduce that the vector [a(8; ¢,)% ® a(6;, (p,-)*®(‘1 = D] can also be
considered as the true steering vector of the source i for the VA of N? Virtual Sensors (VS) with
coordinates, (xkll k. kg ykll ko kg» zkll k. kq)> and complex amplitude patterns, fkl1 k. kq(G, 0, p), 1< kj <

Nfor 1 <j<gq, given by

!
l l l B
(Xk1ko. kg» Vierka.. kg» Zkika.. kg) = ( X = ) X ) V= ) Viw ) ZhG— Zki )

<
|
~
~
Q
|
~
~
<
|
~

j=1 u=1 j=1 u=1 j=1 u=1
(12)
; I q-1
*
Sk k@0 = T] f60. 0. D) fizul©, 9, p) (13)
j=1u=1

which introduces in a very simple, direct and short way the VA concept for the 2¢g-th order array
processing problem, for the arrangement Cp,,(/) and whatever the kind of diversity. Note that
expression (13) shows that the complex amplitude response of a VS for given direction of arrival and
polarization corresponds to a product of / complex amplitude responses of true sensors and (¢ — /)
conjugate ones for the considered direction of arrival and polarization.

Thus, as a summary, we can consider that the 2¢g-th order array processing problem of P
statistically independent NB non Gaussian sources from a given array of N sensors with coordinates
(Xn> ¥, zn) and complex amplitude patterns f,(6, ¢, p), 1 < n < N, is, for the arrangement C>y (/),
similar to a SO array processing problem for which these P statistically independent NB sources
impinge, with the virtual powers c2qm; (1 <i < P), ona VA of N? VS having the coordinates (xkl1 ko

kg> ykl1 ko kg Zkll ko, kg) and the complex amplitude patterns fkll ko, kg6, @, p), 1 < kj <Nforl1<j<gq,



defined by (12) and (13) respectively. Thus HO array processing may be used to replace sensors and
hardware and thus to decrease overall cost of a given system.

From this interpretation based on the HO VA concept, we naturally deduce that the 3dB
beamwidth of this VA controls the resolution power of 2¢g-th order array processing method for a
finite observation duration and the considered arrangement whereas the number of different sensors
of this VA controls the maximal number of sources which can be processed by such methods for this
arrangement. More precisely, as some of the N VS may coincide, we note Nglq the number of
different VS of the VA associated with the 2¢-th order array processing problem for the arrangement
C2¢,x(1). Then, the maximum number of independent sources that can be processed by a 2¢-th order
BSI method exploiting the algebraic structure of Cyy (/) is N, glq whereas 2¢-th order direction finding
methods exploiting the algebraic structure of Co, (0), such as the family of 2g-MUSIC methods [8],
are able to process up to N. glq — 1 non Gaussian sources.

Another important result shown by expressions (12) and (13) is that, for a given array of N
sensors, the associated 2¢-th (¢ > 2) order VA depends on the parameter / and thus on the
arrangement of the 2¢g-th order circular cumulants of the data in the C,, ; matrix. This new result not
only shows off the importance of the chosen arrangement of the considered data 2g-th order
cumulants on the processing capacity of the methods exploiting the algebraic structure of Cpq y, but
also raises the problem of the optimal arrangement of these cumulants for a given even order. This
question is addressed in the next section.

Finally, note that expression (4) holds only for sources which are NB for the associated VA, i.e
for sources 7 such that the vector [a(0;, (pl-)®1 ® a(b;, (pl-)*®(‘1 B D] does not depend on the frequency

parameter within the reception bandwidth, i.e. for source i in the reception bandwidth B such that

B Dy cos(k;, M{Mpax) / ¢ << 1 (14)

where c is the propagation velocity, Dy ; is the aperture of the VA for the considered parameters g and
[, k; is wave vector for the source i and MM,y is the vector whose norm is D ; and whose direction
is the line formed by the two most spaced VS M| and Mpax. As Dy increases with g, the accepted
reception bandwidth ensuring the NB assumption for the HO VA decreases with ¢. In particular, for

HF or GSM links, the narrow-band assumption for the HO VA is generally verified up to ¢ = 8 or 10,



i.e up to a statistical order m = 2¢g equal to 16, 18 or 20, from classically used array of sensors for

these applications [13].
B. Optimal arrangement Cz, (/)

For a given value of ¢ (¢ > 2) and a given array of N sensors, we define in this paper the
optimal arrangement C3, (/), denoted Czg x(lops), as the one that maximizes the number of different
VS, Nglq, of the associated VA, since the processing power of a 2¢g-th order method exploiting the
algebraic structure of Cpy (/) is directly related to the number of different VS of the associated VA.

To get more insight into Cgx(lop), let us analyse the expressions (12) and (13). These

expressions show that the g-uplets (k;, k), ..., &k kjpq5eeens kq) and (kG(l), kG(z), e kc(l)’
ku(l+1)"""’ ku(q))’ where (o(1), o(2), .... , o(/)) and (u(/+1), p(/+2), .... , wg)) are arbitrary
permutations of (1, 2, ...., /) and (I+1, [+2, ...., g) respectively, give rise to the same VS (same

coordinates and same radiation pattern) of the VA associated with Cyg «(/), defined by (12) and (13).
The number of permutations of a given set of indices depends on the number of indices with different
values in the set. For this reason, let us classify all the g-uplets (k, &,,....., k q) (1< kj <N, 1<j<9q)
in g families F, (1 <i < q) such that F; corresponds to the set of g-uplets with i different elements kj

For example

11>

F, {(ky, by k) | ;= for 1<j<gand 1 <k<N} (15)

>

F, = {(pkynk)/ k= k, for | <jsm<gand 1<k, k, <N} (16)

For the general case of an arbitrary array of N sensors, both the number of g-uplets of F. and the
number of different VS of the VA associated with F, for an arbitrary arrangement Coy (/) (0 < /< q)
are proportional to N !/ (N — i) !. Indeed among the i different elements kj of F,, once the value of one
of them is chosen among N possibilities, there are still N — 1 possibilities for the second one and then
N — 2 possibilities for the third one and so on and finally N — i + 1 possibilities for the i-th one, which
finally corresponds to N'!/ (N — i) ! possible solutions for the different elements. Then for each of the
latter solutions, the value of ¢ — i elements have to be chosen among the i considered different
elements, giving rise finally to a number of g-uplets of F, proportional to N !/ (N — i) !. This quantity
is equal to zero for N < i, but becomes a polynomial function of degree i with respect to variable N

for N > i. Thus, as N becomes large, provided that ¢ < N, the number of different VS of the VA for a

-10 -



given arrangement Cog (/), N. glq, is mainly dominated by the number of different VS associated with
E, for this arrangement, Nglq[F q]. The number of g-uplets of F g is exactely equal to N!/ (N — q)!
whereas the number of different VS associated with F q for the arrangement Co, (/) is, for the general

case of an arbitrary array of N sensors with no particular symmetries, equal to
/
NoglE,l = NVIWN=-9'(g-D'1] (g=N) 17)

In fact, when all the kj are different, the number of permutations (c(1), o(2), .... , o(/)) and (W(/+1),
w(+2), ..., w(g)) of (1,2, ..., ) and ([+1, +2, ...., q) are equal to /! and (g —/)!, respectively.

As a summary, in the general case of an arbitrary array of N sensors with no particular
symmetries, for a given value of ¢ (¢ > 2) and for large values of N, the optimal arrangement
C2¢,x(lopy) 1s such that /,,; maximizes NZZCI[F q] defined by (17) and thus minimizes the quantity (g —
D! I with respect to / (0 </ < g). We deduce from this result that the arrangements Cy (/) and
Cagx(q — 1) (0 <1< g) give rise to the same number of VS (in fact the first arrangement is the
conjugate of the other whatever the values of ¢ and N). It is then sufficient to limit the analysis to g/2

<l<gqifgisevenandto (¢g+1)/2 <] <qif g is odd. We easily verify that
(g-D'l! < (g—(HD)! (+1)! for ¢g2<i/<g-1 if g is even (18)
(D'l < (q—(I+1)! (I+1)! for (g+1)2 <I<g-1 if ¢ is odd (19)

which proves that /,,; = q/2 if g is even and /,,; = (q+1)/2 if g is odd. In other words, [, is, in all
cases, the integer / which minimizes | 2/ — q|. It generates steering vectors [a(6;, (pi)®l ® a(b;,
(pl-)*®(‘1 - 1)] for which the number of conjugate vectors is the least different from the number of non
conjugate vectors. In particular, for ¢ = 2, it corresponds to expression (6). We verify in section IV

for ¢ =2, 3 and 4 that this result, shown for large values of N, remains valid whatever the value of N.

C. Virtual Array resolution

To get more insights into the gain in resolution obtained with HO VA, let us compute the
spatial correlation coefficient of two sources, with directions 6 = (6, @) and 08y = (09, @¢) respectively,
for the VA associated with statistical order 2¢g and arrangement indexed by /. This coefficient, noted

09,00(2¢, /) and such that 0 < | ag,9,(2¢, )) | <1, is defined by the normalized inner product of the
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steering vectors az,,(0. ¢) = [a(0. ¢)®! ® a(0, )"~ D] and az,(80. 90) = [a(B0. 90)®' ® a6y,

©0) “®@ D] and can be written as

A azq (0, 7Lllz,zeoy 0
a0,0,20,) 2 910, 9) a2, 90) (20)

[@24,10, 0) @240, 91" [a24,160, 00)" a24,1(B0, 00)]"

For an array with space diversity only, this coefficient is proportional to the value, for the direction 0,
of the complex amplitude pattern of the conventional beamforming in the direction 6y from the

considered VA. It is shown in Appendix B that this coefficient (20) can be written as

f ! f (¢
P S CCT D) | COROOT) on

[a(8, 0) a(®, 9)1%? [a(Bo, o) a(Bo, o)1

which implys that

( | (8, 9)" a(69, 9o) | q

| ag,00(2¢, )| =
’ [a(6, 0)" (6, 0)]""* [a(60, o)" a(B0, 00)]"

- | g0, D |7 (22)

Expression (22) shows that despite of the fact that 0 g,(2¢, /) is a function of ¢ and /, its
modulus does not depend on / but only depends on ¢ and on the normalized amplitude pattern, |
09,09(2, 1)|, of the considered array of N sensors for the pointing direction 8. Moreover, as 0 < |
00,002, 1) | <1, we deduce from (22) that | 0ig,9,(2¢, /) | is a decreasing function of g, which proves
the increasing resolution of the HO VA as ¢ increases. In particular, if we note, 632(1%, the 3dB
beamwidth of the 2¢-th order VA associated with a given array of N sensors, we find from (22) that
632(1% can be easily deduced from the normalized amplitude pattern of the latter and is such that
| ag,00(2, 1) |=0.5 4 for 6 = 029 i such that | 09,00(2, 1) | = 0.707, 0.794 and 0.84 for ¢ =2, 3 and
4 respectively. As g increases, this generates 632(16{3 values corresponding to a decreasing fraction of the
3dB beamwidth, 034p, of the considered array of N sensors and we will verify in section V that 93261% =
0.84 B34, 0.76 639 and 0.71 B34p for ¢ = 2, 3 and 4 respectively. Finally, expression (22) proves
that rank-1 ambiguities (or grating lobes [11]) of the true and VA coincide whatever the values of ¢
and /, since the directions 8 # 09 giving rise to | ag,0,(2¢, /) | = 1 are exactly the ones which give rise

to [ 0g,p4(2, 1) | = 1. A consequence of this result is that a necessary and sufficient condition to obtain
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VA without any rank-1 ambiguities is that the considered array of N sensors have no rank-1

ambiguities.
IV. PROPERTIES OF HIGHER ORDER VIRTUAL ARRAYS

A. Case of an array with space, angular and polarization diversity

For an array with space, angular and polarization diversities, the component n of vector a(;,
¢;) and the component K of [a(0;, (pi)®l ® a(b;, (pi)*®(q ~ D) are given by (2) and (11) respectively,
which shows that the 2¢-th (¢ > 2) order VA associated with such an array is also an array with space,
angular and polarization diversities, whatever the arrangement of the 2¢-th order circular cumulants
of the data in the C5, , matrix.

Ideally, it would have been interesting to obtain a general expression of the number of different
VS, Nglq, of the 2g-th order VA for the arrangement C4 (/) and for arbitrary array geometries.
However, it does not seem possible to obtain such a result easily since the computation of the number
of VS which degenerate in a same one is very specific of the choice of ¢ and / and of the array
geometry. For this reason, we limit our subsequent analysis, for arbitrary array geometries, to some
values of ¢ (2 < g < 4), which extends the results of [7] up to the eighth order for arbitrary
arrangements of the data cumulants, despite of the tedious character of the computations. Moreover,
this analysis is not so much restrictive since the considered 2¢-th order data statistics (2 < g < 4)
correspond in fact to the statistics which have the most probability to be used for future applications.
Note that the general analysis for arbitrary values of ¢ and / is possible for ULA and is presented in
section V.

To simplify the analysis, for each sensor n, 1 <n < N, we note f, its complex response f,,(6, ¢,
P), 'n a (X, Vn» zpp) the triplet of its coordinates, rg A (0, 0, 0) and we define A r, a (M Xy A Yy A
zy) and 1, + 1y, A (xn + Xpps Vi + Yy Zn + zm). Moreover for a given value of ¢, we define the order of
multiplicity, m, of a given VS of the considered 2¢-th order VA by the number of g-uplets (k,, ,,
v k q) giving rise to this VS. When the order of multiplicity of a given VS is greater than 1, this VS
can be considered as weighted in amplitude by a factor corresponding to the order of multiplicity and

the associated VA then becomes an amplitude tappered array.
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The coordinates, the complex responses and the order of multiplicity of the VS of HO VA,
deduced from (12) and (13), are presented in tables 1, 2 and 3 for ¢ = 2, 3 and 4 respectively and for
several values of the parameter /. In these tables the integers 7, take all the values between 1 and N (1
<n; <N for 1 <i<4)but under the constraint that n; # n; if i # j for a given line of the tables. A VS is
completely characterized by a line of a table for given values of the n,.

The results of tables 1 to 3 show that for arrays with sensors having different responses, the VA
associated with the parameters (g, ) is amplitude tappered for (¢, [) = (2, 2), (3, 3), (3, 2), (4, 4), (4,
3) and (4, 2), whereas it is not for (g, /) = (2, 1). In this latter case the order of multiplicity of each VS
is 1 and then, the number of different VS of the associated VA may be maximum for ¢ = 2 and equal
to N°. Tt is in particular the case if the responses of all the VS are different. However, for arbitrary

values of ¢ and /, the maximum number of VS of the associated VA, noted N .

[2¢, 1], is generally
strictly lower than N?due to the amplitude tappering of the VA. Table 4 shows precisely, for arrays
with different sensors, the expression of N, [2g, /], computed from results of tables 1 to 3, as a

function of N for 2 < g < 4 and several values of /. Note that N,

[4, 1] has already been obtained in

[7]. Note also that N [2¢, ] corresponds to N. glq in most cases of sensors having different responses.

max

We verify on table 4 that for a given value of ¢ (2 < g < 4) and the considered values of /, whatever

the value of N, small or large, NV

maxl29> [1 18 a decreasing function of /, which confirms the optimality

of the arrangement C5, (/) for the integer / which minimizes |21 - q |, as discussed in section I11.B.

Note also, for a given value of N and for optimal arrangements, the increasing values of N,

[2g, ] as
q increases.
In order to quantify the results of table 4, table 5 summarizes the maximal number of different

VS, N,

max 29> 1], of the associated VA for several values of N, g and /. As N and q increase, note the

increasing value of the loss in the processing power associated with the use of a sub-optimal
arrangement instead of the optimal one. For a given value of N, note the increasing value of N, [2¢,
[] as g increases for optimal arrangements of the cumulants whereas note the possible decreasing
value of N, [2q, [] as g increases when the arrangement moves from optimality to suboptimality (for

example N,

[6,2]> N

max

[8, 4] for2 < N<5).

Table 1
Table 2

-14 -



Table 3
Table 4
Table 5

B. Case of an array with angular and polarization diversity only

For an array with angular and polarization diversities only, all the sensors of the array have the
same phase center, r A (x, , z), but have different complex responses, f,,(0, @, p), 1 <n < N. Such an
array is usually referred to an array with colocalized sensors, having different responses in angle and
polarization. For such an array, the expression (12) shows that for given values of ¢ and / the VS of
the associated VA have all the same coordinates given by (2/ — ¢) r while their complex response is
given by (13). This shows that the 2¢-th (¢ > 2) order VA associated with an array with angular and
polarization diversities only is also an array with angular and polarization diversities only, whatever
the arrangement of the 2¢-th order circular cumulants of the data in the Cg , matrix.

The complex responses of the colocalized VS of the 2¢-th order VA for the arrangements
C2¢,x(]) are all presented in tables 1 to 3 for 2 < g < 4. In particular, all the upper-bounds, N, [2q, I],
presented in tables 1 to 3 for an array with space, angular and polarization diversities remain valid for
an array of colocalized sensors with angular and polarization diversities only. This shows that for
sensors having different complex responses, the geometry of the array does not generally play an
important role in the maximal power capacity of the 2¢-th order array processing methods exploiting
the algebraic structure of Cg v, in terms of number of sources to be processed.

C. Case of an array with space diversity only

Let us consider in this section the particular case of an array with space diversity only. In this
case, all the sensors of the array are identical and the complex amplitude patterns of the latter, f,,(0,
¢, p), 1 <n <N, may be chosen to be equal to one. Under these assumptions, we deduce from (13)
that, for a given value of ¢ (¢ > 2), fkllkz_, kq(8, @, p) = 1 whatever the g-uplet (k, k,, ...., kq) and
whatever the arrangement index /. This shows that the 2¢-th (g > 2) order VA associated with an
array with space diversity only is also an array with space diversity only whatever the arrangement of
the 2¢-th order circular cumulants of the data in the C»,  matrix.

For such an array, the 2¢-th order VA are presented hereafter for (2 < ¢ < 4), which extends the

results of [7] up to the eighth order for arbitrary arrangements of the data cumulants. More precisely,
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for arrays with space diversity only, the coordinates and the order of multiplicity of the VS of HO
VA, deduced from tables 1 to 3, are presented in tables 6, 7 and 8 for ¢ = 2, 3 and 4 respectively and
for several values of the parameter /. Again, in these tables the integers n; takes all the values between
l and N (1 < n; <N for 1 <i <4) but under the constraint that n; # n j if i # j for a given line of the
tables. A VS is completely characterized by a line of a table for given values of the ;.

The results of tables 6 to 8 show that for arrays with identical sensors, the VA associated with
the parameters (g, /) is always amplitude tappered whatever the values of ¢ and /, which implys in
particular that N, glq < N, 29,11 < N4, Table 9 shows precisely, for arrays with identical sensors, the

expression of N

'max.29> 11, computed from results of tables 6 to 8, as a function of N for 2 < g <4 and

several values of /. Note that N, [4, 1] has already been obtained in [7]. Note also that N,  [2¢, []
corresponds to N, glq in most cases of array geometries with no particular symmetries. We verify on
table 9 that for a given value of ¢ (2 < g <4) and the considered values of /, whatever the value of N,

small or large, N

maxl29> 1] 1s a decreasing function of /, which confirms the optimality of the

arrangement Cog (/) for the integer / which minimizes |27 - q 1, as discussed in section III.B. Note
also, for a given value of N and for optimal arrangements, the increasing values of N, [2q, [] as g

increases. Comparison of tables 4 and 9 shows that whatever the values of g and /, N, .

[2¢, [] can
only remain constant or increase when an array with space diversity only is replaced by an array with
space, angular and polarization diversities.

In order to quantify the results of table 9, table 10 summarizes the maximal number of different

VS, N,

maxl2qs [], of the associated VA for several values of N, ¢ and /. Other results can be found in

table 12 for odd and higher values of N. Again, the value of the loss in the processing power
associated with the use of a sub-optimal arrangement also increases as N and ¢ increase. For a given

value of N, we verify the increasing value of N

naxl29> 1] as q increases for optimal arrangements of

the cumulants.
Table 6
Table 7
Table 8
Table 9
Table 10

-16 -



V. VIRTUAL ARRAY EXAMPLES

In this section, the 2¢g-th order VA associated with particular arrays of sensors is described, in

order to illustrate the results obtained so far.

A. Linear array of NV identical sensors

For a linear array, it is always possible to choose a coordinate system in which the sensor n
has the coordinates (x,, 0, 0), 1 < n < N. As a consequence, the VS of the 2¢-th order VA for the

arrangement Cg (/) are, from (12), at coordinates

/ q -1
/ / !
(Xkika. kgp Vhrko, kgp Zhika. kg) = (Z Xk — Z Xki4 05 0) (23)
j=1 u=1

for 1 < kj <N and | £ < ¢q. This shows that the 2¢-th order VA is also a linear array whatever the
arrangement Cg (/).

For a ULA, it is always possible to choose a coordinate system such that x;, = n d, where d is
the interelement spacing, and the VA is the linear array composed of the sensors whose first

coordinate is given by
/
/
Xkiky kg = (Z k= ki) d (24)

for 1 < kj <N and 1 £ < ¢q. This shows that the 2¢g-th order VA is also a ULA with the same
interelement spacing, whatever the arrangement Cg (/). Moreover, for given values of ¢, / and N,

the minimum and maximum values of (24), noted xé’min and xé’max respectively, are given by

/

Yhmin = [I-(g-DN1d = [I(1+N)—gN]d (25)
Yhmax = [IN—-(q-D]d = [I(1+N)-qld (26)

and the number of different VS, N. Zlq, of the associated VA is easily deduced from (25) and (26) and is

given by

! ! I
Nog = (gmax = Xgmin)/d + 1= gN-(g-1) = gWN-1)+1 27)
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This is independent of /, and means that, for given values of ¢ and N, the number of VS is
independent of the chosen arrangement Cy, (/). In other words, in terms of processing power, for a
given value of ¢ and due to the symmetries of the array, all the arrangements C,, (/) are equivalent

for a ULA. Besides, we deduce from (24) that

/ q -1
)
sk, = (DK = D k)d Ky (28)
j=1 u=2
/ q -1
[+1
Xkikoky kg = ( ki = Z kyd + k. d (29)
j=1 u=2

which is enough to understand that, for given values of ¢ and N, the 2¢g-th order VA associated with
C2¢.x(D) 1s just a translation of — (N + 1)d of the VA associated with Cp4(/+1). Indeed, when £,
varies from 1 to N, the quantity &, , d varies from d to Nd and describes the N sensors of the ULA. In
the same time, the quantity — k;, ,d varys from — d to — Nd and describes the initial ULA translated of
— (N + 1)d. We then deduce from (28) and (29) that the coordinates xkllkz,, kg and x,fl*klzkzu kg are built
in the same manner from two initial ULA’s such that the first one is in translation with respect to the
other, which proves that for a ULA, the 2¢g-th order VA (i.e both the number of different VS and the
order of multiplicity of these VS) is independent of the arrangement Cog ().

Table 11 summarizes, for a ULA, the number of different VS, N glq given by (27), of the
associated VA for several values of ¢ and M. It is verified in [8] that the 2¢-MUSIC algorithm is able
to process up to V. 2Zq — 1 =¢g(N —1) statistically independent non Gaussian sources from an ULA of N
Sensors.

Table 11

Comparing (27), quantified in table 11, to N

max

[2g, ], computed in table 9 and quantified in table 10,

for 2 < ¢ <4 and the associated values of /, we deduce that
Ni, =N, [2q.0] = q+]1 for N =2 (30)

since all the arrays with 2 sensors are ULA arrays, whereas N 2lq <N,,.[29, ] for N> 2. Finally, to
complete these results, we compute below for the ULA the order of multiplicity m(7) of the associated

VS i for 2 < g <4 and we illustrate some VA pattern related to a ULA. After tedious algebraic
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manipulations, indexing the VS such that their first coordinate increases with their index, we obtain

the following results :

Al. 4-th order VA (q = 2)
For ¢ =2, the order of multiplicity, m(7) of the VS i is given by
m@{@) = N—|N—i] 1<i<2N-1 31

This result has already been obtained in [7] for / = 1. These results are illustrated in figure 2 which
shows the FO VA of a ULA of 5 sensors for which d = /2, together with the order of multiplicity of

the VS, with the x and y axes normalized by the wavelength A.

Figure 2

A2. 6-th order VA (g = 3)

For g = 3, the order of multiplicity, m(i) of the VS i is given by

m(i) = i(i+1)2 1<i<N (32a)
m(@) = NN+ 1)2 + i-N2N-1-i) 1+N<i<L+N (32b)
m(i) =N(N+1)2 + i-N@N-1-i) 2N-1-L<i<2N-2 (32¢)
m(i) = BGN-i—1)(3N—-1i)/2 2N-1<i <3N-2 (32d)

where L = (N —1)/2 if Nis odd and L = N/2 — 1 if N is even. These results are illustrated in figure 3,
which shows the 6"™-order VA of a ULA of 5 sensors for which d = 1/2, together with the order of

multiplicity of the VS, with the x and y axes normalized by the wavelength A.

Figure 3
A3. 8-th order VA (q = 4)

For g =4, the order of multiplicity, m(i) of the VS i is given by

m(i) = Z JG+ D2 1<i<N (33a)
=1
’ i-N N
m@) = (-NNN+D2 + D jN-j-1 + DGR
j=1 j=i-N+1
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N+1<i<2N -1 (33b)

3IN-2—i N
mi) = BN-2—ON(N+1)2 + Z JN=j-1) + Z JG+ 2
=1 j=3N-1-i
IN —1<i <3N -3 (33¢)
AN-2—i
mi) = Y jG+ DR IN-2< i <4N -3 (33d)
j=1

These results are illustrated in figure 4, which shows the 8"-order VA of a ULA of 5 sensors for
which d = A/2, together with the order of multiplicity of the VS, with the x and y axes normalized by

the wavelength A.

A4. VA patterns

To complete these results and to illustrate the results of section III.C related to the increasing
resolution of HO VA as ¢ increases, Figure 5 shows the array pattern (the normalized inner product
of associated steering vectors) of HO VA associated to a ULA of 5 sensors equispaced half a
wavelenght apart for ¢ = 1, 2, 3 and 4 and for a pointing direction equal to 0°. Note the decreasing
3dB beamwidth and sidelobes level of the array pattern as g increases in proportions given in section
II.C.

Figure 4
Figure 5

B. Circular array of /V identical sensors

For a UCA of N sensors, it is always possible to choose a coordinate system in which the
sensor n has the coordinates (Rcos¢,, Rsind,, 0) 1 < n < N, where R is the radius of the array and
where ¢, 4 (n—1) 2n /N. We now analyse the associated 2¢-th order VA for 2 < g < 4 and for all the

possible arrangements Cog ().

B1. 4-th order VA (g = 2)
a) [=2
For g =2 and / = 2, the coordinates of the associated VS are (R 52 €0SOn1 12, Ru1,n2 SiNdp1 2,

0),1< ny, Ny <N, where
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Rz = 2R cos[(ny — n,y)n/N] (34a)
dninz = (ny+n,-2)n/N (34b)

It is then easy to show that these VS lie on 1 + (N — 1)/2 different circles if N is odd, or 1+ N/2
different circles if N is even. Moreover, for odd values of N, N different VS lie on each circle of the

VA, uniformly spaced. We deduce that the VA of a UCA of N odd identical sensors has
Ni =N +(N=1)2] = NN+ 1)2 35)

different VS, which corresponds to the associated upper-bound given in table 9. The order of
multiplicity of these sensors is given in table 6. The previous results are illustrated in table 12 and
figure 6. The latter shows the VA of a UCA of 5 sensors for which R = 0.8 A, together with the order
of multiplicity of the VS, for ¢ =2 and / = 2. Table 12 reports both the number of different sensors,

N. glq, of the VA associated to a UCA of N sensors, and the upper-bound, N

max

[2g, /], computed in

table 9, for several values of ¢ and / and for odd values of N.
Figure 6

b I=1

For g =2 and / = 1, the coordinates of the associated VS are (R 52 c0SOn1 12, Ru1.n2 SiNdp1 2,

0), 1<ny,ny <N, where

Ryt = 2Rsin[(n) —ny)n /N] (36a)
bninz = (ny+ny—2+N2)n/N (36b)

It is then easy to show that the VS that are not at coordinates (0, 0, 0) lie on (N — 1)/2 different circles
if N 1s odd, or N/2 different circles if N is even. Moreover, for odd values of N, 2N different VS lie on
each circle of the VA, uniformly spaced. We deduce from this result that the VA of a UCA of N odd

identical sensors has

N = ON(N-1)2+1 = N2— N+1 37)

different VS, which corresponds to the associated upper-bound given in table 9, result already

obtained in [7]. The order of multiplicity of these sensors is given in table 6. The previous results are
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illustrated in figure 7 and table 12. In figure 7, the VA of a UCA of 5 sensors, for which R = 0.8 A, is

shown together with the order of multiplicity of the VS, forg=2 and /= 1.

Figure 7

B2. 2g-th order VA (q > 2)

For g > 2, the analytical computation of the VA is more difficult. However, the simulations
show that, for given values of ¢ and /, the number of different VS, N. glq, of the VA corresponds to the

upper-bound, N

nax 29> 1, when N is a prime number. In this case, it is verified in [8] that the 2¢-

MUSIC method is able to process up to Nglq - 1=N,,[2q, 1] — 1 statistically independent non
Gaussian sources from a UCA of N sensors. Otherwise, N, glq remains smaller than N, [2g, []. This
result is illustrated in Table 12, Figure 8 and Figure 9. Figures 8 and 9 show the VA of a UCA of 5
sensors for which R = 0.8 A, together with the order of multiplicity of the VS, for (¢, /) = (3, 2) and

(g, ) = (4, 2) respectively.
Figure 8

Figure 9

Table 12

VL. ILLUSTRATION OF THE HO VIRTUAL ARRAY INTEREST THROUGH A 2q-TH
ORDER DIRECTION FINDING APPLICATION

The strong potential of the HO VA concept is illustrated in this section through a 2¢-th order

direction finding application.

A. 2¢-MUSIC method

Among the existing SO direction finding methods, the so-called High Resolution (HR)
methods, developed from the beginning of the eighties, are currently the most powerful in multi-
sources contexts since they are characterized, in the absence of modelling errors, by an asymptotic
resolution which becomes infinite whatever the source Signal to Noise Ratio (SNR). Among these
HR methods, subspace-based methods such as the MUSIC (or 2-MUSIC) method [24] are the most
popular. However, a first drawback of SO subspace-based methods such as the MUSIC method is that

they are not able to process more than N — 1 sources from an array of N sensors. A second drawback
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of these methods is that their performance may be strongly affected in the presence of modelling
errors or when several poorly angularly separated sources with a low SNR have to be separated from
a limited number of snapshots.

Mainly to overcome these limitations, FO direction finding methods [4] [6] [9] [21] [23] have
been developed these two last decades, among which the extension of the MUSIC method to FO [23],
called 4-MUSIC, is the most popular. FO direction finding methods allow in particular both an
increase in the resolution power and the processing of more sources than sensors. In particular, it has
been shown in [7] and section IV of this paper that, from an array of N sensors, the 4-MUSIC method
may process up to N(N — 1) sources when the sensors are identical and up to (N + 1)(N — 1) sources
for different sensors.

In order to still increase both the resolution power of HR direction finding methods and the
number of sources to be processed from a given array of sensors, the MUSIC method has been
extended recently in [8] to an arbitrary even order 2¢ (¢ > 1) giving rise to the so-called 2¢g-MUSIC
methods. For a given arrangement of the 2g-th order data statistics, Cyyx(/), and after a source
number estimation, 1%, the 2¢-MUSIC method [8] consists to find the P couples (0;, @;) minimizing

the estimated pseudo-spectrum defined by

[a(6;, 0)® ® a(0;, 0) Y~ DT 1oy dpusicq [4(0s 0)! @ a(6;, 9;) 4~ D]
[a(6;, 0)®' ® a(6;, )"~ DT [a(6;, 0)®' ® a(6;, ¢;) 4~ D]

62q_z\4usic(z)(9, ?) 4
A (38)
where oy pmusicqy = (vt — Ex EyT), with Iy the (N9 x N9) identity matrix and £, the (N x P)
matrix of the P orthonormalized eigenvectors of the estimated statistical matrix, 6‘2% D), associated
with the P strongest eigenvalues. Using the HO VA concept developed in the previous sections and to
within the background noise and the sources SNR, the estimated pseudo-spectrum ¢ 2g-Music(1)(0> ®)
can also be considered as the estimated pseudo-spectrum of the 2-MUSIC method implemented from

the 2¢g-th order VA associated with the considered array of N sensors for the arrangement 6’2% +(D).

B. 2¢-MUSIC performances

The performance of 2¢g-MUSIC methods for 1 < ¢ < 3 and for arbitrary arrangements, C2y (/),
are analysed in detail in [8] for both overdetermined (P < N) and underdetermined (P > N) mixtures

of sources, 2¢g-th order correlated or not, both with and without modelling errors. In this context, the
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purpose of this section is not to present again this performance analysis but is rather to illustrate the
potential of the HO VA concept through the performance evaluation of 2¢-MUSIC methods on a
simple example. To do so, we introduce a performance criterion in section Bl and describe the

example is section B2. We assume that the sources have a zero elevation angle .

B1. Performance criterion

For each of the P considered sources and for a given direction finding method, two criterions
are used in the following to quantify the quality of the associated direction of arrival estimation. For a
given source, the first criterion is a probability of aberrant results generated by a given method for this
source and the second one is an averaged Root Mean Square Error (RMSE), computed from the non
aberrant results, generated by a given method for this source.

More precisely, for given values of ¢ and /, a given number of snapshots, L, and a particular
realization of the L observation vectors x(/) (1 </ < L), the estimation, @p, of the direction of arrival of

the source p (1 < p < P) from 2¢g-MUSIC is defined by

A
6, = Arg(l\/[ljn|g-—9p|) (39)

i
where the quantities {; (1 <i < IA’) correspond to the P minima of the pseudo-spectrum ¢ 2g-Music(1)(0)
defined by (38) for @ = 0. To each estimate @p (1 £ p < P), we associate the corresponding value of the
pseudo-spectrum, defined by n, = 62q—Music(D(@p)~ In this context, the estimate @p is considered to be
aberrant if m, > 1, where 1 is a treshold to be defined. In the following n = 0.1.

Let us now consider M realizations of the L observation vectors x(/) (1 </ < L). For a given
method, the probability of abberant results for a given source p, p(n, > 1), is defined by the ratio
between the number of realizations for which @p is aberrant and the number of realizations M. From
the non aberrant realizations for the source p, we then define the averaged RMS error for the source p,

RMSE,, by the quantity

(40)

A 1 M, A
RMSE, = M_z‘ef””—e”

p m=1

. o A .
where M, is the number of non aberrant realizations for the source p and 0,,,, is the estimate of 0, for

the non aberrant realization m.
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B2. Performance illustration

To illustrate the performance of 2¢g-MUSIC methods, we assume that 2 statistically
independent QPSK sources with a raise cosine pulse shape are received by a ULA of N = 3
omnidirectional sensors spaced half a wavelenght apart. The 2 QPSK sources have the same symbol
duration 7' = T,, where T, is the sample period, the same roll-off p = 0.3, the same input SNR equal to
5 dB and a direction of arrival equal to 6] = 90° and 6, = 82.7° respectively. Note that the normalized
autocumulant of the QPSK symbols is equal to —1 at the FO and +4 at the Sixth Order.

Under these assumptions, Figures 10 and 11 show the variations, as a function of the number of
snapshots L, of the RMS error for the source 1, RMSE{, and the associated probability of non
abberant results, p(n; < m), (we obtain similar results for the source 2), estimated from M = 300
realizations, at the output of both 2-MUSIC, 4-MUSIC and 6-MUSIC methods for optimal
arrangements of the considered statistics, without and with modelling errors respectively. In the latter
case, the steering vector a), of the source p becomes an unknown function, @(6,) = a(6,) + e(6,), of
0y, where e(0,) is a modelling error vector assumed zero-mean, Gaussian, circular with independent
components such that E[e, epT] = 6. L. Note that for omnidirectional sensors and small errors, o is
the sum of the phase and amplitude error variances per reception chain. For the simulations, o is
chosen to be equal to 0.0174, which corresponds for example to a phase error with a standard
deviation of 1° without any amplitude error.

Both in terms of probability of non aberrant results and estimation precision, figures 10 and 11
show, for poorly angularly separated sources, the best behavior of the 6-MUSIC method with respect
to 2-MUSIC and 4-MUSIC as soon as L becomes greater than 400 snapshots without modelling errors
and 500 snapshots with modelling errors. For such values of L, the resolution gain and the better
robustness to modelling errors obtained with 6-MUSIC with respect to 2-MUSIC and 4-MUSIC, due
to the narrower 3dB-beamwidth and the greater number of VS of the associated 6-th order VA
respectively, is higher than the loss due to a higher variance in the statistics estimates. A similar
analysis can be done for 4-MUSIC with respect to 2-MUSIC as soon as L becomes greater than 2000
without modelling errors and 1700 snapshots with modelling errors.

Thus, the previous results show that, despite of their higher variance and contrary to some
generally accepted ideas, 2¢-MUSIC methods with ¢ > 2 may offer better performances than 2-

MUSIC or 4-MUSIC methods when some resolution is required, i.e. in the presence of several
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sources, when the latter are poorly angularly separated or in the presence of modelling errors inherent

in operational contexts, which definitely shows off the great interest of HO VA.

Figure 10
Figure 11

VII. CONCLUSION

In this paper, the VA concept, initially introduced in [15-16] and [7] for the FO array
processing problem and for a particular arrangement of the FO data statistics, has been extended to an
arbitrary even order m = 2¢g (¢ > 2), for several arrangements of the 2¢-th order data statistics and for
general arrays with space, angular and polarization diversities. This HO VA concept allows to
provide some important insights into the mechanisms of numerous HO methods and thus some
explanations about their interests and performance. It allows in particular not only to show off both
the increasing resolution and the increasing processing capacity of 2¢-th order array processing
methods as ¢ increases but also to solve the identifiability problem of all the HO methods exploiting
the algebraic structure of the 2¢-th (¢ > 2) order data statistics matrix only, for particular
arrangements of the latter. The maximal number of sources that can be processed by such methods,
reached for most of sensors responses and array geometries, has been computed for 2 < g <4 and for
several arrangements of the data statistics in the Cp4, matrix. For a given number of sensors, the
array geometry together with the number of sensors with different amplitude patterns in the array
have been shown to be crucial parameters in the processing capacity of these HO methods. Another
important result of the paper, completely unknown by most of the researchers, is that the way the 2¢-
th order data statistics are arranged generally controls the geometry and the number of VS of the VA
and thus the number of sources that can be processed by a 2¢-th order method exploiting the
algebraic structure of Cp, . This gives rise to the problem of the optimal arrangement of the data
statistics, which has also been solved in the paper. In the particular case of a ULA of N identical
sensors, it has been shown that all the considered arrangements of the data statistics are equivalent
and give rise to VA with Nglq =q(N-1)+ 1 VS, while when N is a prime number, the UCA of N
identical sensors seems to generate VA with N. glq =N, .[2g, [] VS whatever the values of g and /. On

the other hand, the HO VA concept allows to explain why, despite of their higher variance, HO array
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processing methods may offer better performances than SO or FO ones when some resolution is
required, i.e. in the presence of several sources, when the latter are poorly angularly separated or in
the presence of modelling errors inherent in operational contexts. Finally, one may think that the HO
VA concept will spawn much practical research in array processing and will also be considered as a

powerful tool for performance evaluation of HO array processing methods.
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APPENDIX A

We present in this Appendix explicit expressions of the Leonov-Shiryaev formula (8) for g = 1,

2 and 3, assuming zero-mean complex random vector x.

Cum[xilaxiz] = E[xil xiz] (Al)

Cum(x;,, xiy, Xi3, Xiy] = E[xi; X xi5 X, ] —

E[xi] xiz] E[xi3 xi4] - E[xi] xi3] E[xiz xi4] - E[xil xi4] E[xiz xi3] (AZ)

Cum(x;,, Xiy, Xis, Xiy, Xis, Xig] = E[xi; Xiy Xiy Xiy Xig Xig] — E[xi) xi,] E[xi5 X1, Xig Xi6] —
E[x;, xiy] Elxi, xiy xig Xig] = El[xi) xiy] Elxiy xi5 xig Xig] — Elxi) xi5] E[xi, Xi5 Xiy Xig] —
Elxi, xig) E[xi, xi5 iy Xis] = E[xi, xi5] E[x;; Xiy Xis xi] = Elxi, x1,] E[x;) Xi3 xi5 x3¢] =
Elxi, xis] E[xi) xi5 xiy Xig] = E[xi, xi¢] E[xi; Xiy xiy Xi5] = Elxiy x1,] E[x;) X35 xis X5] =
E[xi; xis] E[xi xiy Xiy xig] — Elxiy xig] Elxi) x4y xiy Xis] = Elxi, xis] E[xi) X4y Xiy Xi] —
E[xiy xig] E[xi) xiy Xiy xis] = Elxig xig] Elxi) Xiy Xi5 Xiy] —
Elxi, xiy xi3] Elxiy xis Xig] = E[xi) x4y xi,] Blxi5 Xis xi6] = Elxi; X3 Xis] Elxi5 x4 Xi6] —
Elx;, xiy xig] Elxiy xiy Xis] = E[xi) Xi5 xi,] Elxiy Xis xi] = Elxi; x5 xis] E[xi, x4 Xi] —
Elxi, xiy xig] Elxiy xiy Xis] — E[xi) xiy xi5] Elxiy iy xi6] = Elxi) xiy xi] E[xi, i3 Xi5] —
E[x;, xig xig] E[xi, xiy xi4] +
2E[x;, xi, JE[xi5 X3, JE[xis xic] + 2E[x;) xiJE[xi5 X5 JE[xi, Xi¢] + 2E[x;, x5, JE[xi5 X JE [0+
2E[x;, xi3]E[xi, xiyJE[xig xi¢] + 2E[x, xi3]E[xi, Xis]E[xi4 Xig] + 2E[x;; xi5]E[xi, xi JE[xi,%i5]+
2E[x;, xiyJE[xi, xi3JE[xig xi6] + 2E[x;) x,JE[xi, xi]E[xi5 X ] + 2E[x;) xi,JE[xi, X JE[xi5%i5]+
2E[x;y xi5 E[xi, xi3JE[xiy xi6] + 2E[x;) xisJE[xi, xi,JE[xi5 Xig] + 2E[x; xi5]E[xi, X JE[xi5%7, ]+
2E[x;, xjg|E[xi, xi3JE[xiy Xis] + 2E[x;; xi JE[xi, Xy JE[xi5 Xi5] + 2E[x;; xiJE[xi, xis]E[xi5%i,]

(A3)
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APPENDIX B

We show in this appendix that the spatial correlation coefficient defined by (20) can be written
as (21). To this aim, it can easily be verified the property (B.1) given, for arbitraries (N x 1) complex

vectors a, b, ¢ and d, by

[a®b" ] [e®d] = (afc) (D) (B.1)
Applying recurrently the property (B.1), we obtain

[® ® a"®4-D1T [p® @ p*®@-D] = (a'b) (bTa)d—) (B.2)

Then, applying (B.2) to (20), we obtain (21).
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VS coordinates VS responses VS multiplicities
2r, 1ol 1
o+ T St S 2
"y [l !
n — T St fnz* 1

Table 1 - Coordinates, Complex responses and Multiplicity order of VS for several values of [, for q

= 2 and for arrays with space, angular and polarization diversities

VS coordinates VS responses VS multiplicities
3
3r, il 1
) 2
ol + 4l fnl fnz 3
P + T + I fnl fn2 fnS 6
2
Pl f nl |f nl | 1
, 2
nl Jur 2] 2
* 2
2rn2 - I fnl fnz 1
&
rnl + rn2 - rn3 f nl f n2 Jn3 2

Table 2 - Coordinates, Complex responses and Multiplicity order of VS for several values of [, for q

= 3 and for arrays with space, angular and polarization diversities
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/ VS coordinates VS responses VS multiplicities
ar,, fn14 1
o + 30 thl.f;23 4
4 2, + 21y fnlzfnZZ 6
Ay + T+ Ty vﬂfﬁﬁ 3 12
P+ T T Fytry, St Joa F3 foa 24
2r”1 fn12|fn1 | ’ 1
Fa + T S fnz|f;,z|2 3
3p — 1y fnl* fnz3 1
3 o, Filfal” 3
Wy + Ty~ Ty fnl2fn2 n3* 3
Fip + T3 fnz fn3 |fn1|2 6
P+ T T F3—1y S Jio fngfn: 6
o ol :
P — T fh.ﬁ£|fﬁ|2 2
T — Ta f;:fh|fp|2 2
A, — 2y ﬁj ﬁgz 1
2 o ol 1ol 4
R R »ﬂffz ,; 2
Fo — T S £l 1
2+ Ty tor, S Sz ,;2 2
T+ Fip = T3 = ¥y T o g fra 4

Table 3 - Coordinates, Complex responses and Multiplicity order of VS for several values of [, for q

=4 and for arrays with space, angular and polarization diversities
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m=2q ) N2, 1]
4 2 NN+ 1)2
@=2) 1 N2
6 3 NV[6(N=3)!]+ NN — 1)+ N
@=3 | 2 NV[2(N = 3)!]+ 2N(N — 1)+ N
4 NV[24(N = 4)1] + NV[2(N = 3)!] + LSN(N = 1) + N
8
w4 3 NV[6(N = 4)1]+ 15NN =3)1 + 3N(N — 1) + N
q=
2 NV[A(N = 4)1]+ 2NV(N =3)! + 3.5N(N = 1) + N

Tabled4 - N___[2q, l] as a function of N for several values of q and [ and for arrays with space,

maxt

angular and polarization diversities

4 2 3 6 10 15 21 28 36
@=2 | 4 9 16 | 25 36 | 49 64
6 3 4 10 20 35 56 84 120
¢=3 2 6 18 40 75 126 196 288
4 5 15 35 70 126 210 330
8
3 8 30 80 175 336 588 960
qg=49
2 9 36 100 225 441 784 | 1296

Table5 - N__ [2q, [] for several values of N, q and | and for arrays with space, angular and

max

polarization diversities
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l VS coordinates VS multiplicities
2rnl 1
2
rnl + rnZ 2
Fy N
1
rnl - rn2 1

Table 6 - Coordinates and Multiplicity order of VS for several values of |, for g = 2 and for arrays

with space diversity only

l VS coordinates VS multiplicities
3r, 1
3 Fal + 20y 3
o+ Tp + T3 6
ro 2N -1
2 2, —rp 1
o + T — Ty 2

Table 7 - Coordinates and Multiplicity order of VS for several values of |, for q = 3 and for arrays

with space diversity only
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/ VS coordinates VS multiplicities
4, 1
ol + 3y 4
4 2r, + 2rp 6
g+t ory 12
Pt ot Pzt ry, 24
2r,, 3N-2
g o+ I'p 6N -6
3 r, — 1p 1
2+ Py T Ty 3
P+ Tt ryy—ry, 6
o NN -1)
o — T 4N -1)
) 2y = 2y !
Ay =t~ Iy 2
2+ T tor 2
P+ P = F3—rFy 4

Table 8 - Coordinates and Multiplicity order of VS for several values of |, for g = 4 and for arrays

with space diversity only
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m=2q| 1 Noul2q, 1]
4 2 NN+ 1)2
@=21 4 NP - N +1
6 3 NY[6(N—=3)1]+N(N - 1)+ N
@=3 | 2 NU[2(N=3)1]+NN-1)+N
4 NV[24(N —=4)!] + NU[2(N = 3)!]+ LSN(N — 1)+ N
8
3 NV[6(N—=4)1]+ NU(N=3)! + L.SN(N— 1) + N
¢G=9
2 NV[4A(N = 4)!]+ NY(N=3)! +2N(N— 1) + 1

Table9 - N___[2q, [] as a function of N for several values of q and | and for arrays with space

max

diversity only
4 2 3 6 10 15 21 28 36
@=2 | 4 3 7 13 | 21 31 43 57
6 3 4 10 20 35 56 84 120
(¢=3) 2 4 12 28 55 96 154 | 232
4 5 15 35 70 126 | 210 | 330
8
3 5 18 50 115 | 231 | 420 | 708
@G=4
2 5 19 55 131 271 | 505 | 869

Table 10 - N, . /2q, [] for several values of N, q and | and for arrays with space diversity only
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m=2g| N=2| N=3 | N=4| N=5| N=6 | N=7 | N=8
4

a=2| 3 5 7 9 11 13 15
6

a-»| * 7 10 13 16 19 2
8 5 9 13 17 21 25 29

@G=49

Table 11 - N. glq for several values of g and N for a ULA

N=3 N=35§ N=17 N=9 N=11

1 ) )
m=2q | 1| Nl Ny | Mo Nog | Nod Doy | Nuaf N | Noaf

6 3 10 | 10 | 35 | 35 | 84 | 84 | 165]| 163] 286 | 286

q=3) 2 12 [ 12 | 55 | 55 |154|154]333|306|616 | 616

4 15 | 15 | 70 | 70 |210|210|495|477|1001 1001

=4 3 18 | 18 115 [115[420(420 1125|918 [2486|2486
q=

2 19 | 19 | 131 |131]505|505 |1405|1135]3191|3191

Table12- N, /2q, [] and N. glq associated to a UCA for several values of N, q and | and for arrays
with space diversity only
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Figure 1 - An incoming signal in three dimensions

0.5¢
= 1 2 3 4 5 4 3 2 1
~ or o o L] ] L] ] L] o o
N

-0.5

O : Virtual Array X : Real Array
Figure 2 - 4"-order VA of a ULA of 5 sensors with the order of multiplicities of the VS
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Figure 3 — 6"-order VA of a ULA of 5 sensors with the order of multiplicities of the VS
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Figure 5 — VA pattern for g = 1, 2, 3, 4, ULA with 5 sensors, d = 1/2, Pointing direction : 0°
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Figure 7 — 4"-order VA of a UCA of 5 sensors with the order of multiplicities of the VS for
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Figure 10 — RMS error of the source 1 and p(n; <n) as a function of L, (a) 2-MUSIC, (b) 4-MUSIC,
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Figure 11 — RMS error of the source 1 and p(n; <n) as a function of L, (a) 2-MUSIC, (b) 4-MUSIC,
(c) 6-MUSIC, P =2, N =3, ULA, SNR =5 dB, 6,=90°, 6,=82,7° with modelling errors
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(b) 4-MUSIC, (c) 6-MUSIC, P =2, N =3, ULA, SNR = 5 dB, 0,=90°, 6,=82,7° no modelling errors

Figure 11 — RMS error of the source 1 and p(n; <n) as a function of L, (a) 2-MUSIC, (b)
4-MUSIC, (c) 6-MUSIC, P =2, N =3, ULA, SNR = 5 dB, 6,=90°, 6,=82,7°, with modelling errors
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